JPH0312400A - Production of thin film of compound semiconductor - Google Patents

Production of thin film of compound semiconductor

Info

Publication number
JPH0312400A
JPH0312400A JP14563889A JP14563889A JPH0312400A JP H0312400 A JPH0312400 A JP H0312400A JP 14563889 A JP14563889 A JP 14563889A JP 14563889 A JP14563889 A JP 14563889A JP H0312400 A JPH0312400 A JP H0312400A
Authority
JP
Japan
Prior art keywords
thin film
compd
group
compound semiconductor
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14563889A
Other languages
Japanese (ja)
Inventor
Koji Sato
弘次 佐藤
Shungo Sugawara
菅原 駿吾
Takeshi Sukegawa
助川 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP14563889A priority Critical patent/JPH0312400A/en
Publication of JPH0312400A publication Critical patent/JPH0312400A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain a thin film having superior p-type conducting characteristics by thermally decomposing a compd. contg. a group IIb element, a compd. contg. a group VIb element and a compd. contg. O introduced into a reactor in vapor phases and by forming a thin film of a IIb-VIb compd. semiconductor on a substrate set in the reactor. CONSTITUTION:A compd. contg. Zn or Cd as a group IIb element of the periodic table is prepd. A compd. contg. S, Se or Te as a group VIb element of the periodic table is also prepd. The compds. and a compd. contg. O are introduced into a reactor in vapor phases and thermally decomposed. A thin film of a IIb-VIb compd. semiconductor is formed on a substrate set in the reactor.

Description

【発明の詳細な説明】 (発明の産業上利用分野) 本発明は化合物半導体薄膜の製造方法に関し、特にp型
伝導特性を有するnb−VIb族化合物半導体薄膜の製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field of the Invention) The present invention relates to a method for manufacturing a compound semiconductor thin film, and particularly to a method for manufacturing an nb-VIb group compound semiconductor thin film having p-type conductivity.

(従来の技術) 近年青色発光材料として注目されているZnS、Zn5
eなどの化合物半導体薄膜を製造する方法として、有機
金属気相エピタキシャル成長法(MOVPE)と呼ばれ
る方法が多く採用されている。
(Prior art) ZnS and Zn5 have recently attracted attention as blue light emitting materials.
A method called metal organic vapor phase epitaxial growth (MOVPE) is often adopted as a method for manufacturing compound semiconductor thin films such as e.

このMOVPE法では、例えばジエチル亜鉛[(C2H
5) 2Znlなどの元素周期表IIb族元素を含む有
機金属化合物を気相熱分解し、セレン化水素(H2Se
)などのVTb族元素を含む化合物と反応させることに
よって、Zn5eなどのII b −VI b族化合物
半導体薄膜を基板上に成長させていた。また高い効率の
発光素子を作成するためには伝導性を制御してp−n接
合を形成する必要があり、このなめ様々なドーパントが
検討されている0例えばn型伝導特性を実現するために
は、Ga、In、ハロゲン元素が検討され、高いキャリ
ア濃度、移動度が達成されている。またp型伝導特性を
実現するためにはLiなどのIa族元素やvb族元素で
あるP、As、あるいはNが検討されている。
In this MOVPE method, for example, diethylzinc [(C2H
5) Gas-phase pyrolysis of organometallic compounds containing Group IIb elements of the periodic table such as 2Znl to produce hydrogen selenide (H2Se
) A IIb-VIb group compound semiconductor thin film such as Zn5e was grown on a substrate by reacting with a compound containing a VTb group element such as Zn5e. In addition, in order to create a highly efficient light-emitting device, it is necessary to control conductivity to form a p-n junction, and for this purpose various dopants are being studied. Ga, In, and halogen elements have been studied, and high carrier concentration and mobility have been achieved. In addition, in order to realize p-type conduction characteristics, Ia group elements such as Li, and VB group elements such as P, As, or N are being considered.

