JPH08313577A - Electric field sensor - Google Patents

Electric field sensor

Info

Publication number
JPH08313577A
JPH08313577A JP14962395A JP14962395A JPH08313577A JP H08313577 A JPH08313577 A JP H08313577A JP 14962395 A JP14962395 A JP 14962395A JP 14962395 A JP14962395 A JP 14962395A JP H08313577 A JPH08313577 A JP H08313577A
Authority
JP
Japan
Prior art keywords
electric field
field sensor
electrodes
optical waveguide
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14962395A
Other languages
Japanese (ja)
Inventor
Yoshikazu Toba
良和 鳥羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP14962395A priority Critical patent/JPH08313577A/en
Publication of JPH08313577A publication Critical patent/JPH08313577A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide an electric field sensor having an excellent temperature characteristic and a high sensitivity by applying a resin-based adhesive having a dielectric constant lower than a specific value between modulating electrodes and a semiconducting resin to the entire surfaces of the modulating electrodes. CONSTITUTION: An incident light waveguide 3, two phase shifting optical waveguides 4 branched from the waveguide 3, and an emitted light waveguide 6 joining the waveguides 4 together are formed on a lithium niobate single- crystal substrate 9. The entire surface of the substrate 9 is coated with an SiO2 film 14 formed as a buffer layer which prevents the absorption of light and a pair of modulated electrodes 5 is formed on the waveguides 4. A silicone resin 12 having a dielectric constant of, for example, 3 and semiconducting resin 13 are applied between the electrodes 5. Then an electric field sensor is constituted by respectively connecting optical fibers 2 and 7 to the waveguides 3 and 6 and connecting an electric field receiving rod antenna 11 to the electrodes 5. Thus the temperature characteristic of the sensor can be improved without deteriorating its sensitivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はEMC分野で電波や電磁
ノイズの特性測定に用いる計測器に関し、特に空間を伝
搬する電磁波の電界強度を測定するために使用される電
界センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring instrument used for measuring the characteristics of radio waves and electromagnetic noise in the field of EMC, and more particularly to an electric field sensor used for measuring the electric field strength of electromagnetic waves propagating in space.

【0002】[0002]

【従来の技術】コンピュータ等の情報機器や通信機器、
ロボット等のFA機器、自動車、鉄道等の制御器など多
くの電気機器は、互いに外部からの電磁ノイズの影響を
受け、誤動作をする危険を常にもっている。従って、E
MC分野においては、外部の電磁環境や電気機器に影響
を及ぼすようなノイズの大きさ、また自らが発生するノ
イズ等を正確に測定することが重要となっている。
2. Description of the Related Art Information equipment such as computers and communication equipment,
Many electric devices such as FA devices such as robots and controllers such as automobiles and railroads are always affected by electromagnetic noise from the outside and always have a risk of malfunctioning. Therefore, E
In the field of MC, it is important to accurately measure the magnitude of noise that affects the external electromagnetic environment and electric devices, and the noise generated by itself.

【0003】従来から、上述のような電磁ノイズの測定
には、大別して3つの方法があり、(1)通常のアンテ
ナを用いて受信し、同軸ケーブルで測定器まで導く方
法、(2)アンテナを用いて受信した信号を検波して光
信号に変換し光ファイバで測定器まで導く方法、(3)
印加される電界強度変化に応じて透過光強度が変化する
光学素子と光源及び測定器に接続された光検出器間を光
ファイバで接続する方法がある。
Conventionally, there are roughly three methods for measuring electromagnetic noise as described above. (1) a method of receiving using an ordinary antenna and guiding it to a measuring instrument with a coaxial cable; (2) an antenna A method of detecting a signal received by using an optical fiber, converting it to an optical signal, and guiding it to a measuring instrument with an optical fiber,
There is a method in which an optical element is connected between an optical element whose transmitted light intensity changes according to a change in applied electric field intensity and a photodetector connected to a light source and a measuring instrument.

