JPH07201543A - Rare earth permanent magnet and its manufacture - Google Patents

Rare earth permanent magnet and its manufacture

Info

Publication number
JPH07201543A
JPH07201543A JP5336859A JP33685993A JPH07201543A JP H07201543 A JPH07201543 A JP H07201543A JP 5336859 A JP5336859 A JP 5336859A JP 33685993 A JP33685993 A JP 33685993A JP H07201543 A JPH07201543 A JP H07201543A
Authority
JP
Japan
Prior art keywords
phase
magnet
rare earth
crystal grain
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5336859A
Other languages
Japanese (ja)
Inventor
Tsutomu Otsuka
努 大塚
Etsuo Otsuki
悦夫 大槻
Tetsutaro Imai
徹太郎 今井
Kazuhiro Saito
一宏 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP5336859A priority Critical patent/JPH07201543A/en
Publication of JPH07201543A publication Critical patent/JPH07201543A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Abstract

PURPOSE:To obtain a magnet of high energy product by a method wherein a magnet is lessened in B rich phase as much as possible, enhanced in sintered body density, and reduced in crystal grain diameter. CONSTITUTION:In an R-T-B rare earth permanent magnet whose main phase is an RRB phase represented by Nd-Fe-B, a B rich phase indicated by R1+epsilonT2B14 is limited to 3% or below in content, a sintered body density is set to 7.5gr/co or above, and RRB is 3 to 12mum in crystal grain diameter. This magnet is formed through such a method that R-T-B crystalline alloy powder whose main phase is a R2R14B phase where R amounts to 26.5 to 29wt.% and liquid quenched alloy amorphous or fine crystalline powder where R amounts to 50 to 100wt.% are mixed together, molded, and sintered or thermally treated, if necessary. By this setup, an excellent R-T-B magnet which has at least a coercive force of 640kA/m and a maximum energy product of 360kj/m<3> or above can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,R2 14B金属間化合
物を主相としたR−T−B系永久磁石とその製造方法に
関し,特に高性能な希土類永久磁石とその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an RTB based permanent magnet having an R 2 R 14 B intermetallic compound as a main phase and a method for producing the same, and more particularly to a high performance rare earth permanent magnet and a method for producing the same. .

【0002】[0002]

【従来の技術】R2 14B系希土類永久磁石を代表とす
る磁石であるNd−Fe−B系磁石を粉末冶金法で製造
する焼結型磁石に関する文献として代表的なものに特開
昭59−46008号公報,又は,日本応用磁気学会第
35回研究資料(昭和59年3月)筆頭としてこれまで
さらなる高性能化を目的とした文献が数多く,出されて
いる。
2. Description of the Related Art A representative document relating to a sintered magnet for producing an Nd-Fe-B magnet, which is a magnet typified by an R 2 T 14 B rare earth permanent magnet, by a powder metallurgy method is disclosed in Japanese Unexamined Patent Publication 59-46008, or the 35th research paper of the Japan Institute of Applied Magnetics (March 1984), many publications aiming at higher performance have been published so far.

【0003】これらの文献はいずれも,磁石組成のイン
ゴットを粉砕,成形,焼結,熱処理を行う方法が開示さ
れている。従来の方法によれば,溶解はアーク,高周波
等を用いて真空又は不活性雰囲気で行なわれR2 14
磁性相を含むインゴットを作製する。インゴットの相粉
砕はディスクミル,ハンマーミル等で行なわれ,さらに
微粉砕はボールミル,ジェットミル,アトライター等で
行なわれる。磁場中配向及び圧縮形成は金型を用いて磁
場中で同時に行なわれるのが通例である。焼結は,10
00〜1150℃の範囲で,不活性雰囲気又は真空中で
行なわれる。熱処理は必要に応じて300〜900℃程
度の温度で行なわれる。
Each of these documents discloses a method of crushing, molding, sintering and heat treating an ingot of a magnet composition. According to the conventional method, melting is carried out in a vacuum or an inert atmosphere using an arc, high frequency, etc. R 2 T 14 B
An ingot containing a magnetic phase is produced. The phase crushing of the ingot is performed by a disc mill, a hammer mill, etc., and the fine crushing is performed by a ball mill, a jet mill, an attritor, etc. Alignment and compression formation in a magnetic field are usually performed simultaneously in a magnetic field using a mold. Sintering is 10
It is carried out in an inert atmosphere or vacuum in the range of 0 to 1150 ° C. The heat treatment is performed at a temperature of about 300 to 900 ° C. if necessary.

【0004】[0004]

【発明が解決しようとする課題】現在,この手法で得ら
れている磁石特性は,280〜320kJ/m3 (35〜4
0MGOe)程度であり,本系磁石の磁性化合物の4π
Is(1.61T=16.1kG)から理論的に導かれ
る磁石のエネルギー積,512kJ/m3 (64MGOe)
に比べ著しく低い値である。
At present, the magnet characteristics obtained by this method are 280 to 320 kJ / m 3 (35 to 4).
0MGOe), which is 4π of the magnetic compound of this system magnet.
Energy product of magnet theoretically derived from Is (1.61T = 16.1kG), 512kJ / m 3 (64MGOe)
It is a significantly lower value than

【0005】本系磁石の保磁力の発生源は,R2 14
相がR−T固溶体相にてくるまれている組織形態をとる
ことである。また,磁石の(BH)max を向上せしめる
ためにはR2 14B相の焼結体中における占積率をいか
に高くしJrを高めるかが,不可欠となる。また,本系
磁石は,R−T固溶体相を液相の核とした液相焼結であ
り,保磁力発生のみでなく,焼結体を得るためにもR−
T固溶体相は,不可欠なものとなっている。以上のこと
から,本系磁石の高エネルギー積比を図るためには,極
力R2 14B相の体積を増加させ,焼結及び保磁力発生
に不可欠な,R−T固溶体相を必要最低限に押さえるこ
とが,不可欠となる。
The source of the coercive force of this system magnet is R 2 T 14 B
The phase is to take on the rare morphology that comes into the RT solid solution phase. In order to improve the (BH) max of the magnet, it is indispensable to increase the space factor of the R 2 T 14 B phase in the sintered body and increase Jr. In addition, the present magnet is liquid-phase sintered with the RT solid solution phase as the core of the liquid phase, and not only for generating the coercive force but also for obtaining the sintered body.
The T solid solution phase has become indispensable. From the above, in order to achieve a high energy product ratio of this system magnet, the volume of the R 2 T 14 B phase should be increased as much as possible, and the RT solid solution phase, which is essential for sintering and coercive force generation, should be the minimum required. It is essential to keep it to the limit.

