JP2740681B2 - Method for manufacturing compound semiconductor thin film - Google Patents

Method for manufacturing compound semiconductor thin film

Info

Publication number
JP2740681B2
JP2740681B2 JP31067489A JP31067489A JP2740681B2 JP 2740681 B2 JP2740681 B2 JP 2740681B2 JP 31067489 A JP31067489 A JP 31067489A JP 31067489 A JP31067489 A JP 31067489A JP 2740681 B2 JP2740681 B2 JP 2740681B2
Authority
JP
Japan
Prior art keywords
thin film
compound semiconductor
semiconductor thin
zinc
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31067489A
Other languages
Japanese (ja)
Other versions
JPH03173122A (en
Inventor
弘次 佐藤
駿吾 菅原
健 助川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP31067489A priority Critical patent/JP2740681B2/en
Publication of JPH03173122A publication Critical patent/JPH03173122A/en
Application granted granted Critical
Publication of JP2740681B2 publication Critical patent/JP2740681B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は化合物半導体薄膜の製造方法に係り、特にp
型伝導特性を有するZn−VI b族化合物半導体薄膜の製造
方法に関するものである。
The present invention relates to a method for producing a compound semiconductor thin film, and more particularly to a method for producing a compound semiconductor thin film.
TECHNICAL FIELD The present invention relates to a method for producing a Zn-VIb group compound semiconductor thin film having type conductivity characteristics.

〔従来の技術〕[Conventional technology]

近年、青色発光材料として注目されているZnS、ZnSe
などの化合物半導体薄膜を製造する方法として、有機金
属気相エピタキシャル成長法(MOVPE)と呼ばれる方法
が多く採用されている。このMOVPE法では、例えばジエ
チル亜鉛〔(C2H52Zn〕などの元素周期表II b族元素
を含む有機金属化合物を気相熱分解し、セレン化水素
(H2Se)などのVI b族元素を含む化合物と反応させるこ
とによって、ZnSeなどのZn−VI b族化合物半導体薄膜を
基板上に成長させていた。また高い効率の発光素子を作
成するためには伝導性を制御してp−n接合を形成する
必要があり、このため様々なドーパントが検討されてい
る。例えばn型伝導特性を実現するためには、Ga、In、
ハロゲン元素が検討され、高いキャリア濃度、移動度が
達成されている。またp型伝導を実現するためにはLi等
のI a族元素やV b族元素であるP、As、あるいはNが検
討されている。
In recent years, ZnS and ZnSe, which have attracted attention as blue light-emitting materials,
As a method for producing such compound semiconductor thin films, a method called metal organic vapor phase epitaxy (MOVPE) is often employed. In this MOVPE method, for example, an organometallic compound containing a Group IIb element such as diethylzinc [(C 2 H 5 ) 2 Zn] is thermally decomposed in the gas phase, and VI metal such as hydrogen selenide (H 2 Se) is decomposed. By reacting with a compound containing a group b element, a Zn-VI group b compound semiconductor thin film such as ZnSe has been grown on a substrate. Further, in order to produce a light-emitting element with high efficiency, it is necessary to form a pn junction by controlling conductivity, and various dopants have been studied. For example, to realize n-type conduction characteristics, Ga, In,
Halogen elements have been studied and high carrier concentration and high mobility have been achieved. In order to realize p-type conduction, P, As, or N, which is an Ia group element such as Li or a Vb group element, is being studied.

〔発明が解決しようとする課題〕 しかしながらこれまで優れたp型伝導性を付与するこ
とは困難であった。その理由としては、P、As元素を使
用すると深い不純物準位をつくりやすく、発光波長が青
色ではなくなるためであるとされている。また窒素元素
は浅いアクセプタレベルをつくりやすく、青色発光材料
として有望視されているが、ドーピングされた窒素の活
性化率が低く、キャリア濃度が低く伝導特性が劣る問題
があった。
[Problems to be Solved by the Invention] However, it has been difficult to provide excellent p-type conductivity. It is said that the reason is that the use of the P and As elements makes it easier to form deep impurity levels, and the emission wavelength is not blue. In addition, nitrogen element easily forms a shallow acceptor level and is regarded as a promising blue light-emitting material. However, there has been a problem that the activation rate of doped nitrogen is low, the carrier concentration is low, and the conduction characteristics are poor.