【0004】これらの方法の中で(1)のアンテナを用
いる方法が最も一般的であるが、同軸ケーブル等の電気
ケーブルの存在により電界分布が乱れてしまったりケー
ブルの途中からのノイズ混入の恐れがある等の問題があ
ったため、光ファイバを用いた(2)、(3)の方法が
開発されている。
Among these methods, the method using the antenna (1) is the most general, but the electric field distribution may be disturbed due to the presence of an electric cable such as a coaxial cable, or noise may be mixed in the middle of the cable. Therefore, the methods (2) and (3) using an optical fiber have been developed.

【0005】前記(2)の方法はダイオードで検波した
信号を増幅して発光ダイオードに加えて光信号に変換し
て光ファイバで光検出器に導くものであるが、センサヘ
ッド部に電気回路やバッテリを必要とするため、ある大
きさの金属部分が存在し、形状も大きくなってしまう。
また、電界の検出感度が低く応答速度が遅いという欠点
がある。
In the method (2), the signal detected by the diode is amplified and added to the light emitting diode to be converted into an optical signal which is guided to the photodetector by the optical fiber. Since a battery is required, there is a certain size of metal part and the size is also large.
Further, there is a drawback that the detection sensitivity of the electric field is low and the response speed is slow.

【0006】一方、(3)の方法では、電界強度を透過
光の強度変化に変換する光学素子として電気光学効果を
有する結晶を用いている。その素子構造としては、光フ
ァイバの出射光をレンズで平行光として小型アンテナを
取り付けた結晶中を通過させて、結晶中の電界により偏
光状態を変化させ、検光子で強度変化に変換した後、再
び光ファイバに結合するバルク型素子と、結晶上に設け
た光導波路により上記光学素子を構成する導波路型素子
とがある。尚、通常導波路型の方がバルク型よりも10
倍以上検出感度が高い。
On the other hand, in the method (3), a crystal having an electro-optical effect is used as an optical element for converting the electric field intensity into a change in intensity of transmitted light. As its element structure, the light emitted from the optical fiber is passed through a crystal with a small antenna attached as parallel light with a lens, the polarization state is changed by the electric field in the crystal, and the intensity is changed by an analyzer. There are a bulk type element that is coupled to an optical fiber again, and a waveguide type element that constitutes the above optical element by an optical waveguide provided on a crystal. The waveguide type is usually 10
The detection sensitivity is more than double.

【0007】図1に、従来の導波路型素子による電界セ
ンサヘッドの構成例を示す。図1において、c軸に垂直
に切りだしたニオブ酸リチウム(LiNbO3)単結晶
基板9上にチタンを拡散して入射光導波路3が形成さ
れ、そこから2本に分岐して位相シフト光導波路4が形
成され、この2本の位相シフト光導波路4が合流、結合
して出射光導波路6が形成されている。入射光導波路3
の入射端には入力光ファイバ2が結合され、出射光導波
路6の出射端には出射光ファイバ7が接続されている。
また、位相シフト光導波路4上には一対の変調電極5が
設置され、リード線10によりロッドアンテナ11に接
続されている。
FIG. 1 shows a configuration example of a conventional electric field sensor head using a waveguide type element. In FIG. 1, an incident optical waveguide 3 is formed by diffusing titanium on a lithium niobate (LiNbO 3 ) single crystal substrate 9 cut out perpendicularly to the c-axis, and the incident optical waveguide 3 is branched from the incident optical waveguide 3. 4 are formed, and the two phase shift optical waveguides 4 merge and combine to form an emission optical waveguide 6. Incident optical waveguide 3
The input optical fiber 2 is coupled to the input end of the output optical fiber 6 and the output optical fiber 7 is connected to the output end of the output optical waveguide 6.
Further, a pair of modulation electrodes 5 are installed on the phase shift optical waveguide 4 and are connected to the rod antenna 11 by lead wires 10.

【0008】また、入力光1は、入力光ファイバ2から
入射光導波路3に入射した後、位相シフト光導波路4で
エネルギーが分割される。電界が印加された場合、ロッ
ドアンテナ11により変調電極5に電圧が誘起されて位
相シフト光導波路4中には深さ方向に互いに反対向きの
電界成分が生じる。
Further, the input light 1 is incident on the incident optical waveguide 3 from the input optical fiber 2 and then split in energy by the phase shift optical waveguide 4. When an electric field is applied, a voltage is induced in the modulation electrode 5 by the rod antenna 11 to generate electric field components in the phase shift optical waveguide 4 in directions opposite to each other in the depth direction.