(発明が解決する問題点) しかしながら、これまで優れたp型伝導特性を付与する
ことは困難であった。その理由としては、P、As元素
を使用すると深い不純物準位を作りやすく、発光波長が
青色ではなくなるためであるとされている。また窒素元
素は浅いアクセプタレベルを作りやすく、青色発光材料
として有望視されているが、ドーピングされた窒素の活
性化率が低く、キャリア濃度が低い問題があった。
(Problems to be Solved by the Invention) However, until now it has been difficult to impart excellent p-type conductivity characteristics. The reason for this is said to be that when P and As elements are used, it is easy to create deep impurity levels, and the emission wavelength is no longer blue. In addition, the nitrogen element easily forms a shallow acceptor level and is seen as a promising blue light-emitting material, but there is a problem in that the activation rate of doped nitrogen is low and the carrier concentration is low.

本発明の目的は従来技術の問題点を解決し、優れたp型
伝導特性のIIb −VIb族化合物半導体薄膜を得る
ことにある。
An object of the present invention is to solve the problems of the prior art and to obtain a IIb-VIb group compound semiconductor thin film having excellent p-type conductivity characteristics.

(問題点を解決するための手段) 本発明は上記目的を達成するためになされたもので、そ
の第1の発明は、反応容器内に元素周期表IIb族元素
であるZnおよびCdよりからなる群から選ばれた一つ
の元素を含む化合物および元素周期表VIb族であるS
、SeおよびTeよりなる群から選ばれた一つの元素を
含む化合物および酸素を含む化合物を気相で導入し、こ
れらを熱分解して前記反応容器中に設置した基板上にI
Ib−vxb族化合物半導体薄膜を製造できるようにし
たものである。
(Means for Solving the Problems) The present invention has been made to achieve the above-mentioned object, and the first invention is that a reaction vessel containing Zn and Cd, which are elements of Group IIb of the Periodic Table of Elements. Compounds containing one element selected from the group and S which is group VIb of the periodic table of elements
A compound containing one element selected from the group consisting of , Se, and Te and a compound containing oxygen are introduced in a gas phase, and these are thermally decomposed to form I on the substrate placed in the reaction vessel.
It is possible to manufacture an Ib-vxb group compound semiconductor thin film.

また、酸素を含む化合物として、過酸化水素、エーテル
化合物、アルコール化合物を使用するようにしたもので
ある。
Moreover, hydrogen peroxide, an ether compound, and an alcohol compound are used as the oxygen-containing compound.

本発明はZn5eなどのIIb−VIb族化合物半導体
薄膜のp型ドーパントとして酸素が優れているとの知見
(第36回応用物理学会講演予稿4p−ZP−12)に
基づいている。この知見はMBE法で得られたものであ
るが、MOVPE法での適合性について検討することに
よって本発明は実現されたものである。MOVPE法は
MBE法に比較して、1)装置の信頼性が高い、2)不
純物の取り込みが少ない、3ト原料の補給が容易、4)
量産性がよい、などの利点がある。したがってMOVP
E法で酸素ドーピングが可能になる利点は極めて大きい
The present invention is based on the knowledge that oxygen is an excellent p-type dopant for IIb-VIb group compound semiconductor thin films such as Zn5e (36th Japan Society of Applied Physics Lecture Proceedings 4p-ZP-12). Although this knowledge was obtained by the MBE method, the present invention was realized by examining the compatibility with the MOVPE method. Compared to the MBE method, the MOVPE method has 1) higher reliability of the equipment, 2) less incorporation of impurities, and 3) easier replenishment of raw materials; 4)
It has advantages such as good mass production. Therefore MOVP
The advantage of being able to perform oxygen doping using the E method is extremely large.