本発明の目的は従来技術の問題点を解決し、優れたp
型伝導特性のZn−VI b族化合物半導体薄膜を得ることに
ある。
An object of the present invention is to solve the problems of the prior art and to provide an excellent p
An object of the present invention is to obtain a Zn-VIb group compound semiconductor thin film having a type conduction characteristic.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、本発明の化合物半導体薄
膜の製造方法は、反応容器内に、元素周期表のII b族元
素のZnを含む化合物、VI b族元素の少なくとも1つを含
む化合物、および少なくとも窒素と亜鉛とを含む化合物
を気相で導入し、これらを熱分解して上記反応容器内に
設置した基板上にZn−VI b族化合物半導体薄膜を製造す
ることを特徴とする。
In order to achieve the above object, a method for producing a compound semiconductor thin film of the present invention includes, in a reaction vessel, a compound containing Zn of a group IIb element of the periodic table, a compound containing at least one of group VIb elements, In addition, a compound containing at least nitrogen and zinc is introduced in a gas phase, and these are thermally decomposed to produce a Zn-VIb group compound semiconductor thin film on a substrate provided in the reaction vessel.

〔作用〕[Action]

本発明は、窒素と亜鉛を含む化合物をドーパントとし
て使用すると、窒素元素の取り込み効率が向上するだけ
でなく、その活性化率も向上することを見いだしたこと
により完成に到ったものである。
The present invention has been completed by finding that when a compound containing nitrogen and zinc is used as a dopant, not only the efficiency of taking in the nitrogen element is improved, but also the activation rate is improved.

本発明で窒素ドーピングを行うためにはMOVPE法にお
いて、窒素と亜鉛を含む化合物を反応容器中に導入させ
れば良い。このとき窒素原子が亜鉛原子と共に結晶中に
取り込まれるため、窒素原子がVI b族サイトに入りやす
く、p型ドーパントとして活性化され易いことによる。
表1に具体例を示すが本発明はこれらにより限定される
ものではない。
In order to carry out nitrogen doping in the present invention, a compound containing nitrogen and zinc may be introduced into a reaction vessel in the MOVPE method. At this time, since the nitrogen atom is taken into the crystal together with the zinc atom, the nitrogen atom easily enters the group VIb site and is easily activated as a p-type dopant.
Table 1 shows specific examples, but the present invention is not limited by these.

本発明で使用する原料化合物は室温で固体のものが多
く、蒸気圧も低いものが多い。従って実際の使用時にお
いては原料格納ボンベや配管系を加熱するなどの方策が
必要となる。室温で液体の原料については従来と同様バ
ブリングにより反応容器中に導入できる。
Many of the starting compounds used in the present invention are solid at room temperature and have a low vapor pressure. Therefore, during actual use, it is necessary to take measures such as heating the raw material storage cylinder and the piping system. Raw materials that are liquid at room temperature can be introduced into the reaction vessel by bubbling as in the related art.

〔実施例〕〔Example〕

以下実施例に従って詳しく説明する。 Hereinafter, the present invention will be described in detail with reference to examples.