【0009】この結果、電気光学効果により屈折率変化
が生じて位相シフト光導波路4を伝搬する光波間には印
加電界の大きさに応じた位相差が生じ、それらが合流し
て出射光導波路6に結合する場合に干渉により光強度が
変化する。すなわち、印加電界強度に応じて出射光ファ
イバ7に出射する出射光8の強度は変化することにな
り、その光強度変化を光検出器で測定することにより印
加電界の強度を測定できる。
As a result, a change in the refractive index is caused by the electro-optical effect, and a phase difference corresponding to the magnitude of the applied electric field is generated between the light waves propagating in the phase shift optical waveguide 4, and they are merged to each other to emerge. When coupled to the light intensity changes due to interference. That is, the intensity of the outgoing light 8 emitted to the outgoing optical fiber 7 changes according to the applied electric field intensity, and the intensity of the applied electric field can be measured by measuring the change in the optical intensity with a photodetector.

【0010】[0010]

【発明が解決しようとする課題】ニオブ酸リチウム単結
晶基板を用いた導波路型電界センサの場合、結晶基板が
焦電効果を有するため、温度ドリフトを引き起こし、幅
広い環境下での正確な電界測定ができなかった。そのた
め今日では、電極全体に半導電性樹脂(〜数十GΩ・
m)を塗布することにより帯電を防止し、温度ドリフト
を低減している。
In the case of a waveguide type electric field sensor using a lithium niobate single crystal substrate, since the crystal substrate has a pyroelectric effect, temperature drift is caused, and accurate electric field measurement is performed in a wide range of environments. I couldn't. Therefore, today, semi-conductive resin (up to several tens of GΩ ・
m) is applied to prevent charging and reduce temperature drift.

【0011】しかしながら、電極間に半導電性の物質が
混入すると電気容量が増大し、それに伴いセンサ感度が
低下するという問題が生じている。
However, if a semi-conductive substance is mixed between the electrodes, the capacitance increases, which causes a problem that the sensor sensitivity decreases.

【0012】従って、本発明の目的は、上記問題点を解
消し、温度特性の良好な、高感度の電界センサを提供す
ることにある。
Therefore, an object of the present invention is to solve the above problems and provide a high-sensitivity electric field sensor having good temperature characteristics.

【0013】[0013]

【課題を解決するための手段】本発明は、印加される電
界強度に応じて、透過する光の強度が変化するように構
成された電界センサヘッドと、電界センサヘッドに接続
された電界受信用アンテナ、光ファイバ及び該光ファイ
バーの一端に接続された光源、透過光を検出するための
光検出器から構成され、前記電界センサヘッドが、電気
光学効果を有する基板上に形成された入射光導波路と、
そこから分岐した二つの位相シフト光導波路と、それが
合流する出射光導波路と、前記分岐された二つの位相シ
フト光導波路の近傍に形成した変調電極からなる電界セ
ンサにおいて、少なくとも前記変調電極間に、誘電率3
以下(0を含まず)の樹脂系接着剤を塗布し、さらに変
調電極全面に半導電性樹脂を塗布することにより上述の
課題の解決をはかった。
SUMMARY OF THE INVENTION The present invention is an electric field sensor head configured to change the intensity of transmitted light according to the applied electric field strength, and an electric field receiving head connected to the electric field sensor head. An antenna, an optical fiber, a light source connected to one end of the optical fiber, and a photodetector for detecting transmitted light, and the electric field sensor head includes an incident optical waveguide formed on a substrate having an electro-optical effect. ,
In an electric field sensor composed of two phase shift optical waveguides branched therefrom, an exiting optical waveguide where they merge, and a modulation electrode formed in the vicinity of the two branched phase shift optical waveguides, at least between the modulation electrodes , Dielectric constant 3
The above-mentioned problem was solved by applying the following resin adhesive (not including 0) and then applying the semiconductive resin on the entire surface of the modulation electrode.

【0014】[0014]

【作用】変調電極全面に半導電性樹脂を塗布すると、セ
ンサヘッドの電気特性、特にキャパシタンスが増大し、
その結果としてセンサヘッドの感度特性を低下させてい
る。これは、電極間に誘電率の高い物質(半導電性樹
脂)が入り込むためと考察される。そこで、本発明者は
これらの事実を踏まえ、変調電極の少なくとも電極間に
誘電率3以下の樹脂系接着剤を塗布した後に変調電極全
面に半導電性樹脂を塗布することにより、センサ感度を
低下させることなく温度特性の良好な電界センサを作製
することを可能とした。
If the semi-conductive resin is applied to the entire surface of the modulation electrode, the electrical characteristics of the sensor head, especially the capacitance, increase,
As a result, the sensitivity characteristic of the sensor head is degraded. It is considered that this is because a substance having a high dielectric constant (semiconductive resin) enters between the electrodes. Therefore, based on these facts, the present inventor reduces the sensor sensitivity by applying a semiconductive resin on the entire surface of the modulation electrode after applying a resin-based adhesive having a dielectric constant of 3 or less between at least the electrodes of the modulation electrode. It was possible to fabricate an electric field sensor with good temperature characteristics without doing so.

【0015】[0015]

【実施例】以下、本発明の実施例について図1及び図2
を参照して説明する。尚、図1は本発明を説明するため
の導波路型素子による電界センサヘッドの概略図を示
し、図2は本実施例により作成した電界センサヘッドの
断面図を示す。
EXAMPLES Examples of the present invention will be described below with reference to FIGS.
Will be described with reference to. 1 is a schematic view of an electric field sensor head using a waveguide type device for explaining the present invention, and FIG. 2 is a sectional view of the electric field sensor head manufactured according to this embodiment.

【0016】(実施例)図1及び図2に示すようにニオ
ブ酸リチウム単結晶基板9上に、入射光導波路3、その
入射光導波路3より分岐した二つの位相シフト光導波路
4、その二つの位相シフト光導波路4が合流する出射光
導波路6を形成した。また、光の吸収を防ぐためのバッ
ファ層として二酸化珪素(SiO2)膜14で全面をコ
ートした上で、位相シフト光導波路4上に一対の変調電
極5を形成し、この変調電極5間に樹脂系接着剤として
誘電率3のシリコーン樹脂12を塗布した。更に電極上
に半導電性樹脂13(数十GΩ・m)を塗布し、両端の
光導波路に光ファイバ2及び7を接続し、さらに、変調
電極5に電界受信用のロッドアンテナ11を接続して電
界センサを作製した。
(Example) As shown in FIGS. 1 and 2, an incident optical waveguide 3, two phase shift optical waveguides 4 branched from the incident optical waveguide 3, and two of them are provided on a lithium niobate single crystal substrate 9. An output optical waveguide 6 is formed in which the phase shift optical waveguide 4 merges. In addition, after coating the entire surface with a silicon dioxide (SiO 2 ) film 14 as a buffer layer for preventing light absorption, a pair of modulation electrodes 5 is formed on the phase shift optical waveguide 4, and a space between the modulation electrodes 5 is formed. Silicone resin 12 having a dielectric constant of 3 was applied as a resin adhesive. Further, a semiconductive resin 13 (several tens of GΩ · m) is applied on the electrodes, the optical fibers 2 and 7 are connected to the optical waveguides at both ends, and the rod antenna 11 for electric field reception is connected to the modulation electrode 5. Then, an electric field sensor was manufactured.

【0017】上記作製した電界センサについて、周波数
500MHzの電界における最小電界検出感度を測定し
たところ50dBμV/mであった。また、温度−10
〜60℃に対するセンサ感度変化は3%以内であった。
The minimum electric field detection sensitivity of the electric field sensor produced above in an electric field of a frequency of 500 MHz was measured and found to be 50 dBμV / m. Also, the temperature-10
The change in sensor sensitivity with respect to -60 ° C was within 3%.

【0018】(比較例1)上記実施例にて作製した電界
センサの変調電極間に誘電率3のシリコーン樹脂を誘電
率5のシリコーン樹脂に変えた以外は同様なものを作製
し、上記実施例と同様な条件で最小電界検出感度を測定
した。その結果、55dBμV/mであった。また、温
度−10〜60℃に対するセンサ感度変化は上記実施例
と同様であった。
(Comparative Example 1) A similar one was prepared except that a silicone resin having a dielectric constant of 3 was changed to a silicone resin having a dielectric constant of 5 between the modulation electrodes of the electric field sensor manufactured in the above-described example, and the above-mentioned example was prepared. The minimum electric field detection sensitivity was measured under the same conditions as. As a result, it was 55 dBμV / m. Further, the change in sensor sensitivity with respect to the temperature of -10 to 60 ° C was the same as that in the above-mentioned embodiment.

【0019】(比較例2)上記実施例にて作製した電界
センサの変調電極間に誘電率3のシリコーン樹脂を塗布
しない以外は同様なものを作製し、上記実施例と同様な
条件で最小電界検出感度を測定した。その結果、70d
BμV/mであった。また、温度−10〜60℃に対す
るセンサ感度変化は上記実施例と同様であった。
(Comparative Example 2) A similar one was manufactured except that a silicone resin having a dielectric constant of 3 was not applied between the modulation electrodes of the electric field sensor manufactured in the above embodiment, and the minimum electric field was applied under the same conditions as in the above embodiment. The detection sensitivity was measured. As a result, 70d
It was B μV / m. Further, the change in sensor sensitivity with respect to the temperature of -10 to 60 ° C was the same as that in the above-mentioned embodiment.

【0020】[0020]

【発明の効果】以上説明した実施例及び比較例からもわ
かるように本発明によれば、センサ感度を低下させるこ
となく温度特性を良好にした電界センサを提供すること
ができる。
As is apparent from the examples and comparative examples described above, according to the present invention, it is possible to provide an electric field sensor having good temperature characteristics without lowering the sensor sensitivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】導波路型素子による電界センサヘッドの概略
図。
FIG. 1 is a schematic view of an electric field sensor head using a waveguide type element.

【図2】本実施例により作成した電界センサヘッドの断
面図。
FIG. 2 is a cross-sectional view of an electric field sensor head manufactured according to this example.

【符号の説明】[Explanation of symbols]

1 入力光 2 (入力)光ファイバ 3 入射光導波路 4 位相シフト光導波路 5 変調電極 6 出射光導波路 7 (出射)光ファイバ 8 出射光 9 ニオブ酸リチウム(LiNbO3)単結晶基板 10 リード線 11 ロッドアンテナ 12 誘電率3のシリコーン樹脂 13 半導電性樹脂 14 二酸化珪素膜1 Input Light 2 (Input) Optical Fiber 3 Incident Optical Waveguide 4 Phase Shift Optical Waveguide 5 Modulation Electrode 6 Emitting Optical Waveguide 7 (Emitting) Optical Fiber 8 Emitting Light 9 Lithium Niobate (LiNbO 3 ) Single Crystal Substrate 10 Lead Wire 11 Rod Antenna 12 Silicone resin with dielectric constant 3 13 Semi-conductive resin 14 Silicon dioxide film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 印加される電界強度に応じて、透過する
光の強度が変化するように構成された電界センサヘッド
と、電界センサヘッドに接続された電界受信用アンテ
ナ、光ファイバ及び該光ファイバーの一端に接続された
光源、透過光を検出するための光検出器から構成され、
前記電界センサヘッドが、電気光学効果を有する基板上
に形成された入射光導波路と、そこから分岐した二つの
位相シフト光導波路と、それが合流する出射光導波路
と、前記分岐された二つの位相シフト光導波路の近傍に
形成した変調電極からなる電界センサにおいて、少なく
とも前記変調電極間に、誘電率3以下(0を含まず)の
樹脂系接着剤を塗布し、さらに前記変調電極全面に半導
電性樹脂を塗布することを特徴とする電界センサ。
1. An electric field sensor head configured to change the intensity of transmitted light according to an applied electric field strength, an electric field receiving antenna connected to the electric field sensor head, an optical fiber, and the optical fiber. It is composed of a light source connected to one end and a photodetector for detecting transmitted light,
The electric field sensor head has an incident optical waveguide formed on a substrate having an electro-optical effect, two phase shift optical waveguides branched from the incident optical waveguide, an emission optical waveguide where they join, and the two branched phases. In an electric field sensor including a modulation electrode formed in the vicinity of a shift optical waveguide, a resin adhesive having a dielectric constant of 3 or less (not including 0) is applied at least between the modulation electrodes, and the entire surface of the modulation electrode is semiconductive. An electric field sensor characterized in that a conductive resin is applied.
JP14962395A 1995-05-23 1995-05-23 Electric field sensor Pending JPH08313577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14962395A JPH08313577A (en) 1995-05-23 1995-05-23 Electric field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14962395A JPH08313577A (en) 1995-05-23 1995-05-23 Electric field sensor

Publications (1)

Publication Number Publication Date
JPH08313577A true JPH08313577A (en) 1996-11-29

Family

ID=15479272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14962395A Pending JPH08313577A (en) 1995-05-23 1995-05-23 Electric field sensor

Country Status (1)

Country Link
JP (1) JPH08313577A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1471377A1 (en) * 2003-04-24 2004-10-27 Nec Tokin Corporation Electro-optic modulator
CN1325921C (en) * 2005-05-27 2007-07-11 东南大学 Anti-radiation electric field microsensor
WO2007104163A1 (en) * 2006-03-16 2007-09-20 Al-Amin Dhirani Dielectric sensing method and system
US8736287B2 (en) 2009-03-04 2014-05-27 Universal Nanosensor Technologies Inc. Conductance detection system and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1471377A1 (en) * 2003-04-24 2004-10-27 Nec Tokin Corporation Electro-optic modulator
US7123784B2 (en) 2003-04-24 2006-10-17 Seikoh Giken Co., Ltd. Electro-optic modulator with particular diffused buffer layer
CN1325921C (en) * 2005-05-27 2007-07-11 东南大学 Anti-radiation electric field microsensor
WO2007104163A1 (en) * 2006-03-16 2007-09-20 Al-Amin Dhirani Dielectric sensing method and system
US8246910B2 (en) 2006-03-16 2012-08-21 Universal Nanosensor Technologies Inc. Dielectric sensing method and system
US8736287B2 (en) 2009-03-04 2014-05-27 Universal Nanosensor Technologies Inc. Conductance detection system and method

Similar Documents

Publication Publication Date Title
KR100243779B1 (en) Electric field sensor
CN110187177A (en) A kind of the opto-electronic device frequency response test device and method of All-in-One
CN1844941A (en) Photoelectric integrated strong electric field measuring system
CN101109771A (en) Analog signal separating and transferring system used for high voltage measuring
JPH04332878A (en) Electromagnetic field intensity measuring device
JPH10115644A (en) Optical integrated voltage sensor
JPH08313577A (en) Electric field sensor
JP2000097980A (en) Travelling wave type photoelectric field sensor
JPH0989961A (en) Electric field detecting device
JP3404606B2 (en) Electric field sensor
JP3355502B2 (en) Electric field sensor
JPH085687A (en) Field sensor
JP3435583B2 (en) Electric field sensor
JP2014215140A (en) Electric field measuring apparatus
JP3355503B2 (en) Electric field sensor
JPH09113557A (en) Operating point adjusting method for electric field sensor and electric field sensor
JPH0968553A (en) Electric field sensor
JPH10206476A (en) Electric field sensor
JPH07301643A (en) Electric field sensor
JP3505669B2 (en) Electric field sensor
JP3516174B2 (en) Physical quantity detector
JPH0915280A (en) Electric field sensor
JP3430340B2 (en) Electric field sensor
JP3577616B2 (en) Electric field sensor
ICHIKAWA et al. Fabrication and characterization of a retroreflective type of practical LiNbO 3 voltage sensor operating in the range of 6 Hz to 2 GHz