JPH07201741A - Manufacturing device of amorphous semiconductor thin film - Google Patents

Manufacturing device of amorphous semiconductor thin film

Info

Publication number
JPH07201741A
JPH07201741A JP5335503A JP33550393A JPH07201741A JP H07201741 A JPH07201741 A JP H07201741A JP 5335503 A JP5335503 A JP 5335503A JP 33550393 A JP33550393 A JP 33550393A JP H07201741 A JPH07201741 A JP H07201741A
Authority
JP
Japan
Prior art keywords
thin film
substrate
magnetic field
semiconductor thin
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5335503A
Other languages
Japanese (ja)
Inventor
Hirobumi Tanaka
博文 田中
Yoshinori Ashida
芳徳 芦田
Takehiro Miyashita
武博 宮下
Noriyuki Yanagawa
紀行 柳川
Shin Fukuda
福田  伸
Nobuhiro Fukuda
信弘 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP5335503A priority Critical patent/JPH07201741A/en
Publication of JPH07201741A publication Critical patent/JPH07201741A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PURPOSE:To enable the photoelectric conversion efficiency of an amorphous solar battery to be improved by a method wherein a thin film forming substrate is arranged in a magnetic field formed mainly in the parallel direction with the substrate surface so as to deposit the amorphous semiconductor thin film on the substrate using a material gas in plasma state. CONSTITUTION:As for a thin film forming device, a parallel flat plate type plasma CVD device is used. Besides, a 5cm square transparent conductive substrate 3 is arranged on the side of an electrode 5 with a substrate heater in an i-layer forming chamber to be impressed with a magnetic field, on the other hand, in order to impress the magnetic field, a bar type samarium cobalt permanent magnet 2 is arranged in parallel with the substrate on the position 5cm distant from both sides of the substrate end so that a parallel magnetic field with the substrate surface may be formed. An i-type semiconductor thin film is formed into a hydride amorphous silicon thin film 5500Angstrom thick by cracking silane using high-frequency power at the substrate temperature of 180 deg.C. Successively, an n type semiconductor thin film is formed into an n-type fine crystal silicon thin film 400Angstrom thick at the substrate temperature of 180 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、次期代替エネルギ−と
して有望視されている高効率アモルファス太陽電池の製
造に適した高品質非晶質半導体薄膜製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high quality amorphous semiconductor thin film manufacturing apparatus suitable for manufacturing high efficiency amorphous solar cells, which are promising as alternative energy sources for the next generation.

【0002】[0002]

【従来の技術】化石燃料の枯渇、原子力発電用燃料の安
全性の問題、および大気中CO2 濃度増加による地球環
境破壊が危惧される昨今、代替エネルギ−の開発および
普及が急務となっている。高効率アモルファス太陽電池
は次期代替エネルギ−として有望視されている。
2. Description of the Related Art Nowadays, there is an urgent need to develop and popularize alternative energy sources because of the danger of depletion of fossil fuels, safety of fuels for nuclear power generation, and destruction of the global environment due to an increase in atmospheric CO 2 concentration. High-efficiency amorphous solar cells are regarded as promising alternative energy sources.

【0003】アモルファス太陽電池の光活性層の多く
は、プラズマCVD(化学気相堆積)装置を用いてモノ
シラン、ジシランガスのグロ−放電分解により、水素化
アモルファスシリコン薄膜を形成していた。この場合、
グロ−放電は高周波電源、DC電源を用いて真空反応槽
中に誘起され、ガスはプラズマ状態となる。平行平板型
電極を有するプラズマCVD装置では電極に直流電圧も
しくは交播電圧が印加され、荷電粒子はその電圧によっ
て生じる電界に沿ってドリフトする。その結果、基板に
はさまざまなエネルギ−を有するイオン、電子および中
性粒子が基板に入射する。このなかで、高エネルギ−荷
電粒子は成膜した膜に照射されることにより、膜特性を
低下させる言われているが、従来の平行平板型プラズマ
CVD装置では、荷電粒子の成膜表面への入射が避けら
れなかった。
In most of the photoactive layers of amorphous solar cells, hydrogenated amorphous silicon thin films have been formed by glow discharge decomposition of monosilane and disilane gas using a plasma CVD (chemical vapor deposition) apparatus. in this case,
The glow discharge is induced in the vacuum reaction chamber by using a high frequency power source and a DC power source, and the gas becomes a plasma state. In a plasma CVD apparatus having parallel plate electrodes, a DC voltage or a cross voltage is applied to the electrodes, and the charged particles drift along the electric field generated by the voltage. As a result, ions, electrons and neutral particles having various energies enter the substrate. Among them, it is said that the high-energy-charged particles irradiate the formed film to deteriorate the film characteristics. However, in the conventional parallel plate plasma CVD apparatus, the charged particles are not exposed to the surface of the film. The incident was unavoidable.

【0004】[0004]

【発明が解決しようとする課題】本発明は、プラズマC
VD装置を用いて水素化アモルファスシリコン薄膜を成
膜するにあたって、成膜表面への高エネルギ−荷電粒子
入射により、非晶質半導体薄膜の電気特性が低下するこ
とを防ぐための装置開発を目的としている。また、非晶
質半導体薄膜が水素化アモルファスシリコン薄膜であ
り、アモルファス太陽電池の光活性層として用いられる
場合には、この水素化アモルファスシリコン薄膜の膜特
性を向上させ、アモルファス太陽電池の光電変換効率を
向上させることが重要な課題である。
SUMMARY OF THE INVENTION The present invention is a plasma C
For the purpose of developing an apparatus for preventing the deterioration of the electrical characteristics of the amorphous semiconductor thin film due to the incidence of high-energy charged particles on the film formation surface when forming a hydrogenated amorphous silicon thin film using a VD apparatus. There is. When the amorphous semiconductor thin film is a hydrogenated amorphous silicon thin film and is used as a photoactive layer of an amorphous solar cell, the film characteristics of this hydrogenated amorphous silicon thin film are improved to improve the photoelectric conversion efficiency of the amorphous solar cell. Is an important issue.

【0005】[0005]

【課題を解決するための手段】本発明は、薄膜形成基板
が、主に該基板面に対して平行方向に形成された磁場中
に設置され、プラズマ化された原料ガスにより、該基板
上に非晶質半導体薄膜を堆積するように構成された非晶
質半導体薄膜の製造装置、であり、また、基板面に対し
て平行方向成分の最大静磁場強度が、基板とガス分解電
力印加電極の間において5ガウス以上である上記装置、
であり、また、基板面に対して垂直方向成分の最大静磁
場強度が、基板とガス分解電力印加電極の間において1
ガウス以下である上記装置、であり、また、上記装置を
用いて形成される非晶質半導体薄膜からなる水素化アモ
ルファスシリコン薄膜、であり、また、上記形成された
水素化アモルファスシリコン薄膜を光活性層として用い
るアモルファスシリコン太陽電池、である。
According to the present invention, a thin film-formed substrate is placed in a magnetic field formed mainly in a direction parallel to the substrate surface, and plasma is turned into a raw material gas to form a thin film-formed substrate on the substrate. An apparatus for producing an amorphous semiconductor thin film configured to deposit an amorphous semiconductor thin film, wherein the maximum static magnetic field strength of a component parallel to the substrate surface is equal to that of the substrate and the gas decomposition power application electrode. The above device, which is more than 5 Gauss in between,
And the maximum static magnetic field strength of the component perpendicular to the substrate surface is 1 between the substrate and the gas decomposition power application electrode.
The device is Gaussian or less, and is a hydrogenated amorphous silicon thin film composed of an amorphous semiconductor thin film formed by using the device, and the formed hydrogenated amorphous silicon thin film is photoactive. An amorphous silicon solar cell used as a layer.

【0006】以下、本発明を詳細に説明する。The present invention will be described in detail below.

【0007】基板に入射する荷電粒子には、電子、原料
ガス分子イオンおよびその解離生成物である分子イオ
ン、原子イオンなどがある。本発明においては、基板に
垂直方向に印加された電界により、ドリフトする荷電粒
子の基板入射を抑制するために、成膜入射基板面に平行
に磁場を形成し、また、排除すべき荷電粒子の価数、質
量に応じて、磁場の強度調節を行う。
The charged particles incident on the substrate include electrons, raw material gas molecular ions and their dissociation product molecular ions and atomic ions. In the present invention, a magnetic field is formed parallel to the film formation incident substrate surface in order to suppress the drifting charged particles from entering the substrate by the electric field applied in the direction perpendicular to the substrate, and the charged particles to be eliminated are The magnetic field strength is adjusted according to the valence and mass.

【0008】磁場の形成にあたっては、フェライト磁
石、サマリュ−ムコバルト磁石等のキュリ−点が200
℃以上の永久磁石の設置により行うものと、電磁石のコ
イルに電流を通電することにより行うものいずれも使用
できるが、永久磁石と電磁石を併用しても構わない。磁
場強度は、非晶質半導体薄膜の電気特性低下を引き起こ
すと思われる荷電粒子の磁場中でのラ−マ−半径が電極
間距離よりも同じ程度かまたは、小さくなるように調節
されることが好ましい。例えば、100eVに加速され
た電子が基板に入射してくる場合には、30ガウスで1
cm幅以上の磁場を形成することにより入射が阻止でき
る。また100eVに加速された水素イオンが基板に入
射する場合には、500ガウスで3cm幅以上の磁場を
形成することにより入射が抑制できる。また、荷電粒子
の入射が完全に阻止されない場合においても、基板垂直
方向の運動は抑制され、基板表面に対して水平方向の運
動へと変換されるため、膜内部への荷電粒子の進入は抑
制されることが期待されるのである。
When forming a magnetic field, the Curie point of a ferrite magnet, a samarium cobalt magnet, etc. is set to 200.
Both a permanent magnet at a temperature of not less than 0 ° C. and a permanent magnet of which current is supplied to the coil of the electromagnet can be used, but the permanent magnet and the electromagnet may be used in combination. The magnetic field strength can be adjusted so that the larma radius in the magnetic field of the charged particles, which is considered to cause the deterioration of the electrical characteristics of the amorphous semiconductor thin film, is the same or smaller than the inter-electrode distance. preferable. For example, when electrons accelerated to 100 eV enter the substrate, 1 at 30 gauss
Incident can be blocked by forming a magnetic field having a width of cm or more. When hydrogen ions accelerated to 100 eV are incident on the substrate, the incidence can be suppressed by forming a magnetic field having a width of 3 cm or more at 500 Gauss. Even when the charged particles are not completely blocked, the movement in the vertical direction of the substrate is suppressed and converted into the movement in the horizontal direction with respect to the surface of the substrate, so that the entrance of the charged particles into the film is suppressed. It is expected to be done.

【0009】図1は本発明の非晶質半導体薄膜製造装置
の一例を示す図である。図において、1はチャンバ−、
2は永久磁石または電磁石、3は薄膜形成用基板、4は
基板・磁石支持体、5は基板加熱ヒ−タ−付き電極、6
はガス分解電力印加電極、7は放電抑制電極(シ−ル
ド)、8は電気絶縁物、9はガス供給系、10はガス分
解電力供給用電源、11は排気系である。
FIG. 1 is a diagram showing an example of an amorphous semiconductor thin film manufacturing apparatus of the present invention. In the figure, 1 is a chamber,
2 is a permanent magnet or electromagnet, 3 is a thin film forming substrate, 4 is a substrate / magnet support, 5 is an electrode with a substrate heating heater, 6
Is a gas decomposition power application electrode, 7 is a discharge suppressing electrode (shield), 8 is an electrical insulator, 9 is a gas supply system, 10 is a gas decomposition power supply power source, and 11 is an exhaust system.

【0010】図1に示される非晶質半導体薄膜の製造装
置におけるチャンバ−1および装置内の部品は、非磁性
体で構成されることが望ましい。特に、薄膜形成用基板
3、基板・磁石支持体4、基板加熱ヒ−タ−付き電極5
は、基板に対して垂直方向の磁場成分が生じないように
するために、非磁性体とすることが好ましい。
It is desirable that the chamber-1 and the components in the apparatus in the apparatus for manufacturing an amorphous semiconductor thin film shown in FIG. 1 are made of a non-magnetic material. In particular, the thin film forming substrate 3, substrate / magnet support 4, substrate heating heater-equipped electrode 5
Is preferably a non-magnetic material in order to prevent generation of a magnetic field component in the direction perpendicular to the substrate.

【0011】光活性層である、水素化アモルファスシリ
コン薄膜は、モノシラン、ジシランガスの純ガス、もし
くはモノシランまたは、ジシランガスと水素ガスの混合
ガスのグロ−放電分解により薄膜形成が行われる。光活
性層の形成温度は、100 〜250 ℃、好ましくは 150〜 2
25℃、形成圧力は、0.01〜1Torr、好ましくは0.03〜0.
3 Torr で行われる。
The hydrogenated amorphous silicon thin film, which is the photoactive layer, is formed by glow discharge decomposition of pure gas of monosilane or disilane gas, or monosilane or a mixed gas of disilane gas and hydrogen gas. The formation temperature of the photoactive layer is 100 to 250 ° C, preferably 150 to 2 ° C.
25 ° C, forming pressure is 0.01 to 1 Torr, preferably 0.03 to 0.
Done at 3 Torr.

【0012】プラズマCVD法に用いられる電源として
は、主として、DC電源または、50Hz以上の交流電
界を発生させる電源が用いられることが好ましい。工業
的には13.56MHz、2.45GHzの周波数が使
用されことが好ましく、適宜、成膜目的に合わせて周波
数の設定が行われる。
As a power source used in the plasma CVD method, it is preferable to mainly use a DC power source or a power source for generating an alternating electric field of 50 Hz or more. Industrially, a frequency of 13.56 MHz and 2.45 GHz is preferably used, and the frequency is appropriately set according to the purpose of film formation.

【0013】非晶質半導体薄膜は、水素化アモルファス
シリコン薄膜、水素化アモルファスシリコンゲルマン薄
膜、水素化シリコンカーボン薄膜等であり、アモルファ
ス太陽電池の光活性層を形成するものである。これら非
晶質半導体薄膜は、分子内にシリコンを有する化合物、
ゲルマン、シリルゲルマン等の分子内にゲルマニウムを
有する化合物、炭化水素ガス等から目的の半導体薄膜に
応じて適宜選択される原料ガスに、プラズマCVD法を
適用することにより容易に形成される。原料ガスを水素
やヘリウム等で希釈して用いることや原料ガスにごく微
量のジボランを添加すること等、非晶質半導体薄膜形成
における従来技術を併用することについては、なんら本
発明の効果を妨げるものではない。
The amorphous semiconductor thin film is a hydrogenated amorphous silicon thin film, a hydrogenated amorphous silicon germane thin film, a hydrogenated silicon carbon thin film, etc., and forms a photoactive layer of an amorphous solar cell. These amorphous semiconductor thin films are compounds having silicon in the molecule,
It is easily formed by applying the plasma CVD method to a raw material gas appropriately selected from a compound having germanium in the molecule such as germane and silylgermane, a hydrocarbon gas and the like in accordance with a target semiconductor thin film. The use of the raw material gas diluted with hydrogen, helium, or the like, addition of a very small amount of diborane to the raw material gas, or the like, does not hinder the effect of the present invention when used in combination with conventional techniques for forming an amorphous semiconductor thin film. Not a thing.

【0014】図2は本発明の非晶質半導体薄膜を光活性
層とする太陽電池の層構成を示す図である。図におい
て、100は透光性基板、200は透明電極、300は
p型半導体薄膜、400はi型半導体薄膜、500はn
型半導体薄膜、600は金属電極である。
FIG. 2 is a diagram showing the layer structure of a solar cell using the amorphous semiconductor thin film of the present invention as a photoactive layer. In the figure, 100 is a transparent substrate, 200 is a transparent electrode, 300 is a p-type semiconductor thin film, 400 is an i-type semiconductor thin film, and 500 is n.
A semiconductor thin film, 600 is a metal electrode.

【0015】光活性層たるi型半導体薄膜の膜厚は、光
電変換素子の用途に応じて適宜決定されるものであり、
本発明の限定条件ではない。本発明の効果を達成するた
めには、1000〜10000 Åで十分である。
The film thickness of the i-type semiconductor thin film as the photoactive layer is appropriately determined according to the application of the photoelectric conversion element,
It is not a limiting condition of the invention. In order to achieve the effect of the present invention, 1000 to 10000Å is sufficient.

【0016】透光性基板、透明電極、金属電極等につい
ては、特に限定される条件はない。透光性基板として
は、青板ガラス、ホウケイ酸ガラス、石英ガラス等、従
来用いられているガラス基板材料が有用であるが、さら
に、金属やプラスチックスも基板材料として用いること
ができる。プラスチックス材料においては、100 ℃以上
の温度に耐える材料を有効に用いることができる。
The transparent substrate, transparent electrode, metal electrode, etc. are not particularly limited. As the translucent substrate, conventionally used glass substrate materials such as soda lime glass, borosilicate glass, and quartz glass are useful, but metal and plastics can also be used as the substrate material. As a plastic material, a material that can withstand a temperature of 100 ° C. or higher can be effectively used.

【0017】透明電極としては、酸化スズ、酸化インジ
ウム、酸化亜鉛等の金属酸化物や透光性の金属等を有効
に用いることができる。
As the transparent electrode, a metal oxide such as tin oxide, indium oxide, zinc oxide, or a translucent metal can be effectively used.

【0018】金属電極としては、必ずしも透光性である
必要がないので、アルミニウム、クロム、ニッケル−ク
ロム、銀、金、白金等の金属や酸化スズ、酸化インジウ
ム、酸化亜鉛等の金属酸化物の中から適宜、選択して用
いることができる。
Since the metal electrode does not necessarily have to be translucent, a metal such as aluminum, chromium, nickel-chromium, silver, gold or platinum or a metal oxide such as tin oxide, indium oxide or zinc oxide is used. It can be appropriately selected and used from the inside.

【0019】[0019]

【実施例】以下、実施例により本発明をさらに詳しく説
明する。 実施例1 5cm角透明導電性基板上にp型、i型、n型半導体お
よび金属電極を形成したアモルファス太陽電池を作製し
た。薄膜形成装置としては、平行平板型プラズマCVD
装置を用いた。ガス分解には、高周波電力をガス分解電
力印加電極に印加して行った。酸化スズからなる透明電
極付きガラス基板を当該成膜装置内に設置し、真空排気
ならびに基板加熱を行い、基板温度 180℃、シランガス
流量 1sccm、メタンガス流量 1sccm、水素ガス流量20sc
cm、%水素希釈ジボランガス流量3sccm、圧力0.15Torr
において、p型a−SiC:H膜を60Å形成した。
The present invention will be described in more detail with reference to the following examples. Example 1 An amorphous solar cell in which p-type, i-type, n-type semiconductors and metal electrodes were formed on a 5 cm square transparent conductive substrate was produced. As a thin film forming apparatus, a parallel plate type plasma CVD
The device was used. The gas decomposition was performed by applying high frequency power to the gas decomposition power application electrode. A glass substrate with a transparent electrode made of tin oxide is installed in the film forming apparatus, vacuum exhaust and substrate heating are performed, the substrate temperature is 180 ° C, the silane gas flow rate is 1 sccm, the methane gas flow rate is 1 sccm, and the hydrogen gas flow rate is 20 sc.
cm,% hydrogen diluted diborane gas flow rate 3 sccm, pressure 0.15 Torr
At 60, a p-type a-SiC: H film was formed at 60 Å.

【0020】次に、水素化アモルファスシリコンカ−バ
イド(a−SiCx:H)膜を 150Å形成した。a−Si
Cx:H膜の作製は、原料ガスとして、シラン/メタン/
水素を2/2/5 の割合で導入し、圧力0.15Torrにおいて、
高周波電力を印加して薄膜形成を行った。また、メタン
流量は形成終了時には0となるように流量制御を行っ
た。
Next, a hydrogenated amorphous silicon carbide (a-SiCx: H) film having a thickness of 150 liters was formed. a-Si
Cx: H film is produced by using silane / methane /
Hydrogen was introduced at a rate of 2/2/5, and at a pressure of 0.15 Torr,
A high frequency power was applied to form a thin film. The flow rate was controlled so that the flow rate of methane was 0 at the end of formation.

【0021】次に、5cm 角透明導電性基板をi層形成室
の基板加熱ヒ−タ−付き電極側に設置し、磁場を印加し
て行った。磁場を印加するため、図1に示されるような
配置で、基板端の両側から5cmのところに棒状のサマ
リウムコバルト永久磁石を基板に平行に設置し、基板成
膜表面に対して、平行磁場が形成されるような配置を行
った。磁場強度の測定を行ったところ、基板中央、基板
表面上1cmのところで、約110 ガウスであった。ま
た、基板垂直方向の磁場成分はほぼ、0ガウスであっ
た。i型半導体薄膜はシランを高周波電力で分解し、基
板温度 180℃で、厚み5500Åの水素化アモルファスシリ
コン(a−Si:H)薄膜を形成した。続いて、n型半
導体薄膜を、基板温度 180℃で、n型微結晶シリコン薄
膜を 400Å形成した。その後、薄膜形成装置から取り出
し、Ag電極を蒸着し、図2に示したアモルファス太陽
電池を作製した。AM(エアーマス)1.5 、100 mW/cm
2 の疑似太陽光下で、アモルファス太陽電池の光電特性
を測定した結果、光電変換素子特性は曲線因子が 0.790
と非常に高い値が得られ、本発明の効果が確認されたう
えに、短絡光電流18.9mA/cm2 、開放端電圧O.920Vを得
て、結果として、光電変換効率13.7%という極めて高い
値が得られることが確認された。結果を表1に示す。
Next, a 5 cm square transparent conductive substrate was placed on the electrode side with a substrate heating heater in the i-layer forming chamber, and a magnetic field was applied. In order to apply a magnetic field, a rod-shaped samarium-cobalt permanent magnet is placed in parallel with the substrate at a position as shown in FIG. Arranged as formed. When the magnetic field strength was measured, it was about 110 gauss at the center of the substrate and 1 cm on the substrate surface. The magnetic field component in the direction perpendicular to the substrate was almost 0 Gauss. As the i-type semiconductor thin film, silane was decomposed with high frequency power to form a hydrogenated amorphous silicon (a-Si: H) thin film having a thickness of 5500Å at a substrate temperature of 180 ° C. Subsequently, an n-type semiconductor thin film was formed at a substrate temperature of 180 ° C. to form an n-type microcrystalline silicon thin film of 400 Å. After that, the film was taken out from the thin film forming apparatus, the Ag electrode was vapor-deposited, and the amorphous solar cell shown in FIG. 2 was produced. AM (air mass) 1.5, 100 mW / cm
As a result of measuring the photoelectric characteristics of the amorphous solar cell under the pseudo sunlight of 2, the photoelectric conversion element characteristics have a fill factor of 0.790.
A very high value was obtained, the effect of the present invention was confirmed, and a short-circuit photocurrent of 18.9 mA / cm 2 and an open-ended voltage of O.920 V were obtained, resulting in an extremely high photoelectric conversion efficiency of 13.7%. It was confirmed that the value was obtained. The results are shown in Table 1.

【0022】実施例2 実施例1において、サマリウムコバルト永久磁石をフェ
ライト磁石に交換し、薄膜形成基板表面中央で、さらに
基板表面上1cmのところで、約5ガウスの平行静磁場
が形成された。また、薄膜形成基板垂直方向の磁場成分
はほぼ、0ガウスであった。AM(エアーマス)1.5 、
100 mW/cm2 の擬似太陽光下で、太陽電池の光電特性を
測定した結果、光電変換素子特性は曲線因子が 0.772と
非常に高い値が得られ、本発明の効果が確認されたうえ
に、短絡光電流18.9mA/cm2 、開放端電圧O.914Vを得
て、結果として、光電変換効率13.3%という高い値が得
られることが確認された。結果を表1に示す。
Example 2 In Example 1, the samarium-cobalt permanent magnet was replaced with a ferrite magnet, and a parallel static magnetic field of about 5 gauss was formed at the center of the thin film forming substrate surface and further 1 cm above the substrate surface. Further, the magnetic field component in the direction perpendicular to the thin film formation substrate was almost 0 Gauss. AM (air mass) 1.5,
As a result of measuring the photoelectric characteristics of the solar cell under simulated sunlight of 100 mW / cm 2, the photoelectric conversion element characteristics showed a very high fill factor of 0.772, and the effect of the present invention was confirmed. It was confirmed that a short circuit photocurrent of 18.9 mA / cm 2 and an open end voltage of O.914 V were obtained, and as a result, a high value of photoelectric conversion efficiency of 13.3% was obtained. The results are shown in Table 1.

【0023】比較例1 実施例1において、サマリュ−ムコバルト永久磁石を取
り外し、薄膜形成基板に静磁場印加を行わないで、i型
半導体薄膜の成膜を行い太陽電池の成膜を行った。その
結果、AM−1.5 、100 mW/cm2 の擬似太陽光下での光
電変換素子特性は曲線因子が 0.750と低くなり、短絡光
電流18.5mA/cm2 、開放端電圧O.915Vが得られ、結果と
して、光電変換効率12.7%と実施例よりも効率で1%程
低下をきたし、実施例1の薄膜形成基板平行静磁場印加
成膜に比べて著しく特性が低下した。この結果を表1に
示す。
Comparative Example 1 In Example 1, the i-type semiconductor thin film was formed and the solar cell was formed without removing the Samarium cobalt permanent magnet and applying a static magnetic field to the thin film forming substrate. As a result, the AM-1.5, 100 mW / cm2 photoelectric conversion element characteristics under simulated sunlight have a low fill factor of 0.750, a short-circuit photocurrent of 18.5 mA / cm 2 and an open-ended voltage of O.915 V. As a result, the photoelectric conversion efficiency was 12.7%, which was about 1% lower than that of the example, and the characteristics were remarkably deteriorated as compared with the thin film forming substrate parallel static magnetic field application film formation of the example 1. The results are shown in Table 1.

【0024】比較例2 実施例2において、基板表面中央、さらに基板表面上1
cmのところで、約1ガウスであるように基板との距離
を調節してi型半導体薄膜の成膜を行い太陽電池を作製
した。その結果、AM−1.5 、100 mW/cm2 の擬似太陽
光下での光電変換素子特性は曲線因子は 0.748でほぼ、
比較例2と同等で、短絡光電流18.6mA/cm2 、開放端電
圧O.916Vが得られ、結果として、光電変換効率12.7%と
ほぼ、比較例1の磁場のない場合と同特性が得られ、効
果なきものと判断された。結果を表1に示す。
Comparative Example 2 In Example 2, in the center of the substrate surface, and further on the substrate surface 1
At i cm, the i-type semiconductor thin film was formed by adjusting the distance to the substrate so that it was about 1 gauss, and a solar cell was produced. As a result, the photoelectric conversion element characteristics under AM-1.5 and 100 mW / cm 2 of simulated sunlight have a fill factor of 0.748,
Similar to Comparative Example 2, a short-circuit photocurrent of 18.6 mA / cm 2 and an open-circuit voltage of O.916V were obtained. As a result, the photoelectric conversion efficiency was 12.7%, which was almost the same as that of Comparative Example 1 in the absence of a magnetic field. And was judged to be ineffective. The results are shown in Table 1.

【0025】比較例3 実施例1において、基板端から0cmのところに棒状の
サマリウムコバルト永久磁石を基板片側のみに平行に密
着させて設置した実験をおこなった。磁場強度の測定を
行ったところ、基板中央、基板表面上1cmのところ
で、基板面に平行な磁場成分は約150 ガウスであった。
また、基板垂直方向の磁場成分は約15ガウスであった。
この状態でi型半導体薄膜の成膜を行い太陽電池を作製
した。その結果、AM−1.5 、100 mW/cm2 の擬似太陽
光下での光電変換素子特性は曲線因子で 0.677と低く、
短絡光電流18.0mA/cm2 、開放端電圧O.903Vが得られ、
結果として、光電変換効率11.0%と、比較例1の磁場を
設置しない場合よりも太陽電池特性が低下した。結果を
表1に示す。
COMPARATIVE EXAMPLE 3 In Example 1, an experiment was conducted in which a rod-shaped samarium-cobalt permanent magnet was placed at a position of 0 cm from the edge of the substrate in parallel contact with only one side of the substrate. When the magnetic field strength was measured, the magnetic field component parallel to the substrate surface was about 150 gauss at the center of the substrate and 1 cm above the substrate surface.
The magnetic field component in the substrate vertical direction was about 15 Gauss.
In this state, an i-type semiconductor thin film was formed to manufacture a solar cell. As a result, the photoelectric conversion element characteristics under AM-1.5 and 100 mW / cm 2 of pseudo sunlight were as low as 0.677 due to the fill factor,
Short circuit photocurrent of 18.0mA / cm 2 and open end voltage of O.903V are obtained.
As a result, the photoelectric conversion efficiency was 11.0% and the solar cell characteristics were lower than in the case where the magnetic field of Comparative Example 1 was not installed. The results are shown in Table 1.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【発明の効果】以上のように、プラズマCVD法による
i型半導体薄膜成膜装置の基板とガス分解電力印加電極
の間に5ガウス以上の平行磁場を形成することのできる
装置を用いることにより、作製されたアモルファス太陽
電池特性は、薄膜形成基板面に対して平行磁場を印加し
ないものおよび、基板面垂直磁場成分が存在するものと
比較して、変換効率が向上した。すなわち、本発明は実
用レベルにおいての非晶質半導体薄膜形成およびそれを
用いて作製したアモルファス太陽電池の光電変換効率の
改善に大きく貢献するものであり、その産業上の利用可
能性は極めて大きいものて言わざるを得ない。
As described above, by using the apparatus capable of forming a parallel magnetic field of 5 gauss or more between the substrate and the gas decomposition power applying electrode of the i-type semiconductor thin film forming apparatus by the plasma CVD method, The characteristics of the produced amorphous solar cells were improved in conversion efficiency as compared with those in which a parallel magnetic field was not applied to the surface of the thin film-formed substrate and those in which there was a magnetic field component perpendicular to the substrate surface. That is, the present invention greatly contributes to the formation of an amorphous semiconductor thin film at a practical level and the improvement of the photoelectric conversion efficiency of an amorphous solar cell produced using the amorphous semiconductor thin film, and its industrial applicability is extremely great. I have to say.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の非晶質半導体薄膜製造装置を示す図FIG. 1 is a diagram showing an amorphous semiconductor thin film manufacturing apparatus of the present invention.

【図2】本発明の非晶質太陽電池の層構成例を示す図FIG. 2 is a diagram showing an example of the layer structure of an amorphous solar cell of the present invention.

【符号の説明】[Explanation of symbols]

1 チャンバ− 2 永久磁石または電磁石 3 薄膜形成用基板 4 基板・磁石支持体 5 基板加熱ヒ−タ−付き電極 6 ガス分解電力印加電極 7 放電抑制電極(シ−ルド) 8 電気絶縁物 9 ガス供給系 10 ガス分解電力供給用電源 11 排気系 100 透光性基板 200 透明電極 300 p型半導体薄膜 400 i型半導体薄膜 500 n型半導体薄膜 600 金属電極 DESCRIPTION OF SYMBOLS 1 chamber-2 permanent magnet or electromagnet 3 substrate for thin film formation 4 substrate / magnet support 5 electrode with substrate heating heater 6 gas decomposition power application electrode 7 discharge suppression electrode (shield) 8 electrical insulator 9 gas supply System 10 Gas decomposition power supply power supply 11 Exhaust system 100 Transparent substrate 200 Transparent electrode 300 p-type semiconductor thin film 400 i-type semiconductor thin film 500 n-type semiconductor thin film 600 metal electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柳川 紀行 神奈川県横浜市栄区笠間町1190番地 三井 東圧化学株式会社内 (72)発明者 福田 伸 神奈川県横浜市栄区笠間町1190番地 三井 東圧化学株式会社内 (72)発明者 福田 信弘 神奈川県横浜市栄区笠間町1190番地 三井 東圧化学株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kiyuki Yanagawa 1190 Kasama-cho, Sakae-ku, Yokohama-shi, Kanagawa Mitsui Toatsu Chemical Co., Ltd. (72) Shin Fukuda 1190 Kasama-cho, Sakae-ku, Yokohama, Kanagawa Mitsui Toatsu Chemical Incorporated (72) Inventor Nobuhiro Fukuda 1190 Kasama-cho, Sakae-ku, Yokohama-shi, Kanagawa Mitsui Toatsu Chemical Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 薄膜形成基板が、主に該基板面に対して
平行方向に形成された磁場中に設置され、プラズマ化さ
れた原料ガスにより、該基板上に非晶質半導体薄膜を堆
積するように構成された非晶質半導体薄膜の製造装置。
1. A thin film formation substrate is installed mainly in a magnetic field formed in a direction parallel to the substrate surface, and an amorphous semiconductor thin film is deposited on the substrate by plasma-forming source gas. An apparatus for manufacturing an amorphous semiconductor thin film configured as described above.
【請求項2】 基板面に対して平行方向成分の最大静磁
場強度が、基板とガス分解電力印加電極の間において5
ガウス以上である請求項1記載の装置。
2. The maximum static magnetic field strength of the component parallel to the substrate surface is 5 between the substrate and the gas decomposition power application electrode.
The device of claim 1, which is Gaussian or better.
【請求項3】 基板面に対して垂直方向成分の最大静磁
場強度が、基板とガス分解電力印加電極の間において1
ガウス以下である請求項2記載の装置。
3. The maximum static magnetic field strength of the component perpendicular to the substrate surface is 1 between the substrate and the gas decomposition power application electrode.
The device according to claim 2, which is Gaussian or less.
【請求項4】 請求項1に記載した装置を用いて形成さ
れる非晶質半導体薄膜からなる水素化アモルファスシリ
コン薄膜。
4. A hydrogenated amorphous silicon thin film comprising an amorphous semiconductor thin film formed by using the apparatus according to claim 1.
【請求項5】 形成された請求項4記載の水素化アモル
ファスシリコン薄膜を光活性層として用いるアモルファ
スシリコン太陽電池。
5. An amorphous silicon solar cell using the formed hydrogenated amorphous silicon thin film according to claim 4 as a photoactive layer.
JP5335503A 1993-12-28 1993-12-28 Manufacturing device of amorphous semiconductor thin film Pending JPH07201741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5335503A JPH07201741A (en) 1993-12-28 1993-12-28 Manufacturing device of amorphous semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5335503A JPH07201741A (en) 1993-12-28 1993-12-28 Manufacturing device of amorphous semiconductor thin film

Publications (1)

Publication Number Publication Date
JPH07201741A true JPH07201741A (en) 1995-08-04

Family

ID=18289308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5335503A Pending JPH07201741A (en) 1993-12-28 1993-12-28 Manufacturing device of amorphous semiconductor thin film

Country Status (1)

Country Link
JP (1) JPH07201741A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100365327B1 (en) * 1998-10-22 2003-03-15 엘지.필립스 엘시디 주식회사 Crystallization equipment of amorphous film using electric field and plasma
KR100387522B1 (en) * 2001-06-23 2003-06-18 김형준 Apparatuses and methods for heat treatment of semiconductor films upon thermally susceptible non-conducting substrates

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100365327B1 (en) * 1998-10-22 2003-03-15 엘지.필립스 엘시디 주식회사 Crystallization equipment of amorphous film using electric field and plasma
KR100387522B1 (en) * 2001-06-23 2003-06-18 김형준 Apparatuses and methods for heat treatment of semiconductor films upon thermally susceptible non-conducting substrates

Similar Documents

Publication Publication Date Title
US4696758A (en) Gas mixtures for the vapor deposition of semiconductor material
JP3073327B2 (en) Deposition film formation method
US20080188062A1 (en) Method of forming microcrystalline silicon film
Van Sark Methods of deposition of hydrogenated amorphous silicon for device applications
JPH07123111B2 (en) Method for manufacturing semiconductor film and method for manufacturing photovoltaic structure
JPWO2010050363A1 (en) Plasma CVD apparatus, semiconductor film manufacturing method, thin film solar cell manufacturing method, and plasma CVD apparatus cleaning method
JPH0143449B2 (en)
US4415760A (en) Amorphous silicon solar cells incorporating an insulating layer in the body of amorphous silicon and a method of suppressing the back diffusion of holes into an N-type region
JPH07201741A (en) Manufacturing device of amorphous semiconductor thin film
JPH0544198B2 (en)
JPH0340515B2 (en)
EP0886325A1 (en) Amorphous silicon photovoltaic devices and method of making thereof
Kessels Remote plasma deposition of hydrogenated amorphous silicon: plasma processes, film growth, and material properties
JPH06260665A (en) Amorphous solar cell
Jain et al. Effect of argon plasma treatment on electronic properties of doped hydrogenated Silicon thin films for photovoltaic applications
TWI412624B (en) A film deposition apparatus and its method for manufacturing film
US20100116334A1 (en) Vhf energized plasma deposition process for the preparation of thin film materials
JPH07211641A (en) Electron beam evaporator
JPS61234031A (en) Forming method for accumulated film
Niira et al. A-Si: H//spl mu/c-Si: H tandem solar cell by novel PECVD method
Yeghikyan et al. Thin film silicon photovoltaics using DC saddle-field glow discharge
JPS6216031B2 (en)
JPS621535B2 (en)
Bruno et al. KINETIC STUDY OF THE DEPOSITION PROCESS OF GLOW DISCHARGE a-Si: H FOR HIGH EFFICIENCY SOLAR CELLS CHARACTERIZATION OF SiH: H
JPH08204218A (en) Production system for thin film of amorphous semiconductor