第1図は、本発明をZnSe化合物半導体薄膜の単結晶膜
の製造に適用した場合の装置の構成を示す系統図であ
る。同図において、ZnSe化合物半導体を構成するZn元素
を含む原料である液体のジエチル亜鉛〔(C2H52Zn〕
が封入されているバブラー容器5内に、ガス流量コント
ローラー9により流量調節された水素ガス14をバブリン
グさせることにより、ジエチル亜鉛を所要量含む水素ガ
スを形成し、これに不純物添加用のドーピング化合物、
ここではビス(3−N,N−ジメチルアミノプロピル)亜
鉛を含む容器7内を通過させた所定流量の水素ガスを加
えて原料となし、他方、ZnSe化合物半導体を構成するSe
元素を含む原料であるセレン化水素が充填されているガ
スボンベ6より、流量コントローラー12を介して所要量
を供給し、これに流量コントローラー11を介して所定流
量の水素ガスを加えて原料として、上記のジエチル亜鉛
およびビス(3−N,N−ジメチルアミノプロピル)亜鉛
を含む原料ガスと共に、気相で反応容器1内に導入す
る。反応容器1内にはGaAs基板3が基板ホルダ2の上に
配置されていて、高周波加熱コイル4により所定の温度
に加熱され、化学気相反応により窒素を含むp型導電性
のZnSe化合物半導体の単結晶薄膜が基板上に形成され
る。GaAsとZnSeの格子常数の不整合は1%以下であり、
良好な単結晶薄膜が形成できる。この格子常数の不整合
は約5%まで許容され、InP、Si等が基板として使用可
能である。なお、8、9はガス流量コントローラー、13
は排気口である。
FIG. 1 is a system diagram showing a configuration of an apparatus when the present invention is applied to the production of a single crystal film of a ZnSe compound semiconductor thin film. In the figure, liquid diethyl zinc [(C 2 H 5 ) 2 Zn] which is a raw material containing a Zn element constituting a ZnSe compound semiconductor
Is bubbled in the bubbler container 5 in which the gas flow rate is controlled by the gas flow rate controller 9 to form a hydrogen gas containing a necessary amount of diethyl zinc, and a doping compound for adding impurities therein is formed.
Here, a predetermined flow rate of hydrogen gas passed through the container 7 containing bis (3-N, N-dimethylaminopropyl) zinc is added as a raw material, while Se forming a ZnSe compound semiconductor is formed.
A required amount is supplied from a gas cylinder 6 filled with hydrogen selenide, which is a raw material containing an element, through a flow rate controller 12 and a predetermined flow rate of hydrogen gas is added thereto through a flow rate controller 11 to obtain a raw material. Together with a raw material gas containing diethyl zinc and bis (3-N, N-dimethylaminopropyl) zinc in the gas phase. In a reaction vessel 1, a GaAs substrate 3 is placed on a substrate holder 2 and is heated to a predetermined temperature by a high-frequency heating coil 4 to form a p-type conductive ZnSe compound semiconductor containing nitrogen by a chemical vapor reaction. A single crystal thin film is formed on a substrate. The lattice constant mismatch between GaAs and ZnSe is less than 1%,
A good single crystal thin film can be formed. This lattice constant mismatch is allowed up to about 5%, and InP, Si, and the like can be used as the substrate. 8 and 9 are gas flow controllers, 13
Is an exhaust port.

