JPH0720177A - Optical field sensor - Google Patents

Optical field sensor

Info

Publication number
JPH0720177A
JPH0720177A JP5167857A JP16785793A JPH0720177A JP H0720177 A JPH0720177 A JP H0720177A JP 5167857 A JP5167857 A JP 5167857A JP 16785793 A JP16785793 A JP 16785793A JP H0720177 A JPH0720177 A JP H0720177A
Authority
JP
Japan
Prior art keywords
optical
electric field
field sensor
package
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5167857A
Other languages
Japanese (ja)
Inventor
Yuichi Togano
祐一 戸叶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP5167857A priority Critical patent/JPH0720177A/en
Priority to CN94190478A priority patent/CN1052071C/en
Priority to CA002144075A priority patent/CA2144075C/en
Priority to EP94919869A priority patent/EP0668508B1/en
Priority to KR1019950700890A priority patent/KR100220289B1/en
Priority to US08/397,076 priority patent/US5488677A/en
Priority to DE69430728T priority patent/DE69430728T2/en
Priority to PCT/JP1994/001110 priority patent/WO1995002193A1/en
Publication of JPH0720177A publication Critical patent/JPH0720177A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide an optical field sensor wherein an outer package including antenna elements is downsized as much as possible and its handling is simplified. CONSTITUTION:An optical field sensor is structured so that an optical waveguide 1 is split on an optical substrate 2 (a part of 8) attached in a package 9, an electric field to be measured which is parallel to a crystal axis of the optical substrate is applied via a pair of antenna elements to the split optical waveguide for fluctuating a phase of waveguide light and waves are combined again to measure light intensity, wherein the pair of antenna elements 11 are placed oppositely to each other in parallel to the optical waveguide 1 with a center on a side of the package 9 as an end, or they are attached to an outer wall of the side of the package oppositely to each other in parallel to the optical waveguide 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、EMC測定(ノイズ測
定)に代表される、フィールド内の電界強度を測定する
ために用いる、電界光センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric field light sensor, which is represented by EMC measurement (noise measurement) and is used for measuring the electric field strength in a field.

【0002】[0002]

【従来の技術】図3は従来の光電界センサの構成をほぼ
上面から見た図である。光学結晶であるLiNbO3
板2上に被着形成されている光導波路1を分岐後、分岐
された一方または両方の光導波路に基板の結晶軸に平行
な電界を印加して導波光の位相を変動させ、再び合波さ
せる所までは光導波路マッハツェンダー干渉計を形成し
ている。この干渉計はその印加電圧によって合波後の光
強度を変動させることから、電界を結晶軸方向に印加さ
せるために光軸方向に向けて設けた制御電極5にリード
線5aを介してアンテナエレメント3を接続する。なお
アンテナエレメント3は図示してないパッケージに固定
されている。ここで光ファイバ4から入力光を取り入
れ、アンテナエレメント3から制御電極5に印加される
微小電圧を測定すると光導波路型の光電界センサとな
る。この光電界センサは、アンテナエレメントが比較的
に小型化できるばかりでなく、アンテナエレメントを除
く金属部分特に同軸ケーブルを必要としないため、電界
の乱れがなく測定可能である。
2. Description of the Related Art FIG. 3 is a diagram showing the structure of a conventional optical electric field sensor as viewed from above. After branching the optical waveguide 1 formed on the LiNbO 3 substrate 2 which is an optical crystal, an electric field parallel to the crystal axis of the substrate is applied to one or both of the branched optical waveguides to phase the guided light. An optical waveguide Mach-Zehnder interferometer is formed up to the point where it is varied and recombined. Since this interferometer changes the light intensity after the combination by the applied voltage, the antenna element is provided via the lead wire 5a to the control electrode 5 provided in the optical axis direction to apply the electric field in the crystal axis direction. Connect 3. The antenna element 3 is fixed to a package (not shown). Here, when input light is taken in from the optical fiber 4 and a minute voltage applied from the antenna element 3 to the control electrode 5 is measured, an optical field sensor of an optical waveguide type is obtained. In this optical electric field sensor, not only the antenna element can be made relatively small, but also the metal portion excluding the antenna element, particularly the coaxial cable is not required, and therefore the electric field can be measured without disturbance.

【0003】上記の構成において、アンテナエレメント
4は素子の長手方向に直交する形に配置されているのが
一般的である。これは、引き出し電極の位置に起因する
もので、光導波路の導波光の位相を変動させる制御電極
3から効率よく引き出すためである。しかしながらこの
ような構成の光電界センサでは、測定時にアンテナエレ
メントを図のように電界方向に向けるため、光ファイバ
4の引き出し部が測定方向に向いてしまう。このため光
ファイバ破損の恐れがあるばかりか、全体的に大きな構
造をとり、取扱いが不便である。
In the above structure, the antenna element 4 is generally arranged so as to be orthogonal to the longitudinal direction of the element. This is due to the position of the extraction electrode, and is for efficiently extracting from the control electrode 3 that changes the phase of the guided light of the optical waveguide. However, in the optical electric field sensor having such a configuration, the antenna element is oriented in the electric field direction as shown in the figure at the time of measurement, so that the extraction portion of the optical fiber 4 is oriented in the measurement direction. For this reason, not only the optical fiber may be damaged, but also the overall structure is large and the handling is inconvenient.

【0004】[0004]

【発明が解決しようとする課題】本発明では、このアン
テナエレメントに着目し、アンテナエレメントを含む外
装部を極力小さくし取扱いを容易にした光電界センサを
提供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention focuses on this antenna element and provides an optical electric field sensor in which the exterior part including the antenna element is made as small as possible to facilitate handling.

【0005】[0005]

【課題を解決するための手段】本発明によれば、パッケ
ージ内に取付けられた光学基板上で、光導波路を分岐
後、分岐された光導波路に、前記光学基板の結晶軸に平
行に被測定電界を対のアンテナエレメント及び制御電極
を介し印加して導波光の位相を変動させ、再び合波して
光強度を測定するように構成した光電界センサにおい
て、前記対のアンテナエレメントが、前記パッケージの
側面の中央部を一端として前記光導波路に平行に互いに
反対向きに配置されたロッドアンテナエレメントである
ことを特徴とする光電界センサが得られる。なおこの対
のアンテナエレメントは、前記パッケージの側面の外壁
に、該外壁の中央を一端として、前記光導波路に平行に
互いに反対向きに被着形成された薄膜アンテナエレメン
トであっても良い。
According to the present invention, after branching an optical waveguide on an optical substrate mounted in a package, the branched optical waveguide is measured parallel to the crystal axis of the optical substrate. In an optical electric field sensor configured to apply an electric field through a pair of antenna elements and a control electrode to change the phase of guided light and combine them again to measure light intensity, the pair of antenna elements includes the package. An optical electric field sensor is obtained, which is a rod antenna element that is arranged in parallel to the optical waveguide in opposite directions with the central portion of the side surface of the one end as one end. The pair of antenna elements may be thin-film antenna elements that are formed on the outer wall of the side surface of the package in parallel with the optical waveguide in opposite directions with the center of the outer wall as one end.

【0006】[0006]

【実施例】図1は本発明の第1の実施例である光電界セ
ンサの平面図であり、LiNbO3 Z基板2のZ面上に
マッハツェンダー干渉計の光導波路1をTi熱拡散によ
り形成し、光入射側にTE入力となるように定偏波光フ
ァイバ6を、光出射側にシングルモード光ファイバ7を
それぞれ接続した。素子の大きさは、基板で36×5×
t0.5mmとした。パッケージ9全体で40×12×
6mmである。光変調部8の図示してない引き出し電極
から2本のリード線10でパッケージ9の側面に引き出
し、対のロッドアンテナエレメント11を相反する向き
に配置してある。すなわち、ロッドアンテナ平行配置型
光電界センサとも言うべきセンサである。
1 is a plan view of an optical electric field sensor according to a first embodiment of the present invention, in which an optical waveguide 1 of a Mach-Zehnder interferometer is formed on a Z surface of a LiNbO 3 Z substrate 2 by thermal diffusion of Ti. Then, the polarization-maintaining optical fiber 6 was connected to the light incident side so as to have the TE input, and the single mode optical fiber 7 was connected to the light emitting side. The size of the element is 36 × 5 × on the substrate
It was set to t0.5 mm. 40 × 12 × for the entire package 9
It is 6 mm. Two lead wires 10 are led out from a lead electrode (not shown) of the optical modulator 8 to the side surface of the package 9, and a pair of rod antenna elements 11 are arranged in opposite directions. That is, it is a sensor that should be called a rod antenna parallel arrangement type optical electric field sensor.

【0007】図2は本発明の第2の実施例の斜視図であ
る。この実施例が上記の実施例と異なるのは、対のプリ
ントアンテナエレメント12がパッケージ9の側面に合
い反する向きに金電極をパターン形成したものである。
また比較例として図3に示す構成の光電界センサを作製
した。すなわち、パッケージプリント平行配置型光電界
センサとも言うべきものである。
FIG. 2 is a perspective view of the second embodiment of the present invention. This embodiment differs from the above-mentioned embodiments in that a pair of printed antenna elements 12 are patterned with gold electrodes in a direction opposite to the side surface of the package 9.
As a comparative example, an optical electric field sensor having the structure shown in FIG. 3 was manufactured. That is, it should be called a package print parallel arrangement type optical electric field sensor.

【0008】はじめにアンテナを含めた光電界センサの
大きさを本発明の図1と比較例の図3を対比すると、上
述の寸法を見るまでもなく、本発明の光電界センサは非
常に小さくなっている。とくに図2の第2の実施例の場
合は極めて顕著であり、しかも構造的に堅固である。
First, comparing the size of the optical electric field sensor including the antenna with FIG. 1 of the present invention and FIG. 3 of the comparative example, the optical electric field sensor of the present invention becomes extremely small without needing to look at the above-mentioned dimensions. ing. Particularly, in the case of the second embodiment shown in FIG. 2, it is extremely remarkable and structurally strong.

【0009】次に本発明の光電界センサが上記のような
改造を施したことによりセンサとしての特性が変化して
いないかどうかを知るために、図1,図2,図3に示さ
れる構成の3種類の光電界センサを用意して周波数特性
と電界強度による感度特性を測定した。その際作製した
光電界センサのマッハツェンダー干渉計としての特性
は、第1の実施例、第2の実施例、及び比較例で光変調
特性、挿入損失、消光比、半波長電圧、光学バイアス位
置ともほぼ同じ素子を選定して電極形成を行ったものに
ついて測定した。測定は作製された3種類の素子を電波
暗室内で電界を発生させて行った。
Next, in order to know whether or not the characteristics of the optical electric field sensor of the present invention have been changed by the above modification, the configuration shown in FIGS. 1, 2 and 3 is used. The following three types of optical electric field sensors were prepared to measure the frequency characteristics and the sensitivity characteristics by the electric field strength. The characteristics of the optical electric field sensor produced at that time as a Mach-Zehnder interferometer are as follows: optical modulation characteristics, insertion loss, extinction ratio, half-wave voltage, optical bias position in the first example, the second example, and the comparative example. In both cases, the same elements were selected and the electrodes were formed and measured. The measurement was performed by generating an electric field in the anechoic chamber through the three types of manufactured elements.

【0010】測定値については、図3の従来型に比べて
図1または図2の本発明を用いた電界センサは、その感
度特性に変動なく(最大感度80dBμV/m、0〜2
GHzまで感度変動無し)、ほぼ同じ感度特性が得られ
た。図4はその一例を示したもので、測定感度の周波数
特性は本発明型と従来型で区別ができない程度に同じで
ある。他の特性についても同様である。したがって、本
発明を利用しても光電界センサ特性は低下していないこ
とが確認できた。
Regarding the measured values, the electric field sensor using the present invention of FIG. 1 or FIG. 2 has no variation in its sensitivity characteristics (maximum sensitivity 80 dB μV / m, 0 to 2) as compared with the conventional type of FIG.
There was no sensitivity fluctuation up to GHz), and almost the same sensitivity characteristics were obtained. FIG. 4 shows an example thereof, and the frequency characteristics of measurement sensitivity are the same between the present invention type and the conventional type to the extent that they cannot be distinguished. The same applies to other characteristics. Therefore, it was confirmed that the optical electric field sensor characteristics were not deteriorated even when the present invention was used.

【0011】[0011]

【発明の効果】以上のような結果から、本発明の光電界
センサは特性の劣化なく、小型化が可能になる事がわか
る。また、測定配置方向が光ファイバに平行になるた
め、光ファイバを曲げる事なく直線的に配置する事が可
能となり、測定中の素子の取扱いが大幅に向上された。
From the above results, it is understood that the optical electric field sensor of the present invention can be miniaturized without deterioration of characteristics. Also, since the measurement arrangement direction is parallel to the optical fiber, it is possible to arrange the optical fiber linearly without bending, and the handling of the element during measurement is greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の光電界センサの構成の
概略上面図。
FIG. 1 is a schematic top view of the configuration of an optical electric field sensor according to a first embodiment of the present invention.

【図2】本発明の第2の実施例の光電界センサ構成の斜
視図。
FIG. 2 is a perspective view of a configuration of an optical electric field sensor according to a second embodiment of the present invention.

【図3】本発明の光電界センサと比較例の光電界センサ
の周波数と測定感度の関係を示す図。
FIG. 3 is a diagram showing the relationship between the frequency and the measurement sensitivity of the optical electric field sensor of the present invention and the optical electric field sensor of the comparative example.

【符号の説明】[Explanation of symbols]

1 光導波路 2 LiNbO3 Z基板 3 アンテナエレメント 4 光ファイバ 5 制御電極 5a リード線 6 定偏波光ファイバ 7 シングルモード光ファイバ 8 光変調器 9 パッケージ 10 リード線 11 ロッドアンテナエレメント 12 プリントアンテナエレメント1 Optical Waveguide 2 LiNbO 3 Z Substrate 3 Antenna Element 4 Optical Fiber 5 Control Electrode 5a Lead Wire 6 Constant Polarization Optical Fiber 7 Single Mode Optical Fiber 8 Optical Modulator 9 Package 10 Lead Wire 11 Rod Antenna Element 12 Printed Antenna Element

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 パッケージ内に取付けられた光学基板上
で、光導波路を分岐後、分岐された光導波路に、前記光
学基板の結晶軸に平行に被測定電界を対のアンテナエレ
メント及び制御電極を介し印加して導波光の位相を変動
させ、再び合波して光強度を測定するように構成した光
電界センサにおいて、 前記対のアンテナエレメントが、前記パッケージの側面
の中央部を一端として、前記光導波路に平行に互いに反
対向きに配置されたロッドアンテナエレメントであるこ
とを特徴とする光電界センサ。
1. After branching an optical waveguide on an optical substrate mounted in a package, the branched optical waveguide is provided with a pair of an antenna element and a control electrode for measuring a measured electric field in parallel to a crystal axis of the optical substrate. In the optical electric field sensor configured to vary the phase of the guided light by applying through, and combine again to measure the light intensity, the antenna elements of the pair, the central portion of the side surface of the package as one end, An optical electric field sensor comprising rod antenna elements which are arranged in parallel to an optical waveguide and opposite to each other.
【請求項2】 パッケージ内に取付けられた光学基板上
で、光導波路を分岐後、分岐された光導波路に、前記光
学基板の結晶軸に平行に被測定電界を対のアンテナエレ
メント及び制御電極を介し印加して導波光の位相を変動
させ、再び合波して光強度を測定するように構成した光
電界センサにおいて、 前記対のアンテナエレメントが、前記パッケージの側面
の外壁に、該外壁の中央を一端として、前記光導波路に
平行に互いに反対向きに被着形成された薄膜アンテナエ
レメントであることを特徴とする光電界センサ。
2. A pair of antenna elements and a control electrode for branching an optical waveguide on an optical substrate mounted in a package, and applying a measured electric field to the branched optical waveguide in parallel with a crystal axis of the optical substrate. In the optical electric field sensor configured to vary the phase of the guided light by applying through, and combine again to measure the light intensity, the pair of antenna elements are provided on an outer wall of a side surface of the package, and a center of the outer wall. An optical electric field sensor, wherein the thin film antenna element is formed by depositing one end of the thin film antenna in parallel with the optical waveguide in the opposite direction.
JP5167857A 1993-07-07 1993-07-07 Optical field sensor Withdrawn JPH0720177A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP5167857A JPH0720177A (en) 1993-07-07 1993-07-07 Optical field sensor
CN94190478A CN1052071C (en) 1993-07-07 1994-07-07 Electric field sensor
CA002144075A CA2144075C (en) 1993-07-07 1994-07-07 Electric field sensor
EP94919869A EP0668508B1 (en) 1993-07-07 1994-07-07 Electric field sensor
KR1019950700890A KR100220289B1 (en) 1993-07-07 1994-07-07 Electric field sensor
US08/397,076 US5488677A (en) 1993-07-07 1994-07-07 Electric field sensor
DE69430728T DE69430728T2 (en) 1993-07-07 1994-07-07 SENSORS FOR ELECTRICAL FIELDS
PCT/JP1994/001110 WO1995002193A1 (en) 1993-07-07 1994-07-07 Electric field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5167857A JPH0720177A (en) 1993-07-07 1993-07-07 Optical field sensor

Publications (1)

Publication Number Publication Date
JPH0720177A true JPH0720177A (en) 1995-01-24

Family

ID=15857384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5167857A Withdrawn JPH0720177A (en) 1993-07-07 1993-07-07 Optical field sensor

Country Status (1)

Country Link
JP (1) JPH0720177A (en)

Similar Documents

Publication Publication Date Title
KR100220289B1 (en) Electric field sensor
US5574805A (en) Electric field sensor
US20040131301A1 (en) Miniature antenna and electromagnetic field sensing apparatus
JPH0720177A (en) Optical field sensor
JPS6147929A (en) Photovoltage sensor
US4772083A (en) Optical fiber interferometer
JP2002181861A (en) Electric field sensor unit
JPH0720178A (en) Optical field sensor
JPH0989961A (en) Electric field detecting device
JP3404606B2 (en) Electric field sensor
JPH08122376A (en) Electric field sensor and electric field sensor element
JP2673485B2 (en) Electric field detection method
JPH08313577A (en) Electric field sensor
JP3502705B2 (en) Optical electric field sensor head
JPH0321916A (en) Optical modulator
JPH08122721A (en) Light modulator
JPS60257325A (en) Photovoltage sensor
JP3430340B2 (en) Electric field sensor
JPH0943288A (en) Electric field sensor
JP2000162057A (en) Optical waveguide stress sensor
JPH0968553A (en) Electric field sensor
JP3516174B2 (en) Physical quantity detector
JPH01153924A (en) Coherent light measuring instrument
JP2002031659A (en) Photoelectric field sensor
JP2000230955A (en) Waveguide-type electric field sensor head, and electric field sensor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001003