【0006】しかしながら,従来の出発原料粉末を用い
て,生成されるR−T固溶体相は他の相(Nd2 Fe14
B)に比べその存在量が極めて少なく(34wt%Nd
−1.0wt%B−Febalに存在するR−T固溶体
相量は,6vol%以下である)しかも延性に富むため
に,被粉砕性が極度に悪い。このために,粒度分布が広
くなってしまい焼結時の液相の核となるR−T固溶体粉
末と,固相であるR214B相粉末との均一混合が極め
て困難である。またさらにこのR−T固溶体相は酸化さ
れ易く,焼結時の液相のぬれを劣化させるという欠点を
有している。
However, using the conventional starting material powder, the RT solid solution phase produced is different from the other phase (Nd 2 Fe 14
Compared to B), its abundance is extremely low (34 wt% Nd
(The amount of the RT solid solution phase present in -1.0 wt% B-Febal is 6 vol% or less.) Moreover, the ductility is extremely high, and the pulverizability is extremely poor. For this reason, the particle size distribution becomes wide, and it is extremely difficult to uniformly mix the RT solid solution powder, which is the core of the liquid phase during sintering, and the R 2 T 14 B phase powder, which is the solid phase. Further, this RT solid solution phase is easily oxidized and has a drawback that the wetting of the liquid phase during sintering is deteriorated.

【0007】以上の数々の欠点を解決ができず,過剰の
Rリッチ(R-rich)相を含む,出発原料を用いて,磁石
を製造していた。それ故,密度が低く,焼結体組織が不
均一なJr,(BH)max ,Hcjの低い磁石しか製造で
きなかった。
The above-mentioned various drawbacks cannot be solved, and a magnet has been manufactured by using a starting material containing an excessive R-rich phase. Therefore, only magnets having a low density and a non-uniform sintered structure, such as Jr, (BH) max and Hcj, could be manufactured.

【0008】そこで,本発明の技術的課題はこれらの欠
点を克服し従来では,得られなかった極めて高性能なN
d−Fe−Bで代表されるR−T−B系永久磁石とその
製造方法を提供することにある。
[0008] Therefore, the technical problem of the present invention is to overcome these drawbacks and to obtain an extremely high performance N which has not been obtained in the past.
An object is to provide an RTB-based permanent magnet represented by d-Fe-B and a method for manufacturing the same.

【0009】[0009]

【課題を解決するための手段】本発明者らは,先に述べ
た欠点を改善する方法として,先に,特開昭62−12
0826号公報を提案している。この文献では,焼結時
の液相成分となる組成粉末を液体急冷法により得て,こ
の粉末と,磁極相であるNd2 Te14B相を主相とした
インゴット粉砕粉末を混合,粉砕,成形,焼結,熱処理
の工程を経ることで,(BH)max が280kJ/m3 (3
5MGOe)を越える高性能なR−T−B系永久磁石が
得られることを提案している。
The inventors of the present invention have previously disclosed, as a method for improving the above-mentioned drawbacks, Japanese Patent Laid-Open No. 62-12.
No. 0826 is proposed. In this document, a composition powder that becomes a liquid phase component at the time of sintering is obtained by a liquid quenching method, and this powder and an ingot crushed powder having a magnetic pole phase Nd 2 Te 14 B phase as a main phase are mixed and crushed, The (BH) max of 280 kJ / m 3 (3
It is proposed that a high-performance R-T-B system permanent magnet exceeding 5 MGOe) can be obtained.

【0010】これらの製造プロセスを基本技術とし,本
発明者らは,種々の改良,及び向上を目的として検討を
重ねた結果,安定して,360kJ/m3 (45MGOe)
以下のエネルギー積を有するとともに640kA/m3 (8
kOe)以上の保磁力を有する希土類永久磁石とその製
造方法を見い出したものである。
Using these manufacturing processes as basic techniques, the present inventors have conducted various studies for the purpose of various improvements and improvements, and as a result, have found that they are stable and 360 kJ / m 3 (45 MGOe).
It has an energy product of 640 kA / m 3 (8
A rare earth permanent magnet having a coercive force of kOe) or more and a manufacturing method thereof have been found.

【0011】先に本発明者らが,提案した特開昭6−1
20826号ではNd−Fe−B磁石で代表されるR−
T−B系磁石が液相焼結にて,製造される点に着目し,
焼結時の液相を従来法に比べ極めて高い均一度で,成形
体中に分散させることを可能としたために不必要な,N
dリッチ(Nd-rich)相,Bリッチ(B-rich)相,酸化物
相と極力低減せしめ,磁性に寄与するNd2 Fe14B相
量比を増大させ高Jrで,高エネルギー積なNd−Fe
−B磁石を製造することができたものである。
The above-mentioned JP-A-6-1 proposed by the present inventors.
In No. 20826, R- represented by Nd-Fe-B magnet
Focusing on the fact that the TB magnet is manufactured by liquid phase sintering,
N, which is unnecessary because it is possible to disperse the liquid phase during sintering in the compact with a much higher degree of uniformity than in the conventional method.
Nd-rich phase, B-rich phase, and oxide phase are reduced as much as possible to increase the Nd 2 Fe 14 B phase amount ratio that contributes to magnetism, and high Jr and high energy product Nd -Fe
-B magnet could be manufactured.

【0012】しかしながら,この方法においても,36
0kJ/m3 (45MGOe)以上のエネルギー積を有する
焼結体を安定に供給することは困難であった。
However, even in this method, 36
It was difficult to stably supply a sintered body having an energy product of 0 kJ / m 3 (45 MGOe) or more.

【0013】そこで,本発明者らは,種々の検討を重ね
た結果,次のことを満足することで,360kJ/m3 以上
の極めて高いエネルギー積を有する磁石を安定に供給す
ることができ,その製造方法においても以下の条件にて
製造することが不可欠であることを見い出したものであ
る。
Therefore, as a result of various investigations, the inventors of the present invention can stably supply a magnet having an extremely high energy product of 360 kJ / m 3 or more by satisfying the following. It has been found that it is indispensable to manufacture under the following conditions also in the manufacturing method.

【0014】本系磁石の焼結体組織中には,通常,磁性
を担うNd2 Fe14B相とNdリッチ相と呼ばれるNd
95Fe5 のNd−Fe固溶体相の他に,Nd1+εFe4
4で示されるBリッチ相の3相が存在する。これらの
相の中で,磁石特性を得るためには,Nd2 Fe14B相
とNdリッチ相は,必要不可欠な相である。もう一つの
Bリッチ(-rich)相は磁性に何ら寄与はしないためこの
存在は極力押え,少なくすることが高エネルギー積を得
るためには重要である。本発明者らは,Bリッチ相の量
比は,9%以下にするとともにBリッチ相の粒径を5μ
m以上にすることで高エネルギー積なNd−Fe−B磁
石を得るための一条件であることを見い出したものであ
る。また,さらに,焼結体の密度は磁石特性の中で,特
に高いJrを得るためには,極力高め,理論密度に近く
することが不可欠である。本系磁石の理論密度は,組成
によって若干の変動はあるものの,7.55〜7.60
gr/cc 程度とされている。この密度は最低でも7.5gr
/cc 以上でなければ高いJrを得ることができず,また
角型比も劣化してくることにより高いエネルギー積を得
ることができないことを見い出した。現在,市場に出て
いるNd−Fe−B系磁石の密度はせいぜい7.45gr
/cc と低いため高いJr,角型比が得られずせいぜい最
大エネルギー積320kJ/m3 (40kGOe)程度しか
得られていない。
In the structure of the sintered body of the present magnet, Nd 2 Fe 14 B phase which is responsible for magnetism and Nd rich phase which is called Nd-rich phase are usually used.
In addition to the Nd-Fe solid solution phase of 95 Fe 5 , Nd 1 + ε Fe 4
3 phases B-rich phase is present as indicated by B 4. Among these phases, the Nd 2 Fe 14 B phase and the Nd rich phase are indispensable phases in order to obtain the magnet characteristics. Since the other B-rich phase does not contribute to magnetism at all, its existence is suppressed as much as possible, and it is important to reduce it to obtain a high energy product. The present inventors set the amount ratio of the B-rich phase to be 9% or less and set the grain size of the B-rich phase to 5 μm.
It has been found out that setting it to m or more is one condition for obtaining a high energy product Nd-Fe-B magnet. In addition, in order to obtain a particularly high Jr among the magnet characteristics, it is essential that the density of the sintered body be as high as possible and close to the theoretical density. The theoretical density of this magnet is 7.55 to 7.60, though it varies slightly depending on the composition.
It is about gr / cc. This density is at least 7.5 gr
It has been found that a high Jr cannot be obtained unless it is / cc or more, and a high energy product cannot be obtained due to the deterioration of the squareness ratio. The density of Nd-Fe-B magnets currently on the market is at most 7.45 gr.
Since it is as low as / cc, a high Jr and squareness ratio cannot be obtained, and at most a maximum energy product of 320 kJ / m 3 (40 kGOe) is obtained.

【0015】さらに,高エネルギー積を得るためには,
高いJrだけでは,達成できず,高い保磁力を有するこ
とが不可欠である。このような磁石の場合,Nd2 Fe
14B相の磁性粒子の結晶粒径が小さい方が,高い保持力
を有するのに有利である。この原因の詳細はそれほどよ
くは解明されていないが,一般には,本系磁石の保磁力
発生は,ピンニングタイプであるとされている。このた
め結晶粒径は出来るだけ小さい方が高い保磁力を得るた
めに不可欠である。
Furthermore, in order to obtain a high energy product,
It cannot be achieved only by high Jr, and it is essential to have high coercive force. In the case of such a magnet, Nd 2 Fe
The smaller the crystal grain size of the 14 B phase magnetic particles, the more advantageous it is to have a high coercive force. The details of the cause have not been clarified so well, but it is generally said that the coercive force generation of this system magnet is of the pinning type. Therefore, it is indispensable that the crystal grain size is as small as possible in order to obtain a high coercive force.

【0016】以上述べたBリッチ相を極力少なくするこ
と,焼結体密度を高くする。及び結晶粒径を小さくする
ことのいずれの条件が欠けても安定に360kJ/m3 を越
える高エネルギー積な磁石は得られない。
By minimizing the B-rich phase described above, the density of the sintered body is increased. Moreover, even if the conditions for reducing the crystal grain size are lacking, a magnet having a high energy product exceeding 360 kJ / m 3 cannot be stably obtained.

【0017】また,この高エネルギー積を得るための上
記3条件は,従来のような,磁石組成で溶解したインゴ
ットを粉砕・成形・焼結・熱処理する工程では,実現で
きない。
The above three conditions for obtaining this high energy product cannot be realized in the conventional processes of crushing, molding, sintering and heat treating an ingot melted with a magnet composition.

【0018】本来,Bリッチ相自身は磁気特性に前述し
た如く何ら関与しない。しかしながら,磁石組成のB量
と,ある程度,増加させることでHGが高くなることが
知られており,市販されている磁石材の組成も本来のB
組成よりある程度高くして製造している。そのため,B
リッチ相の出現をさけられず,その体積費は6%以上と
なっている。
Originally, the B-rich phase itself does not contribute to the magnetic characteristics as described above. However, it is known that HG can be increased by increasing the B content of the magnet composition to some extent, and the composition of the commercially available magnet material is also the original B content.
It is manufactured with a certain level higher than the composition. Therefore, B
With the appearance of the rich phase, the volume cost is over 6%.

【0019】また,焼結体密度が7.5gr/cc 以上を確
保し,しかも結晶粒径を3〜12μmとすることも従来
の製造工程では,不可能である。
Further, it is impossible in the conventional manufacturing process to secure the sintered body density of 7.5 gr / cc or more and to set the crystal grain size to 3 to 12 μm.

【0020】これは,従来の製法では,前述した如く,
液相の核となるNdリッチ相を成形体中に均一に分散さ
せることが,困難であるため焼結体密度を高くするため
には焼結温度を高くし,焼結時の液相量を増加させねば
ならない。そのため結晶粒径が大きくなることはさけら
れない。また結晶粒径を小さくするために焼結温度を低
下させると逆に焼結体密度が高くできないため,両者を
満足することができない。
In the conventional manufacturing method, this is as described above.
Since it is difficult to uniformly disperse the Nd-rich phase, which is the core of the liquid phase, in the compact, the sintering temperature must be raised in order to increase the density of the sintered body, and the amount of liquid phase during sintering should be increased. It has to be increased. Therefore, it is unavoidable that the crystal grain size becomes large. On the other hand, if the sintering temperature is lowered in order to reduce the crystal grain size, the density of the sintered body cannot be increased, and both cannot be satisfied.

【0021】本発明者らは以前に提案した方策は以上の
欠点を克服することが実現できたため高エネルギー積磁
石を製造可能としたものである。
The inventors of the present invention have made it possible to manufacture a high-energy product magnet because the previously proposed measures can realize the above drawbacks.

【0022】さらに,安定にこの高エネルギー積の磁石
を製造することを可能とするために種々の検討を重ねた
結果,Rが26.5〜29wt%であり,R2 14B相
を主相とするR−T−B結晶質合金粉末と,Rが50〜
100wt%(100を含まず)の非晶質又は微結晶質
より成る液体急冷合金粉末を混合・成形・焼結すること
で安定に(BH)max で360kJ/m3 を越える高エネル
ギー積なR−T−B系磁石を製造することを見いだした
ものである。
Further, as a result of various studies to make it possible to stably manufacture this high energy product magnet, R is 26.5 to 29 wt%, and R 2 T 14 B phase is mainly contained. Phase R-T-B crystalline alloy powder and R is 50 to 50
Stable (BH) max of 360 kJ / m 3 with high energy product by stable mixing (BH) max by mixing 100 wt% (not including 100) amorphous or microcrystalline liquid quenching alloy powder. It was discovered that a -T-B magnet is manufactured.

【0023】ここで,R2 14B相を主相とするR−T
−B結晶質合金粉末のR値を26.5〜29wt%とし
た理由は,26.5より低い組成ではα−Fe等の異相
の析出が著しく,粉末の被粉砕性を劣化させるばかりか
磁場成形時の配向を著しく低下させるため,26.5w
t%以上とした。また29wt%以下とする理由はさら
に高R値側での粉末を用いる被粉砕性の悪いRリッチ相
が,多量に粉末中に存在し,液相が成形体中で均一分散
できなくなったり,あるいは,混合する液体急冷合金粉
末量が少なくなりすぎるため均一な液焼結による緻密化
ができず組織不整を生じ,磁石特性が著しく劣化するた
めである。
Here, the RT having the R 2 R 14 B phase as the main phase
The reason why the R value of the -B crystalline alloy powder is set to 26.5 to 29 wt% is that the precipitation of hetero-phase such as α-Fe is remarkable in the composition lower than 26.5, which not only deteriorates the pulverizability of the powder but also the magnetic field. 26.5w to significantly reduce the orientation during molding
It was set to t% or more. Further, the reason for setting the content to 29 wt% or less is that the R-rich phase, which uses the powder on the higher R-value side and has poor grindability, is present in a large amount in the powder, and the liquid phase cannot be uniformly dispersed in the compact, or The reason is that the amount of the liquid quenching alloy powder to be mixed is too small, so that it is not possible to densify it by uniform liquid sintering, resulting in structural irregularity and significantly deteriorating the magnet characteristics.

【0024】また,液体急冷合金粉末のRの組成を50
wt%以上としたのは,これより少ないR値では,焼結
時の液相量が多すぎ,液相中から焼結の冷却過程で,未
配向のR2 14B粒子が析出する量比が多くなり,磁石
のJrを劣化せしめるだけである。
Further, the composition of R of the liquid quenched alloy powder is set to 50
If the R value is less than this, the amount of the liquid phase at the time of sintering is too large, and the amount of unoriented R 2 T 14 B particles precipitated in the cooling process of the sintering from the liquid phase. The ratio increases and only deteriorates the Jr of the magnet.

【0025】さらに上記の製法で製造される磁石の組織
で結晶粒径を3〜12μmとしBリッチ相の量比を9%
以下とし,焼結体密度を,7.5gr/cc 以上とした理由
は,結晶粒径が,12μm以上のものでは高い保磁力が
得られないためであり,逆に3μmより小さい結晶粒径
にしてもそれほど保磁力が著しく向上することもなくな
ってくる領域であるためあまり意味がないばかりか3μ
m以下の結晶粒を実現するためには,粉砕粉末粒径を相
当細かくしなければならず,それ故,酸化防止が困難と
なり,焼結体の酸素含有量も高くなり高特性を得にくく
なるためである。Bリッチ(-rich)相は9%を越える領
域では保磁力が若干向上するものの,Jrが劣化する。
同様に焼結体密度が7.5gr/cc 以下ではJrが低いば
かりか,保磁力も劣化するため,いずれも高エネルギー
積,特に360kJ/m3 以上の磁石特性は得られないため
である。
Further, in the structure of the magnet manufactured by the above manufacturing method, the crystal grain size is set to 3 to 12 μm, and the amount ratio of the B-rich phase is 9%.
The reason for setting the sintered body density to 7.5 gr / cc or more is that a high coercive force cannot be obtained if the crystal grain size is 12 μm or more. However, since it is a region where the coercive force does not improve significantly, it does not make much sense and it is 3μ.
In order to realize a crystal grain of m or less, it is necessary to make the pulverized powder particle size considerably fine, and therefore it becomes difficult to prevent oxidation, and the oxygen content of the sintered body becomes high, and it becomes difficult to obtain high characteristics. This is because. In the B-rich (-rich) phase, the coercive force is slightly improved in the region exceeding 9%, but Jr is deteriorated.
Similarly, when the density of the sintered body is 7.5 gr / cc or less, not only the Jr is low but also the coercive force is deteriorated, so that neither of them has a high energy product, particularly a magnet characteristic of 360 kJ / m 3 or more cannot be obtained.

【0026】又,焼結体の組織中に結晶粒径1μm以下
のNdリッチ相が均一に分布していることが必要であ
る。
Further, it is necessary that the Nd-rich phase having a crystal grain size of 1 μm or less is uniformly distributed in the structure of the sintered body.

【0027】このBリッチ相の粒径が5μm以下にする
ことで,高エネルギー積なNd−Fe−B磁石を得るた
めの条件であることを見い出したものである。
It has been found that setting the grain size of the B-rich phase to 5 μm or less is a condition for obtaining a high energy product Nd-Fe-B magnet.

【0028】本来,Bリッチ相自身は,磁気特性に前述
した如く何ら関与しない。
Originally, the B-rich phase itself does not contribute to the magnetic characteristics at all as described above.

【0029】しかしながら,磁石組成のB量をある程度
増加させることでHcjが高くなることが知られており,
市販されている磁石材の組成も,本来のB組成よりある
程度高くして製造している。そのためBリッチ相の出現
をさけられずその粒径は,大きいもので,10μm以上
となっている。従来の磁石組成で溶解したインゴットを
粉砕し成形・焼結・熱処理する工程では,Bリッチ相の
粒系を5μm以下におさえることHcjが400kA/m以上
で,(BH)max が360kJ/m3 以上を得る磁石は得ら
れない。これは,液相成分となる組成粉末と,磁性相と
なるNd2 Fe14B組成に近い粉末を混合する方法で,
製造可能となるものである。
However, it is known that Hcj is increased by increasing the B content of the magnet composition to some extent,
The composition of the commercially available magnet material is also made higher than the original B composition to some extent. Therefore, the appearance of the B-rich phase is unavoidable, and the particle size is 10 μm or more, which is large. In the process of crushing an ingot melted with a conventional magnet composition, molding, sintering, and heat treatment, keep the grain size of the B-rich phase below 5 μm, Hcj is 400 kA / m or more, and (BH) max is 360 kJ / m 3 A magnet that obtains the above cannot be obtained. This is a method of mixing a composition powder as a liquid phase component and a powder having a Nd 2 Fe 14 B composition close to a magnetic phase,
It can be manufactured.

【0030】[0030]

【実施例】以下,本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0031】(実施例1)高純度のNd,Fe,Bを用
いて26.7〜39.5Nd−0.97〜1.3B−F
e bal(wt%)の組成を有するインゴットを真空
中溶解し作成した。
(Example 1) 26.7 to 39.5 Nd-0.97 to 1.3B-F using high-purity Nd, Fe, and B
An ingot having a composition of e bal (wt%) was melted in a vacuum to prepare.

【0032】次にこのインゴットを粗粉砕した。この粉
末を第1原料粉末とした。
Next, this ingot was roughly crushed. This powder was used as the first raw material powder.

【0033】また同様に高純度のNd,Fe,Bを用い
て50〜99Nd−0.8〜2.0B−Fe bal
(wt%)の組成を有するインゴットを真空中溶解し作
成した。
Similarly, by using high-purity Nd, Fe, and B, 50-99Nd-0.8-2.0B-Febal
An ingot having a composition of (wt%) was melted in a vacuum to prepare.

【0034】次にこのインゴットを用いて,単ロール法
により液体急冷薄片を作成した。
Next, using this ingot, a liquid quenching thin piece was prepared by the single roll method.

【0035】この薄片を,粗粉砕したこの粉末を第2原
料粉末とした。
This powder obtained by roughly crushing this thin piece was used as the second raw material powder.

【0036】これらの第1原料粉末及び第2原料粉末を
29〜31Nd−1.0〜1.5B−Fe bal(w
t%)の組成となるようにボールミルを用いて混合・粉
砕した。この時の粉末粒径2〜5μmであった。次にこ
れら粉末を20kOeの磁場中で成形圧1ton/cm2 でφ
18×12tの大きさに成形した。これら成形体を10
00〜1100℃の真空中で焼成後,400〜700℃
の熱処理を加えた。
The first raw material powder and the second raw material powder are 29 to 31 Nd-1.0 to 1.5B-Fe bal (w
t%) was mixed and pulverized using a ball mill. The powder particle size at this time was 2 to 5 μm. Next, these powders were φ in a magnetic field of 20 kOe at a molding pressure of 1 ton / cm 2 .
It was molded into a size of 18 × 12t. 10 these molded bodies
After firing in a vacuum of 00 to 1100 ℃, 400 to 700 ℃
The heat treatment of was added.

【0037】このようにして得られた焼結体の磁気特性
及び焼結体の密度,Bリッチ相量焼結体中のNd2 Fe
14B相の結晶粒径を下記表1に示す。Bリッチ相は画像
解析装置を用いて面積比を求め体積率に換算した。また
結晶粒径は画像解析装置を用いてその切片長を求めその
3/2倍を平均結晶粒径とした。
The magnetic properties of the thus-obtained sintered body, the density of the sintered body, and the Nd 2 Fe content in the B-rich phase amount sintered body
The crystal grain size of the 14 B phase is shown in Table 1 below. For the B-rich phase, the area ratio was obtained using an image analyzer and converted into a volume ratio. For the crystal grain size, the section length was determined using an image analyzer, and 3/2 times that was taken as the average crystal grain size.

【0038】[0038]

【表1】 [Table 1]

【0039】上記表1からBリッチ相量が,3vol%
以下,焼結体密度が7.5gr/cc 以上,結晶粒径が3〜
12μmの試料ではいずれも360kJ/m3 以上のエネル
ギー積を有していることがわかる。
From Table 1 above, the amount of B-rich phase is 3 vol%
Below, the sintered body density is 7.5 gr / cc or more, and the crystal grain size is 3 ~
It can be seen that all the 12 μm samples have an energy product of 360 kJ / m 3 or more.

【0040】(実施例2)高純度のNd,Fe,Bを用
いて26〜29.5Nd−1.0B−Fe bal(w
t%)のNd2 Fe14B相を主相とするインゴットを真
空中溶解し作成した。
(Example 2) High purity Nd, Fe and B were used to obtain 26-29.5 Nd-1.0B-Fe bal (w).
t%) of the Nd 2 Fe 14 B phase as the main phase of the ingot was melted in a vacuum to prepare.

【0041】次にこれらインゴットを粗粉砕し,第1原
料粉末とした。次に60Nd−1.0B−Fe bal
(wt%)の組成を有するインゴットを第1原料粉末と
同様,真空中溶解し,作成した。
Next, these ingots were roughly crushed to obtain a first raw material powder. Next, 60Nd-1.0B-Fe bal
An ingot having a composition of (wt%) was melted in a vacuum and prepared in the same manner as the first raw material powder.

【0042】このインゴットを用いてさらに単ロール法
により液体急冷薄片を得た。
Using this ingot, a liquid quenched thin piece was further obtained by the single roll method.

【0043】この薄片を,粗粉砕し,この粉末を第2原
料粉末とした。
This thin piece was roughly crushed and this powder was used as the second raw material powder.

【0044】次にこれらの第1原料粉末及び第2原料粉
末とを秤量組成で31Nd−1.0B−Fe bal
(wt%)となるように混合し,さらにボールミルを用
いて粉砕した。
Next, the first raw material powder and the second raw material powder are weighed to obtain 31Nd-1.0B-Febal.
(Wt%), and then pulverized using a ball mill.

【0045】この粉砕粉末の粒径を測定したところ2〜
5μmであった。
The particle size of this pulverized powder was measured and found to be 2
It was 5 μm.

【0046】次にこれら粉末を20kOeの磁界中で成
形圧1ton/cm2 の圧力でφ18×12tの大きさに成形
した。これら成形体を1040〜1100℃の真空中焼
結した。さらに得られた焼結体に400〜700℃の熱
処理を加えた。
Next, these powders were molded in a magnetic field of 20 kOe at a molding pressure of 1 ton / cm 2 into a size of φ18 × 12 t. These compacts were sintered in vacuum at 1040 to 1100 ° C. Further, heat treatment at 400 to 700 ° C. was applied to the obtained sintered body.

【0047】図1に使用した第1原料粉末のNd組成値
と得られた磁石特性の関係を示す。第1原料粉末のHd
組成が26.5〜29wt%の範囲ではいずれもエネル
ギー積が45MGOe以上の磁石特性が得られている。
またいずれの焼結体も密度は,7.55〜7.60gr/c
c であり,Bリッチ相の存在はなく,平均結晶粒径8〜
11μmであった。
FIG. 1 shows the relationship between the Nd composition value of the first raw material powder used and the obtained magnet characteristics. Hd of the first raw material powder
When the composition is in the range of 26.5 to 29 wt%, magnet characteristics with an energy product of 45 MGOe or more are obtained.
In addition, the density of each sintered body is 7.55 to 7.60 gr / c.
c, there is no B-rich phase, and the average crystal grain size is 8 to
It was 11 μm.

【0048】(実施例3)高純度のNd,Fe,Bを用
いて45〜97Nd−1.0B−Fe bal(wt
%)の組成を有するインゴットを真空中溶解した。次に
得られたインゴットを単ロール法により液体急冷を施
し,アモルファス薄片を得た。この薄片を粗粉砕し,得
られた粉末を第2原料粉末とした。この第2原料粉末と
実施例−1で得られた第1原料粉末のうち27Nd−
1.0B−Fe bal(wt%)を用いて秤量組成で
30Nd−1.0B−Fe bal(wt%)となるよ
うに混合し,さらにボールミルを用いて粉砕した。この
粉砕粉末の粒径を測定したところ2〜5μmであった。
(Example 3) 45-97Nd-1.0B-Febal (wt) using high-purity Nd, Fe, and B
%) Was melted in vacuum. The obtained ingot was then liquid-cooled by the single roll method to obtain amorphous flakes. This thin piece was roughly pulverized and the obtained powder was used as the second raw material powder. Of the second raw material powder and the first raw material powder obtained in Example-1, 27 Nd-
1.0B-Fe bal (wt%) was used to mix to obtain a weighed composition of 30 Nd-1.0B-Fe bal (wt%), which was further pulverized using a ball mill. The particle size of this ground powder was measured and found to be 2 to 5 μm.

【0049】次にこれら粉末を20kOeの磁界中で成
形圧1ton/cm2 の圧力でφ18×t12の大きさに成形
した。これら成形体を1040〜1100℃の真空中焼
結した。さらに得られた焼結体に400〜700℃の熱
処理を加えた。
Next, these powders were molded into a size of φ18 × t12 in a magnetic field of 20 kOe at a molding pressure of 1 ton / cm 2 . These compacts were sintered in vacuum at 1040 to 1100 ° C. Further, heat treatment at 400 to 700 ° C. was applied to the obtained sintered body.

【0050】図2に使用したII材のNd組成値と得られ
た磁石特性の関係を示す。第2原料粉末のHd組成が5
0wt%以上の範囲では,いずれも360kJ/m3 を越え
る優れた磁石特性を示している。またいずれの焼結体に
も,Bリッチ相の存在は見られなかった。またいずれの
焼結体も密度は,7.55〜7.60gr/cc であり,B
リッチ相の存在はなく,平均結晶粒径8〜11μmであ
った。
FIG. 2 shows the relationship between the Nd composition value of the II material used and the obtained magnet characteristics. The Hd composition of the second raw material powder is 5
In the range of 0 wt% or more, all show excellent magnet characteristics exceeding 360 kJ / m 3 . In addition, no B-rich phase was found in any of the sintered bodies. The density of all the sintered bodies is 7.55 to 7.60 gr / cc, and
There was no rich phase, and the average crystal grain size was 8 to 11 μm.

【0051】以上,実施例1〜3で説明したように,N
d−Fe−Bで代表されるR2 14B相を主相した下R
−T−B系希土類永久磁石においてR1+ε4 4 で示
されるBリッチ(-rich)相量を3%以下とし,焼結体密
度を7.5gr/cc 以上としR2 14B結晶粒径が3〜1
2μmとすることで,エネルギー積が360kJ/m3 以上
の高性能なR−T−B系磁石から得られる。上記の高性
能な磁石はRが26.5〜29wt%のR2 14B相を
主相とするR−T−B結晶質合金粉末とRが50〜10
0wt%(100は含まず)の非晶質又は微結晶より成
る液体急冷合金粉末を混合・成形・焼結又,必要に応じ
熱処理を加えることで実現できるものである。これは,
従来法では困難であった液相の均一分散を可能としたこ
とにより,組織制御が容易となり,その結果,Bリッチ
相等の余剰の相を極限まで低減でき,しかも高密度で結
晶粒系が細かく均一な焼結体を得ることが可能となり,
Jr,Hcjを本系磁石の本来磁石の有する極限値近くま
で導き出すことができ,高エネルギー積を有する磁石を
安定に製造できるものと考える。
As described above in Examples 1 to 3, N
Lower R mainly composed of R 2 R 14 B phase represented by d-Fe-B
In -T-B system rare earth permanent magnet of B-rich (-rich) Airyo represented by R 1 + ε T 4 B 4 is 3% or less, the sintered density was 7.5gr / cc or more R 2 R 14 B crystal grain size is 3 to 1
By setting it to 2 μm, an energy product of 360 kJ / m 3 or more can be obtained from a high-performance RTB-based magnet. The above high-performance magnet has an R-T-B crystalline alloy powder having an R 2 T 14 B phase of R of 26.5 to 29 wt% as a main phase and R of 50 to 10%.
It can be realized by mixing, molding, sintering, and optionally heat treating liquid quenching alloy powder consisting of 0 wt% (not including 100) of amorphous or fine crystals. this is,
Since it was possible to uniformly disperse the liquid phase, which was difficult with the conventional method, the structure can be controlled easily, and as a result, the excess phase such as B-rich phase can be reduced to the utmost limit, and the high density and fine grain system It is possible to obtain a uniform sintered body,
It is considered that Jr and Hcj can be derived close to the limit value of the original magnet of this system magnet, and a magnet having a high energy product can be stably manufactured.

【0052】(実施例4)高純度のNd,Fe,Bを用
いて26〜29.5Nd−1.0B−Fe bal(w
t%)の組成を有するインゴットを真空中溶解し作製し
た。次にこのインゴットを粗粉砕した。この粉末を第1
原料粉末とした。
(Example 4) Using high-purity Nd, Fe, and B, 26-29.5 Nd-1.0B-Fe bal (w
An ingot having a composition of t%) was melted in a vacuum to prepare. Next, this ingot was roughly crushed. This powder first
The raw material powder was used.

【0053】また,同様に高純度のNd,Fe,Bを用
いて45.0〜100.0Nd−0.2〜2.0B−F
e bal(wt%)の組成を有するインゴットを真空
中溶解し作製した。次にこのインゴットを用いて単ロー
ル法により液体急冷薄体を作製した。この粉末を第2原
料粉末とした。
Similarly, by using high-purity Nd, Fe and B, 45.0 to 100.0 Nd-0.2 to 2.0B-F
An ingot having a composition of e bal (wt%) was melted in a vacuum to prepare. Next, using this ingot, a liquid-quenched thin body was produced by the single roll method. This powder was used as the second raw material powder.

【0054】これらの第1及び第2原料粉末を29.0
〜32.0Nd−1.0B−Febal(wt%)組成
になるようにボールミルを用いて混合粉砕した。このと
きの粉末粒径は2〜5μmであった。
29.0 of these first and second raw material powders are added.
~ 32.0 Nd-1.0B-Febal (wt%) composition was mixed and ground using a ball mill. The powder particle size at this time was 2 to 5 μm.

【0055】次にこれら粉末を600kA/m(20kO
e)の磁場中で成形圧1ton/cm2 の圧力でφ18×12
tの大きさに成形した。これら成形体を1040〜11
00℃の真空中で焼結後400〜700℃の熱処理を加
えた。
Next, these powders were mixed at 600 kA / m (20 kO).
φ18 × 12 at a molding pressure of 1 ton / cm 2 in the magnetic field of e)
It was molded into a size of t. These molded bodies are made to be 1040-11
After sintering in a vacuum of 00 ° C, a heat treatment of 400 to 700 ° C was applied.

【0056】このようにして得られた焼結体と磁気特性
及び焼結体中のNdリッチ相の量と結晶粒径を下記表2
に示す。Ndリッチ相は,画像解析装置を用いて面積を
求め占積率に換算した。また結晶粒径は,画像解析装置
を用いてその切辺長を求め,その3/2倍を平均結晶粒
径とした。また,比較例1として従来の粉末冶金法によ
り29.0Nd−1.0B−Fe bal(wt%)の
焼結体を作製し下記表2にその特性を併せて示した。
The sintered body thus obtained, the magnetic properties, the amount of Nd-rich phase in the sintered body and the crystal grain size are shown in Table 2 below.
Shown in. The area of the Nd-rich phase was calculated using an image analyzer and converted into a space factor. For the crystal grain size, the cutting edge length was determined using an image analysis device, and 3/2 times that was taken as the average crystal grain size. Further, as Comparative Example 1, a 29.0 Nd-1.0B-Fe bal (wt%) sintered body was prepared by a conventional powder metallurgy method, and the characteristics thereof are also shown in Table 2 below.

【0057】[0057]

【表2】 [Table 2]

【0058】以上,実施例4により述べたごとく,Nd
−Fe−Bで代表されるR2 14B相を主相としたR−
T−B系希土類永久磁石に於てR100-x −Tx (0≦x
≦20)で示されるRリッチ(-rich)相量を4%以下と
し,その結晶粒系が1.0μm以下とすることで保磁力
が0.8T以上の高性能なR−T−B系希土類永久磁石
が得られる。
As described above in the fourth embodiment, Nd
-Fe-B represented by R 2 T 14 B phase as the main phase R-
In the case of a TB rare earth permanent magnet, R 100-x −T x (0 ≦ x
≦ 20) R-rich (-rich) phase content of 4% or less and the crystal grain system of 1.0 μm or less, the coercive force is 0.8T or more high performance R-T-B system A rare earth permanent magnet is obtained.

【0059】(実施例5)高純度のNd,Fe,Bを用
いて26.7〜29.5Nd−0.97〜1.3B−F
e bal(wt%)の組成を有するインゴットを真空
溶解により作成した。次にこのインゴットをAr中にて
粗粉砕した。この粉末を第1原料粉末とする。
(Example 5) Using high-purity Nd, Fe, and B, 26.7 to 29.5 Nd-0.97 to 1.3B-F
An ingot having a composition of e bal (wt%) was prepared by vacuum melting. Next, this ingot was roughly crushed in Ar. This powder is used as the first raw material powder.

【0060】また同様に高純度のNd,Fe,Bを用い
て,50〜99Nd−0.8〜2.0B−Fe bal
(wt%)の組成を有するインゴットを真空溶解により
作成した。このインゴットを用いて,単ロール法によ
り,液体急冷薄片を作成した。この薄片を,粗粉砕し
た。この粉末を第2原料粉末とした。
Similarly, by using high-purity Nd, Fe, and B, 50-99Nd-0.8-2.0B-Febal
An ingot having a composition of (wt%) was prepared by vacuum melting. Using this ingot, a liquid quenching thin piece was prepared by the single roll method. The flakes were coarsely crushed. This powder was used as the second raw material powder.

【0061】これらの第1原料粉末及び第2原料粉末を
29〜31Nd−1.0〜1.5B−Fe bal(w
t%)の組成となるようにボールミルを用いて混合,微
粉砕をした。この時の粉末粒径は2〜5μmであった。
次にこれら粉末を1600kA/mの磁場中で成形圧1ton/
cm2 の圧力で,φ18mm×t12mmの大きさに成形し
た。これら成形体を1040〜1070℃の真空中で焼
結後,400〜700℃の熱処理を加えた。
The first raw material powder and the second raw material powder are treated with 29-31 Nd-1.0-1.5 B-Fe bal (w).
t%) was mixed and finely pulverized using a ball mill. The powder particle size at this time was 2 to 5 μm.
Next, these powders were molded under a magnetic field of 1600 kA / m at a molding pressure of 1 ton /
It was molded into a size of φ18 mm × t12 mm with a pressure of cm 2 . These compacts were sintered in a vacuum of 1040 to 1070 ° C. and then heat-treated at 400 to 700 ° C.

【0062】このようにして得られた焼結体の磁気特性
及びBリッチ相の粒径を下記表3に示す。
The magnetic properties and the grain size of the B-rich phase of the sintered body thus obtained are shown in Table 3 below.

【0063】[0063]

【表3】 [Table 3]

【0064】Bリッチ(-rich)相粒径が5μm以下の材
料では,いずれもHcjが600kA/m以上(BH)max が
360kJ/m3 以上を得ていることがわかる。
It can be seen that the Hcj of 600 kA / m or more (BH) max of 360 kJ / m 3 or more is obtained for all the materials having a B-rich phase particle diameter of 5 μm or less.

【0065】以上実施例5に述べた如く,Nd−Fe−
Bで代表されるR2 14B相を主相としたR−T−B系
希土類永久磁石において,R1+ε4 4 で示されるB
リッチ(-rich)相の粒径を5μm以下とすることで,H
cjが600kA/m以上,(BH)max が360kJ/m3 以上
の高性能なR−T−B系磁石が得られる。
As described in Example 5 above, Nd-Fe-
In the R-T-B system rare earth permanent magnet having the R 2 T 14 B phase represented by B as the main phase, B represented by R 1 + ε T 4 B 4
By making the particle size of the rich (-rich) phase 5 μm or less, H
A high-performance R-T-B magnet having a cj of 600 kA / m or more and a (BH) max of 360 kJ / m 3 or more can be obtained.

【0066】上記の高性能な磁石はRが26.5〜29
wt%のR2 14B相を主相とするR−T−B結晶質合
金粉末と,Rが50〜100wt%(100は含まず)
の非晶質又は微結晶より成る液体急冷合金粉末を混合,
成形,焼結,または必要に応じ熱処理を加えることで実
現できるものである。これは従来法では困難であった液
相の均一分散を可能としたことにより,組織制御が容易
となり,その結果,Bリッチ(-rich)相等余剰の相を極
限まで低減することが可能となり,Hcj,(BH)max
を本系磁石の本来有する極限近くまで導き出すことが出
来,高性能な磁石を製造できたものと考えられる。
The above high-performance magnet has an R of 26.5 to 29.
wt% R-T-B crystalline alloy powder having R 2 T 14 B phase as a main phase and R of 50 to 100 wt% (100 is not included)
Liquid quenching alloy powder consisting of amorphous or microcrystalline
It can be realized by molding, sintering, or heat treatment if necessary. This is because it is possible to uniformly disperse the liquid phase, which was difficult with the conventional method, and it becomes easier to control the structure, and as a result, it is possible to reduce the excess phase such as B-rich phase to the limit. Hcj, (BH) max
It is thought that the high-performance magnet could be manufactured because it was possible to derive the above-mentioned magnets to the limit that is inherent to this system magnet.

【0067】[0067]

【発明の効果】以上説明したように,本発明によれば,
極めて高性能なNd−Fe−Bで代表されるR−T−B
系永久磁石とその製造方法を提供することができる。
As described above, according to the present invention,
RTB represented by extremely high performance Nd-Fe-B
A permanent magnet and a method for manufacturing the same can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例2におけるNd2 Fe14B相を主相とす
る結晶質のNd−Fe−B合金粉末のNd組成値と磁石
特性の関係を示す図である。
FIG. 1 is a diagram showing a relationship between an Nd composition value of a crystalline Nd—Fe—B alloy powder having an Nd 2 Fe 14 B phase as a main phase and a magnet characteristic in Example 2.

【図2】実施例3における非晶質Nd−Fe−B合金粉
末のNd組成値と磁石特性の関係を示す図である。
FIG. 2 is a diagram showing a relationship between an Nd composition value of an amorphous Nd—Fe—B alloy powder and a magnet characteristic in Example 3.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年3月15日[Submission date] March 15, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Name of item to be corrected] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】本系磁石の焼結体組織中には,通常,磁性
を担うNdFe14B相とNdリッチ相と呼ばれるN
95FeのNd−Fe固溶体相の他に,Nd1+ε
Fe (但し,εは0以上の数)で示されるBリッ
チ相の3相が存在する。これらの相の中で,磁石特性を
得るためには,NdFe14B相とNdリッチ相は,
必要不可欠な相である。もう一つのBリッチ(−ric
h)相は磁性に何ら寄与はしないためこの存在は極力押
え,少なくすることが高エネルギー積を得るためには重
要である。本発明者らは,Bリッチ相の量比は,9%以
下にするとともにBリッチ相の粒径を5μm以上にする
ことで高エネルギー積なNd−Fe−B磁石を得るため
の一条件であることを見い出したものである。また,さ
らに,焼結体の密度は磁石特性の中で,特に高いJrを
得るためには,極力高め,理論密度に近くすることが不
可欠である。本系磁石の理論密度は,組成によって若干
の変動はあるものの,7.55〜7.60gr/cc程
度とされている。この密度は最低でも7.5gr/cc
以上でなければ高いJrを得ることができず,また角型
比も劣化してくることにより高いエネルギー積を得るこ
とができないことを見い出した。現在,市場に出ている
Nd−Fe−B系磁石の密度はせいぜい7.45gr/
ccと低いため高いJr,角型比が得られずせいぜい最
大エネルギー積320kJ/m(40kGOe)程度
しか得られていない。
In the sintered body structure of the magnet of the present system, Nd 2 Fe 14 B phase, which is responsible for magnetism, and Nd rich phase, which are generally called N, are called.
In addition to the Nd-Fe solid solution phase of d 95 Fe 5 , Nd 1 + ε
There are three B-rich phases represented by Fe 4 B 4 (where ε is a number of 0 or more) . Among these phases, in order to obtain the magnet characteristics, the Nd 2 Fe 14 B phase and the Nd rich phase are
This is an essential phase. Another B rich (-ric
Since the h) phase does not contribute to magnetism at all, its existence is suppressed as much as possible, and it is important to reduce it to obtain high energy product. The present inventors set the B-rich phase amount ratio to 9% or less and set the B-rich phase particle size to 5 μm or more under one condition for obtaining a high energy product Nd-Fe-B magnet. It was one that was found. In addition, in order to obtain a particularly high Jr among the magnet characteristics, it is essential that the density of the sintered body be as high as possible and close to the theoretical density. The theoretical density of this system magnet is about 7.55 to 7.60 gr / cc, although it varies slightly depending on the composition. This density is at least 7.5 gr / cc
It has been found that a high Jr cannot be obtained unless the above value and a high energy product cannot be obtained due to deterioration of the squareness ratio. The density of Nd-Fe-B magnets currently on the market is at most 7.45 gr /
Since it is as low as cc, a high Jr and squareness ratio cannot be obtained, and at most a maximum energy product of 320 kJ / m 3 (40 kGOe) is obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/08 41/02 G (72)発明者 斎藤 一宏 宮城県仙台市太白区郡山六丁目7番1号 株式会社トーキン内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number in the agency FI Technical indication location H01F 1/08 41/02 G (72) Inventor Kazuhiro Saito 6 Koriyama, Taichiro-ku, Sendai City, Miyagi Prefecture No. 7 Tokin Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 R2 14B金属間化合物(但し,RはY
を含む希土類元素のうちの少なくとも一種,Tは遷移金
属)からなる主相と,R100-x −Tx (但し,x=0〜
20)からなるRリッチ相と,R1+ε4 4 (但し,
εは0以上の整数)からなるBリッチ相とを含むR−T
−B希土類永久磁石であって,前記希土類磁石は,少な
くとも640kA/mの保磁力と,少くとも360kJ/m3
最大エネルギー積とを備えていることを特徴とする希土
類永久磁石。
1. An R 2 T 14 B intermetallic compound (wherein R is Y
At least one of rare earth elements including T, T is a transition metal, and R 100-x −T x (where x = 0 to 0).
20) R rich phase and R 1 + ε T 4 B 4 (however,
R-T including a B-rich phase composed of ε is an integer of 0 or more)
-B A rare earth permanent magnet, characterized in that the rare earth magnet has a coercive force of at least 640 kA / m and a maximum energy product of at least 360 kJ / m 3 .
【請求項2】 請求項1記載の希土類永久磁石におい
て,前記主相は,3〜12μmの結晶粒径を備えている
ことを特徴とする希土類永久磁石。
2. The rare earth permanent magnet according to claim 1, wherein the main phase has a crystal grain size of 3 to 12 μm.
【請求項3】 請求項2記載の希土類永久磁石におい
て,前記Rリッチ相は,多くとも9vol%の占積率
と,1μm以下の結晶粒径とを備えていることを特徴と
する希土類永久磁石。
3. The rare earth permanent magnet according to claim 2, wherein the R-rich phase has a space factor of at most 9 vol% and a crystal grain size of 1 μm or less. .
【請求項4】 請求項3記載の希土類永久磁石におい
て,前記Bリッチ相は,3〜12μmの結晶粒径と,多
くとも3vol%以下の占積率を備えていることを特徴
とする希土類永久磁石。
4. The rare earth permanent magnet according to claim 3, wherein the B-rich phase has a crystal grain size of 3 to 12 μm and a space factor of 3 vol% or less at most. magnet.
【請求項5】 R2 14B相を主相とするR−T−B結
晶質合金粉末と,Rを50〜100wt%(100は含
まず)含む非晶質又は微結晶質からなる液体急冷合金粉
末とを混合し,成形し,焼結することを特徴とする希土
類磁石の製造方法。
5. An R-T-B crystalline alloy powder having an R 2 T 14 B phase as a main phase and an amorphous or microcrystalline liquid containing R in an amount of 50 to 100 wt% (not including 100). A method for producing a rare earth magnet, which comprises mixing with a quenched alloy powder, molding, and sintering.
JP5336859A 1993-12-28 1993-12-28 Rare earth permanent magnet and its manufacture Pending JPH07201543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5336859A JPH07201543A (en) 1993-12-28 1993-12-28 Rare earth permanent magnet and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5336859A JPH07201543A (en) 1993-12-28 1993-12-28 Rare earth permanent magnet and its manufacture

Publications (1)

Publication Number Publication Date
JPH07201543A true JPH07201543A (en) 1995-08-04

Family

ID=18303320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5336859A Pending JPH07201543A (en) 1993-12-28 1993-12-28 Rare earth permanent magnet and its manufacture

Country Status (1)

Country Link
JP (1) JPH07201543A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108630367A (en) * 2017-03-22 2018-10-09 Tdk株式会社 R-t-b based rare earth magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108630367A (en) * 2017-03-22 2018-10-09 Tdk株式会社 R-t-b based rare earth magnet
CN108630367B (en) * 2017-03-22 2020-06-05 Tdk株式会社 R-T-B rare earth magnet

Similar Documents

Publication Publication Date Title
US7867343B2 (en) Rare earth magnet and method for production thereof
EP0237416B1 (en) A rare earth-based permanent magnet
JPH06340902A (en) Production of sintered rare earth base permanent magnet
JPH06275414A (en) Nd-fe-b based permanent magnet
JP2665590B2 (en) Rare earth-iron-boron based alloy thin plate for magnetic anisotropic sintered permanent magnet raw material, alloy powder for magnetic anisotropic sintered permanent magnet raw material, and magnetic anisotropic sintered permanent magnet
JPS61174364A (en) Permanent magnet
JPS6181606A (en) Preparation of rare earth magnet
JPH10106875A (en) Manufacturing method of rare-earth magnet
JPS61263201A (en) Manufacture of generator
JPS6181603A (en) Preparation of rare earth magnet
JP3296507B2 (en) Rare earth permanent magnet
JP2001217112A (en) R-t-b sintered magnet
JPS6181607A (en) Preparation of rare earth magnet
JPH07201543A (en) Rare earth permanent magnet and its manufacture
JPH09237708A (en) Rare earth fen group sintered magnet and manufacture thereof
JPH05171323A (en) Permanent magnet material
JP3298220B2 (en) Rare earth-Fe-Nb-Ga-Al-B sintered magnet
JPH06283318A (en) Manufacture of rare-earth permanent magnet
JP2868062B2 (en) Manufacturing method of permanent magnet
JP2577373B2 (en) Sintered permanent magnet
JP3247460B2 (en) Production method of raw material powder for rare earth magnet
JPH07211570A (en) Manufacture of rare-earth permanent magnet
JPS62291903A (en) Permanent magnet and manufacture of the same
JPH044383B2 (en)
JPH06322465A (en) Permanent magnet material

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021002