以上説明した化合物半導体の製造をより具体的に説明
すると、温度5℃のジエチル亜鉛のバブラー容器5を通
過した25cc/分の水素ガスと、温度50℃のビス(3−N,N
−ジメチルアミノプロピル)亜鉛の容器7を通過した5c
c/分の水素ガスとを、1/分の水素ガスに混合希釈し
た後の原料ガスを反応容器1内に導く。同時に、水素ガ
スで希釈した5容量%セレン化水素ガス100cc/分の原料
ガスをさらに1/分の水素ガスに希釈混合した後、反
応容器1内に導き、400℃の温度に加熱されたGaAs基板
3に吹き付けることにより窒素を含むZnSe単結晶薄膜を
1時間当たり2μmの速度で成長させた。得られたZnSe
単結晶薄膜の表面は、良好な鏡面が形成された結晶性に
も問題はなかった。また、ZnSe単結晶薄膜の抵抗値は、
ビス(3−N,N−ジメチルアミノプロピル)亜鉛を添加
しない場合および窒素以外のドーパントであるAsやPを
含む場合には106Ω・cm以上の高抵抗であったのに対
し、ビス(3−N,N−ジメチルアミノプロピル)亜鉛を
使用した場合には数十Ω・cm以下の低い抵抗値を示し
た。p型キャリア濃度は1016個/cm3以上であり、従来の
アンモニアを窒素原料として用いた場合に比べて1桁以
上添加量を増すことができた。
More specifically, the production of the compound semiconductor described above will be described. Hydrogen gas passing through a bubbler container 5 of diethyl zinc at a temperature of 5 ° C. at 25 cc / min and bis (3-N, N
-Dimethylaminopropyl) 5c passed through zinc container 7
The raw material gas after mixing and diluting c / min hydrogen gas with 1 / min hydrogen gas is introduced into the reaction vessel 1. At the same time, a raw material gas diluted with hydrogen gas, 5 vol% hydrogen selenide gas, 100 cc / min, was further diluted and mixed with 1 / min hydrogen gas, and then introduced into the reaction vessel 1 and heated to a temperature of 400 ° C. By spraying on the substrate 3, a ZnSe single crystal thin film containing nitrogen was grown at a rate of 2 μm per hour. ZnSe obtained
The surface of the single-crystal thin film had no problem in crystallinity in which a good mirror surface was formed. The resistance value of the ZnSe single crystal thin film is
When no bis (3-N, N-dimethylaminopropyl) zinc was added and when dopants other than nitrogen, such as As and P, were included, the resistance was higher than 10 6 Ω · cm. When 3- (N, N-dimethylaminopropyl) zinc was used, a low resistance value of several tens Ω · cm or less was exhibited. The p-type carrier concentration was 10 16 / cm 3 or more, and the addition amount could be increased by one digit or more compared to the case where conventional ammonia was used as a nitrogen source.

なお、不純物を添加する際に不純物メモリー効果(次
回の半導体薄膜成長へ及ぼす効果)が重要なファクター
となるが、本実施例においては、ビス(3−N,N−ジメ
チルアミノプロピル)亜鉛のステンレス配管への付着性
が小さいため、この点においては何等問題が生じなかっ
た。また、表1に示した他の窒素と亜鉛を含む化合物を
用いた場合も本実施例と同様の効果を奏した。
The impurity memory effect (effect on the next growth of the semiconductor thin film) is an important factor when adding impurities. In this embodiment, bis (3-N, N-dimethylaminopropyl) zinc Since the adhesion to the pipe was small, no problem occurred in this point. Further, when the other compounds containing nitrogen and zinc shown in Table 1 were used, the same effect as that of the present example was obtained.

以上、本発明の実施例を具体的に説明したが、本発明
は上記実施例に限定されるものではなく、その要旨を逸
脱しない範囲において種々変更可能であることは勿論で
ある。
Although the embodiment of the present invention has been specifically described above, the present invention is not limited to the above embodiment, and it is needless to say that various changes can be made without departing from the gist of the present invention.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明に係る化合物半導体薄膜
の製造方法によれば、窒素を含有した亜鉛系有機金属化
合物を使用しているため、 Zn−VI b族化合物半導体薄膜の製造においては、良好な
青色発光を示し、良好なp型伝導性を有する高品質の化
合物半導体薄膜が得られる利点がある。
As described above, according to the method for producing a compound semiconductor thin film according to the present invention, since a zinc-based organometallic compound containing nitrogen is used, in the production of a Zn-VIb group compound semiconductor thin film, There is an advantage that a high-quality compound semiconductor thin film that emits blue light and has good p-type conductivity can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例において用いた ZnSe単結晶薄膜の製造装置の構成を示す系統図である。 1……反応容器 2……基板ホルダ 3……GaAs基板 4……高周波加熱コイル 5……バブラー容器 6……セレン化水素のガスボンベ 7……窒素を含有した亜鉛系有機金属化合物の容器 8、9、10、11、12……ガス流量コントローラー 13……排気口 14……水素ガス FIG. 1 is a system diagram showing a configuration of an apparatus for manufacturing a ZnSe single crystal thin film used in an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1 ... Reaction container 2 ... Substrate holder 3 ... GaAs substrate 4 ... High frequency heating coil 5 ... Bubbler container 6 ... Hydrogen selenide gas cylinder 7 ... Container of zinc-containing organometallic compound containing nitrogen 8, 9, 10, 11, 12 ... gas flow controller 13 ... exhaust port 14 ... hydrogen gas