酸素ドーピングを行うためには通常のM○■PE法にお
いて、酸素を含む化合物を反応容器中に導入させればよ
い、こうした酸素含有化合物の例として第1表、第2表
に示すような、過酸化水素、エーテル系酸素含有化合物
、アルコール系酸素含有化合物などの一種以上を使用す
ることができる。
In order to perform oxygen doping, it is sufficient to introduce an oxygen-containing compound into the reaction vessel in the normal M○■ PE method. Examples of such oxygen-containing compounds are as shown in Tables 1 and 2. One or more types of hydrogen peroxide, ether-based oxygen-containing compounds, alcohol-based oxygen-containing compounds, etc. can be used.

しかしながら発明はこれらにより限定されるものではな
い、これらの化合物は比較的低温で分解し、結晶中に酸
素を有効に取り込ませることができる。
However, the invention is not limited thereto; these compounds decompose at relatively low temperatures and can effectively incorporate oxygen into the crystals.

第1表 エーテル系酸素含有化合物 (1)(以下余白
) 第1表 エーテル系酸素含有化合物 (2) 第1表 エーテル系酸素含有化合物 (4) 第1表 エーテル系酸素含有化合物 (3) 第1表 エーテル系酸素含有化合物 (5) 第2表 アルコール系酸素含有化合物 (1) 第2表 アルコール系酸素含有化合物 (3) 第2表 アルコール系酸素含有化合物 (2) 第2表 アルコール系酸素含有化合物 (4) 本発明で使用する原料化合物は室温で固体のもの、蒸気
圧も低いものもある。従って、実際の使用時においては
原料格納ボンベや配管系を加熱するなどの方策が必要と
なる。室温での液体の原料については従来と同様バブリ
ングにより反応容器中に導入できる。
Table 1: Ether oxygen-containing compounds (1) (blank below) Table 1: Ether oxygen-containing compounds (2) Table 1: Ether oxygen-containing compounds (4) Table 1: Ether oxygen-containing compounds (3) 1st Table: Ether-based oxygen-containing compounds (5) Table 2: Alcohol-based oxygen-containing compounds (1) Table 2: Alcohol-based oxygen-containing compounds (3) Table 2: Alcohol-based oxygen-containing compounds (2) Table 2: Alcohol-based oxygen-containing compounds (4) Some of the raw material compounds used in the present invention are solid at room temperature, and some have low vapor pressure. Therefore, during actual use, measures such as heating the raw material storage cylinder and piping system are required. A raw material that is liquid at room temperature can be introduced into the reaction vessel by bubbling as in the conventional method.

以下実施例にしたがって詳しく説明する。A detailed explanation will be given below based on examples.

(実施例1) 第1図は本発明をZn5e化合物半導体薄膜の単結晶膜
の製造に適用した場合の装置の構成を示す系統図である
。同図において、Zn5e化合物半導体を構成するZn
元素を含む原料である液体のジエチル亜鉛[(C2H5
) 2Zn)]が封入されているバブラー容器S内に、
ガス流量コントローラー9により流量調節された水素ガ
ス14をバブリングさせることにより、ジエチル亜鉛を
所要量含む水素ガスを形成する。
(Example 1) FIG. 1 is a system diagram showing the configuration of an apparatus when the present invention is applied to manufacturing a single crystal film of a Zn5e compound semiconductor thin film. In the same figure, Zn constituting the Zn5e compound semiconductor
Liquid diethylzinc [(C2H5
) 2Zn)] is sealed in the bubbler container S,
By bubbling the hydrogen gas 14 whose flow rate is adjusted by the gas flow controller 9, hydrogen gas containing the required amount of diethylzinc is formed.

不純物添加用のドーピング化合物、ここでは過酸化水素
を含む容器7内をガス流量コントローラ10で所定量と
した水素ガスを通過させ、前記ジエチル亜鉛を所要量含
む水素ガスに加えて原料とする。
A predetermined amount of hydrogen gas is passed through a container 7 containing a doping compound for impurity addition, here hydrogen peroxide, using a gas flow controller 10, and the diethyl zinc is added to the hydrogen gas containing a required amount to serve as a raw material.

他方、Zn5e化合物半導体を構成するSe元素を含む
原料であるセレン化水素が充填されているガスボンベ6
より、流量コントローラー12を介して所要量を供給し
、これに流量コントローラー11を介して所定流量の水
素ガスを加えて原料として、上記のジエチル亜鉛および
過酸化水素を含む原料ガスと共に、気相で反応容器1内
に導入する。
On the other hand, a gas cylinder 6 filled with hydrogen selenide, which is a raw material containing Se element constituting the Zn5e compound semiconductor.
Then, the required amount is supplied via the flow rate controller 12, and a predetermined flow rate of hydrogen gas is added to this via the flow rate controller 11 to form a raw material in the gas phase together with the raw material gas containing diethyl zinc and hydrogen peroxide. Introduced into reaction vessel 1.

反応容器1内にはGaAs基板3が基板ホルダ2の上に
配置されていて、高周波加熱コイル4により所定の温度
に加熱され、化学気相反応により酸素を含むp型溝電性
のZn5e化合物半導体の単結晶薄膜が基板上に形成さ
れる。
Inside the reaction vessel 1, a GaAs substrate 3 is placed on a substrate holder 2, heated to a predetermined temperature by a high-frequency heating coil 4, and heated to a p-type groove conductive Zn5e compound semiconductor containing oxygen by a chemical vapor phase reaction. A single crystal thin film of is formed on the substrate.

GaAsとZn5eの格子常数の不整合は1%以下であ
り、良好な単結晶薄膜が形成できる。この格子常数の不
整合は〜5%まで許容され、InP、SLなどが基板と
して使用可能である。
The mismatch between the lattice constants of GaAs and Zn5e is 1% or less, and a good single crystal thin film can be formed. This lattice constant mismatch is allowed up to ~5%, and InP, SL, etc. can be used as the substrate.

なお、8はガス流量コントローラー、13は排気口であ
る。
Note that 8 is a gas flow controller, and 13 is an exhaust port.

以上説明した化合物半導体の製造をより具体的に説明す
ると、温度5°Cのジエチル亜鉛のバブラー容器5を通
過した25cc/分の水素ガスと、温度20″Cの過酸
化水素の容器7を通過した5cc/分の水素ガスとを、
IJ/分の水素ガスに混合希釈した後の原料ガスを反応
容器1内に導く。
To explain in more detail the production of the compound semiconductor described above, 25 cc/min of hydrogen gas passes through a diethyl zinc bubbler container 5 at a temperature of 5°C, and passes through a hydrogen peroxide container 7 at a temperature of 20″C. 5 cc/min of hydrogen gas,
The raw material gas after being mixed and diluted with IJ/min of hydrogen gas is introduced into the reaction vessel 1.

同時に、水素ガスで希釈した5容量%セレン化水素ガス
100cc/分の原料ガスをさらにIJ/分の水素ガス
に希釈混合した後、反応容器1内に導き、400℃の温
度に加熱されたGaAs基板3に吹き付けることにより
酸素を含むZn5e単結晶薄膜を1時間当たり2μmの
速度で成長させた。得られたZn5e単結晶薄膜の表面
は、良好な鏡面が形成され結晶性にも問題はなかった。
At the same time, 100 cc/min of 5 volume % hydrogen selenide gas diluted with hydrogen gas was further diluted and mixed with IJ/min of hydrogen gas, and then introduced into the reaction vessel 1 and heated to a temperature of 400°C. By spraying onto the substrate 3, a Zn5e single crystal thin film containing oxygen was grown at a rate of 2 μm per hour. A good mirror surface was formed on the surface of the obtained Zn5e single crystal thin film, and there was no problem in crystallinity.

また、Zn5e単結晶薄膜の抵抗値は、過酸化水素を添
加しない場合および酸素以外のドーパントであるAsや
Pを含む場合には106Ω・cm以上の高抵抗であった
のに対し、過酸化水素を使用した場合には数十Ω・m以
上の低い抵抗値を示した。
In addition, the resistance value of the Zn5e single crystal thin film was as high as 106 Ω・cm or more when hydrogen peroxide was not added and when As and P, which are dopants other than oxygen, were added. When used, it showed a low resistance value of several tens of Ω·m or more.

p型キャリア濃度は1016個/cm 3以上であり、
従来のアンモニアを窒素原料として用いた場合に比べて
1桁以上添加量を増すことができた。
The p-type carrier concentration is 1016 pieces/cm3 or more,
Compared to the conventional case where ammonia was used as the nitrogen raw material, the amount added could be increased by one order of magnitude or more.

なお、不純物を添加する際に不純物メモリー効果(次回
の半導体薄膜成長へ及ぼす効果)が重要なファクターと
なるが、本実施例においては、過酸化水素のステンレス
配管への付着性が小さいため、この点においては何等問
題が生じなかった。
Note that when adding impurities, the impurity memory effect (effect on the next semiconductor thin film growth) is an important factor, but in this example, since the adhesion of hydrogen peroxide to the stainless steel piping is small, this No problems occurred in this respect.

(実施例2〜4) 実施例1において過酸化水素の替わりに第3表の原料お
よび条件を使用する他は同様にしてZn5e薄膜の成長
を行った。いずれの場合においても実施例1と同様、優
れた特性のZn5e単結晶薄膜が得られた。
(Examples 2 to 4) Zn5e thin films were grown in the same manner as in Example 1 except that the raw materials and conditions shown in Table 3 were used instead of hydrogen peroxide. In any case, as in Example 1, a Zn5e single crystal thin film with excellent properties was obtained.

(以下余白) 第3表 実施例2〜4での成長条件 (発明の効果) 以上説明したように、本発明に係る化合物半導体薄膜の
製造方法によれば、酸素を含有した化合物を使用してい
るため、IIb −VIb族化合物半導体薄膜の製造に
おいては、青色発光を示す高品質のp型伝導性の化合物
半導体薄膜が得られる利点がある。
(Margin below) Table 3 Growth conditions in Examples 2 to 4 (effects of the invention) As explained above, according to the method for producing a compound semiconductor thin film according to the present invention, an oxygen-containing compound is used. Therefore, in the production of a IIb-VIb group compound semiconductor thin film, there is an advantage that a high quality p-type conductive compound semiconductor thin film that emits blue light can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例において用いたZn5e単結晶
薄膜の製造装置の構成を示す系統図を示す。 1・・・反応容器、2・・・基板ホルダ、3・・・Ga
As基板、4・・・高周波加熱コイル、5・・・バブラ
ー容器、6・・・セレン化水素のガスボンベ、7・・・
酸素を含有した亜鉛系有機金属化合物の容器、8,9,
10,11.12・・・水素ガス、13・・・排気口、
14・・・水素ガス。
FIG. 1 shows a system diagram showing the configuration of a Zn5e single crystal thin film manufacturing apparatus used in an example of the present invention. 1... Reaction container, 2... Substrate holder, 3... Ga
As substrate, 4... High frequency heating coil, 5... Bubbler container, 6... Hydrogen selenide gas cylinder, 7...
Container for zinc-based organometallic compound containing oxygen, 8,9,
10,11.12...Hydrogen gas, 13...Exhaust port,
14...Hydrogen gas.

Claims (2)

【特許請求の範囲】[Claims] (1)反応容器内に元素周期表IIb族元素であるZnお
よびCdよりからなる群から選ばれた一つの元素を含む
化合物および元素周期表VIb族であるS、SeおよびT
eよりなる群から選ばれた一つの元素を含む化合物およ
び酸素を含む化合物を気相で導入し、これらを熱分解し
て前記反応容器中に設置した基板上にIIb−VIb族化合
物半導体薄膜を製造することを特徴とする化合物半導体
薄膜の製造方法。
(1) A compound containing one element selected from the group consisting of Zn and Cd, which are Group IIb elements of the Periodic Table of Elements, and S, Se, and T, which are Group VIb elements of the Periodic Table of Elements, in the reaction vessel.
a compound containing one element selected from the group consisting of 1. A method for manufacturing a compound semiconductor thin film.
(2)前記酸素を含む化合物として、過酸化水素、エー
テル化合物、アルコール化合物を使用することを特徴と
する特許請求の範囲第1項記載の化合物半導体薄膜の製
造方法。
(2) The method for manufacturing a compound semiconductor thin film according to claim 1, wherein hydrogen peroxide, an ether compound, or an alcohol compound is used as the oxygen-containing compound.
JP14563889A 1989-06-08 1989-06-08 Production of thin film of compound semiconductor Pending JPH0312400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14563889A JPH0312400A (en) 1989-06-08 1989-06-08 Production of thin film of compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14563889A JPH0312400A (en) 1989-06-08 1989-06-08 Production of thin film of compound semiconductor

Publications (1)

Publication Number Publication Date
JPH0312400A true JPH0312400A (en) 1991-01-21

Family

ID=15389642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14563889A Pending JPH0312400A (en) 1989-06-08 1989-06-08 Production of thin film of compound semiconductor

Country Status (1)

Country Link
JP (1) JPH0312400A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003516304A (en) * 1999-12-11 2003-05-13 エピケム リミテッド Method and apparatus for supplying a precursor to a plurality of epitaxial reactor sections

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003516304A (en) * 1999-12-11 2003-05-13 エピケム リミテッド Method and apparatus for supplying a precursor to a plurality of epitaxial reactor sections
JP2011137235A (en) * 1999-12-11 2011-07-14 Sigma Aldrich Co Method for bulk supply of organometallic precursor to a plurality of epitaxial reactor sites

Similar Documents

Publication Publication Date Title
US4147571A (en) Method for vapor epitaxial deposition of III/V materials utilizing organometallic compounds and a halogen or halide in a hot wall system
Stringfellow Materials issues in high-brightness light-emitting diodes
JP3395318B2 (en) Method for growing group 3-5 compound semiconductor crystal
US4588451A (en) Metal organic chemical vapor deposition of 111-v compounds on silicon
US4868615A (en) Semiconductor light emitting device using group I and group VII dopants
WO2000068470A1 (en) Magnesium-doped iii-v nitrides & methods
Jones et al. Precursors for II–VI semiconductors: requirements and developments
Scholz MOVPE of Group‐III Heterostructures for Optoelectronic Applications
US3716405A (en) Vapor transport method for growing crystals
JPH0312400A (en) Production of thin film of compound semiconductor
JPH0312399A (en) Production of thin film of compound semiconductor
JP2740681B2 (en) Method for manufacturing compound semiconductor thin film
JP2686859B2 (en) Method for growing crystal of n-type II-VI compound semiconductor
JPH0463040B2 (en)
JPS60214524A (en) Growing method of gallium phosphide arsenide epitaxial film
JP3141628B2 (en) Compound semiconductor device and method of manufacturing the same
JPH04328823A (en) Manufacture of epitaxial wafer for light emitting diode
JP2725462B2 (en) Vapor growth of compound semiconductors
JPH06101432B2 (en) Semiconductor thin film manufacturing method
JP3557295B2 (en) Method for producing p-type II-VI compound semiconductor thin film
JPH05267192A (en) Vapor growth method for semiconductor film
JPS6247174A (en) Manufacture of semiconductor light emitting device
JPH02208297A (en) Growth of compound semiconductor thin film
JPH0740560B2 (en) Method for manufacturing compound semiconductor film
JPH07130667A (en) Metal organic vapor phase epitaxial growth method