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】反応容器内に、元素周期表のII b族元素の
Znを含む化合物、VI b族元素の少なくとも1つを含む化
合物、および少なくとも窒素と亜鉛とを含む化合物を気
相で導入し、これらを熱分解して上記反応容器内に設置
した基板上にZn−VI b族化合物半導体薄膜を製造するこ
とを特徴とする化合物半導体薄膜の製造方法。
1. A reaction vessel containing a group IIb element of the periodic table
A compound containing Zn, a compound containing at least one of Group VIb elements, and a compound containing at least nitrogen and zinc are introduced in a gas phase, and these are thermally decomposed to form Zn on a substrate placed in the reaction vessel. -A method for producing a compound semiconductor thin film, comprising producing a group VIb compound semiconductor thin film.
JP31067489A 1989-12-01 1989-12-01 Method for manufacturing compound semiconductor thin film Expired - Fee Related JP2740681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31067489A JP2740681B2 (en) 1989-12-01 1989-12-01 Method for manufacturing compound semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31067489A JP2740681B2 (en) 1989-12-01 1989-12-01 Method for manufacturing compound semiconductor thin film

Publications (2)

Publication Number Publication Date
JPH03173122A JPH03173122A (en) 1991-07-26
JP2740681B2 true JP2740681B2 (en) 1998-04-15

Family

ID=18008090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31067489A Expired - Fee Related JP2740681B2 (en) 1989-12-01 1989-12-01 Method for manufacturing compound semiconductor thin film

Country Status (1)

Country Link
JP (1) JP2740681B2 (en)

Also Published As

Publication number Publication date
JPH03173122A (en) 1991-07-26

Similar Documents

Publication Publication Date Title
JPH0331678B2 (en)
Scholz MOVPE of Group‐III Heterostructures for Optoelectronic Applications
JP2740681B2 (en) Method for manufacturing compound semiconductor thin film
JPH0312400A (en) Production of thin film of compound semiconductor
CN110724935A (en) Film forming method and method for manufacturing semiconductor device
JPH0754802B2 (en) Vapor growth method of GaAs thin film
JPH0312399A (en) Production of thin film of compound semiconductor
JP2706337B2 (en) Method for manufacturing compound semiconductor thin film
JPH04328823A (en) Manufacture of epitaxial wafer for light emitting diode
JPH0754805B2 (en) Vapor growth method of compound semiconductor
JP3557295B2 (en) Method for producing p-type II-VI compound semiconductor thin film
JPS63204733A (en) Manufacture of compound semiconductor film
JPH06101437B2 (en) Manufacturing method of semiconductor light emitting device
JPS6324683A (en) Manufacture of light-emitting element
JPS61205696A (en) Vapor-phase crystal growth system for group iii-v compounds
JP2563781B2 (en) Method for manufacturing compound semiconductor thin film
JPH0346440B2 (en)
JPS6247174A (en) Manufacture of semiconductor light emitting device
JPH02208297A (en) Growth of compound semiconductor thin film
JPH06267859A (en) Manufacture of p-type znte
JPH0740560B2 (en) Method for manufacturing compound semiconductor film
JPH07130667A (en) Metal organic vapor phase epitaxial growth method
JPH06232052A (en) Vapor growth method of compound semiconductor thin film
JPH0728053B2 (en) Light emitting diode
JPH01184835A (en) Epitaxial growth for ii-vi compound semiconductor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees