JPH07201486A - Static eliminating method and device - Google Patents

Static eliminating method and device

Info

Publication number
JPH07201486A
JPH07201486A JP35280793A JP35280793A JPH07201486A JP H07201486 A JPH07201486 A JP H07201486A JP 35280793 A JP35280793 A JP 35280793A JP 35280793 A JP35280793 A JP 35280793A JP H07201486 A JPH07201486 A JP H07201486A
Authority
JP
Japan
Prior art keywords
static electricity
substrate
surface potential
gas
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP35280793A
Other languages
Japanese (ja)
Inventor
Isao Nakamura
功 中村
Akihiro Suzuki
昭廣 鈴木
Asako Suzuki
朝子 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP35280793A priority Critical patent/JPH07201486A/en
Publication of JPH07201486A publication Critical patent/JPH07201486A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Elimination Of Static Electricity (AREA)

Abstract

PURPOSE:To stably eliminate static electricity without generating ozone by holding an insulating member in the atmosphere heated to 50 deg.C or more, and decreasing surface potential caused by the static electricity. CONSTITUTION:A glass-made substrate 33 is stored in a heat insulating wall 18, and a surface of the substrate 33 is left as previously charged with static electricity, to hold the substrate by a holding mechanism 15 so as to prevent the substrate from being tumbled and brought into contact with each other. The inside of the heat insulating wall 18 is held to 50 deg.C temperature by a gas heating mechanism 11, and here the temperature in the heat insulating wall 18 is about 50%RH, to generate convection of air only by natural convection. Here in accordance with increasing the atmospheric temperature, a convergent value of surface potential is decreased lower, but in order to generate a safety level as the surface potential, the atmosphere is set to 50 deg.C or more. Thus by eliminating necessity for using high voltage, the generation of ozone according to a corona discharge is eliminated. In this way, static electricity in a surface of an insulating member, which is partly an insulator, can be safely removed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば液晶素子に用い
られる絶縁性の基板に発生した静電気を除去する方法お
よびそのための装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing static electricity generated on an insulating substrate used for, for example, a liquid crystal element, and an apparatus therefor.

【0002】[0002]

【従来の技術】従来、静電気の対策として、適宜アース
を取ることや導電性の材料を用いること等が行われてき
た。しかし、絶縁物部材を用いざるを得ない場合には、
この手の対策は不可能であり、電離した空気を対象物に
吹き付けるエアーイオナイザーが多用されていた。この
エアーイオナイザーは、先尖電極に高電圧を印加し、コ
ロナ放電を発生させ、空気中の気体分子を電離し、イオ
ン化するものであり、高電圧の印加方法により、直流型
やパルス型等が用いられている。これらの装置では、人
体に気流が当たり寒く感じることを防ぐために、気体を
40℃程度まで加熱する徐熱機構が備えられている場合
がある。
2. Description of the Related Art Heretofore, as a countermeasure against static electricity, proper grounding and the use of a conductive material have been performed. However, if you have no choice but to use an insulator member,
This kind of countermeasure is impossible, and an air ionizer that blows ionized air onto the target object was often used. This air ionizer applies a high voltage to the tip electrode, generates corona discharge, ionizes and ionizes gas molecules in the air, and depending on the method of applying the high voltage, a direct current type or a pulse type is used. It is used. These devices may be equipped with a slow heating mechanism that heats the gas up to about 40 ° C. in order to prevent the airflow from hitting the human body and feeling cold.

【0003】[0003]

【発明が解決しようとする課題】これらのエアーイオナ
イザーでは、その駆動原理から高電圧を用いる必要があ
り、漏電や不用意な電撃を防止するための特別の工夫が
不可欠であった。また、コロナ放電に伴い、オゾンが発
生するため、発生したオゾンを除去する装置が不可欠で
あった。このため、高価な装置となっていた。さらに、
先尖電極に微粒子が付着する。この付着した微粒子が脱
落・飛散し対象物を汚染する問題があった。
In these air ionizers, it is necessary to use a high voltage because of the driving principle thereof, and it is indispensable to take special measures to prevent electric leakage and accidental electric shock. Further, since ozone is generated with corona discharge, a device for removing the generated ozone is indispensable. Therefore, it is an expensive device. further,
Fine particles adhere to the tip electrode. There is a problem that the adhered fine particles fall off and scatter to contaminate the target object.

【0004】また、直流型やパルス型の除電方法・装置
では、発生させる正負のイオンの生成量がアンバランス
であったり、対象物の帯電量や極性との整合性が悪い
と、かえって帯電量を増やしてしまうため、対象物に帯
電している静電気を正しく除去することが非常に困難で
あった。
Further, in a DC type or pulse type static eliminating method / apparatus, if the amount of positive and negative ions to be generated is unbalanced or if the charge amount and polarity of the object are not consistent, the charge amount is rather increased. Therefore, it was very difficult to correctly remove the static electricity charged on the object.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明の静電気除去方法は、電子装置を構成する少
なくとも一部が絶縁性である絶縁物部材の表面の静電気
を除去するに際して、前記絶縁物部材を50℃以上に加
熱された雰囲気に保持することを特徴とする(請求項
1)。また、上記方法で絶縁物部材に風速1m/秒以上
の50℃以上に加熱された気体を吹き付けることを特徴
とする(請求項2)。また、上記静電気除去方法を液晶
素子の除電に適用することを特徴とする(請求項3)。
さらにまた、上記静電気除去方法を一部に電極が形成さ
れた基板の除電に適用することを特徴とする(請求項
4)。
In order to solve the above-mentioned problems, a method of removing static electricity according to the present invention is to remove static electricity on the surface of an insulating member which is at least partially insulating in an electronic device. The insulating member is maintained in an atmosphere heated to 50 ° C. or higher (Claim 1). Further, the insulating member is sprayed with a gas heated to 50 ° C. or higher at a wind speed of 1 m / sec or higher by the above method (claim 2). Further, the above static electricity removing method is applied to charge removal of a liquid crystal element (claim 3).
Still further, the above-mentioned static electricity removing method is applied to charge removal of a substrate having electrodes partially formed (claim 4).

【0006】また、上記課題を解決するために、本発明
の静電気除去装置は、電子装置を構成する少なくとも一
部が絶縁物である絶縁物部材の表面の静電気を除去する
装置であって、気体を50℃以上に加熱する気体加熱機
構と、前記気体を風速1m/秒以上の気流にし前記気体
を前記絶縁物部材に吹き付ける送風機構とを有すること
を特徴とする(請求項5)。また、上記装置で上記気体
を清浄化する除塵機構を有することを特徴とする(請求
項6)。さらにまた、上記絶縁物部材が液晶素子または
液晶素子を構成する少なくとも一部が絶縁性である基板
であり、前記絶縁物部材を保持または搬送する保持機構
を有することを特徴とする(請求項7)。
In order to solve the above-mentioned problems, the static electricity removing device of the present invention is a device for removing static electricity on the surface of an insulator member, at least a part of which constitutes an electronic device, and is a gas. Is heated to 50 ° C. or higher, and a blowing mechanism that blows the gas onto the insulator member by forming the gas into a gas stream having a wind speed of 1 m / sec or more (claim 5). Further, the apparatus is provided with a dust removing mechanism for cleaning the gas (claim 6). Furthermore, the insulating member is a liquid crystal element or a substrate at least a part of which constitutes the liquid crystal element is insulative, and has a holding mechanism for holding or carrying the insulating member (claim 7). ).

【0007】[0007]

【作用】絶縁物部材を50℃以上に加熱された雰囲気に
保持することにより、この絶縁物部材表面の静電気に起
因する表面電位が低下する。この除電源理の詳細は不明
であるが、雰囲気温度が上がることによる、除電対象物
である絶縁物部材および雰囲気気体の抵抗値の低下、雰
囲気気体の誘電率の上昇、気体分子のブラウン運動の活
性化等による作用であろうと考察している。
By maintaining the insulator member in an atmosphere heated to 50 ° C. or higher, the surface potential of the insulator member surface due to static electricity is reduced. Although the details of this power removal mechanism are unknown, the resistance value of the insulating material and the atmosphere gas, which are the objects of charge removal, decreases due to the increase of the atmosphere temperature, the dielectric constant of the atmosphere gas increases, and the Brownian motion of gas molecules It is considered that it may be due to activation or the like.

【0008】このとき、風速1m/秒以上の50℃以上
に加熱された気体を吹き付けると、さらに効果的に除電
される。加熱しない風だけを用いたのでは、除電効果が
得られない。このことは、上記作用により絶縁物部材か
らその極近傍の気体に放電された電荷が、風速1m/秒
以上の気流により拡散され、絶縁物部材表面に常に新鮮
な気体が供給されるため効果的に除電されるためと考え
られる。
At this time, if a gas heated to 50 ° C. or higher with a wind velocity of 1 m / sec or higher is blown, the charge can be removed more effectively. The static elimination effect cannot be obtained by using only the air that is not heated. This is effective because the electric charge discharged from the insulator member to the gas in the immediate vicinity thereof by the above action is diffused by the air flow having a wind velocity of 1 m / sec or more, and fresh gas is constantly supplied to the surface of the insulator member. It is thought that this is because the electricity is removed by

【0009】またその駆動原理より、オゾンの発生が無
くなると同時に、微粒子の発生が皆無となる。上記静電
気除去方法は、ガラス基板や偏光板等の絶縁物部材を多
用しており、その製造過程で静電気が帯電しやすい液晶
素子の除電方法として最適に作用する。また、薄膜トラ
ンジスタを絶縁物基板表面に形成したような、各種電極
が形成された基板の除電方法としても最適に作用する。
Due to the driving principle, the generation of ozone is eliminated and at the same time, the generation of fine particles is eliminated. The above static electricity removing method makes heavy use of insulating members such as a glass substrate and a polarizing plate, and works optimally as a static eliminating method for liquid crystal elements in which static electricity is easily charged during the manufacturing process. It also works optimally as a static elimination method for a substrate on which various electrodes are formed, such as a thin film transistor formed on the surface of an insulating substrate.

【0010】上記静電気除去装置を用いると、加熱され
た気体が絶縁物部材に確実に吹き付けられるため、絶縁
物部材の静電気の帯電を確実に除電することができる。
また、さらに除塵機構を有する上記静電気除去装置を用
いると、清浄な気体が除電対象物である絶縁物部材に吹
き付けられるため、除電対象物である絶縁物部材を汚染
することがなくなる。このため、あらゆる除電対象物に
対して汚染を気にする事なく本装置を用いることができ
る。また、例えば表面を清浄に保つ必要があり、薄膜ト
ランジスタが多数絶縁物基板表面に形成されたアクティ
ブマトリックス液晶素子の薄膜トランジスタ基板や、確
実に基板に密着されることが要求され特に汚染されるこ
とを嫌う偏光板等の除電に、この装置は特に有効とな
る。この際、液晶素子や液晶素子を構成する基板等に代
表される絶縁物部材を、搬送しながら除電処理すること
が可能となる。また絶縁物部材を、上記装置内に格納保
管しながら除電処理することが可能となる。
When the above-mentioned static electricity removing device is used, the heated gas is surely blown to the insulator member, so that the electrostatic charge of the insulator member can be surely eliminated.
Further, when the above-mentioned static electricity removing device having a dust removing mechanism is used, clean gas is blown to the insulator member which is the object of static elimination, so that the insulator member which is the object of static elimination is not contaminated. Therefore, the present apparatus can be used without worrying about the contamination of all static elimination objects. Further, for example, it is necessary to keep the surface clean, and a thin film transistor substrate of an active matrix liquid crystal element in which a large number of thin film transistors are formed on the surface of an insulating substrate, or to be surely adhered to the substrate is required, and particularly to avoid contamination. This device is particularly effective for static elimination of polarizing plates and the like. At this time, it is possible to remove the charge while transporting an insulating member typified by a liquid crystal element or a substrate that constitutes the liquid crystal element. Further, it becomes possible to perform the static elimination processing while storing and storing the insulator member in the device.

【0011】さらに、全くオゾンの発生がなく、微粒子
の発生も皆無となる。
Furthermore, no ozone is generated and no fine particles are generated.

【0012】[0012]

【実施例】以下に実施例を挙げて本発明をより詳細に説
明するが、本発明がこれら実施例に限定されることはな
い。 (実施例1)図1は、本発明の実施例を示す概念図であ
る。10cm角で厚みが1mmであるガラス製の基板3
3(コーニング社製#7059)を、断熱壁18内に保
存した。基板33は本発明の効果がより顕著に確認でき
るように、あらかじめ表面を2kVに帯電しておき、保
持機構15により倒れたり互いに接触しないように保持
した。そして、断熱壁18内は、気体加熱機構11によ
り、温度を50℃に保持した。このとき断熱壁18内部
の湿度は約50%RHであり、空気の流れは自然対流が
有るのみであった。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples. (Embodiment 1) FIG. 1 is a conceptual diagram showing an embodiment of the present invention. A glass substrate 3 having a 10 cm square and a thickness of 1 mm
3 (Corning Corporation # 7059) was stored in the heat insulating wall 18. The surface of the substrate 33 was charged to 2 kV in advance so that the effect of the present invention can be more remarkably confirmed, and the substrate 33 was held by the holding mechanism 15 so as not to fall over or come into contact with each other. Then, the temperature inside the heat insulating wall 18 was maintained at 50 ° C. by the gas heating mechanism 11. At this time, the humidity inside the heat insulating wall 18 was about 50% RH, and the air flow was only natural convection.

【0013】この様な構成で、基板33表面の表面電位
の経時変化を測定した。なお、表面電位の測定は、トレ
ック社製Model344を用いて行った。その結果
を、図10に実線で示した。縦軸は基板33表面の表面
電位を、横軸は保持した時間を示した。図10には、比
較例として、同様に2kVに帯電させた後、実験室内
(23℃・50%RH)に静置したガラス製の基板の表
面電位の経時変化を破線で示した。さらに断熱壁18内
部の温度だけを70℃(50%RH)として保持処理し
たガラス製の基板33の表面電位の経時変化を一点鎖線
で示した。
With such a structure, the change with time of the surface potential of the surface of the substrate 33 was measured. The surface potential was measured using Model 344 manufactured by Trek. The result is shown by the solid line in FIG. The vertical axis represents the surface potential of the surface of the substrate 33, and the horizontal axis represents the holding time. In FIG. 10, as a comparative example, a time-dependent change in the surface potential of the glass substrate, which was similarly charged to 2 kV and then allowed to stand in the laboratory (23 ° C. and 50% RH), is shown by a broken line. Further, the time-dependent change of the surface potential of the glass substrate 33, which has been subjected to the holding treatment with the temperature inside the heat insulating wall 18 set at 70 ° C. (50% RH), is shown by a chain line.

【0014】図10より明らかなように、23℃の雰囲
気内に保持したのではほとんど除電がされていないのに
対して、50℃の雰囲気に保持した場合には、10分間
の保持時間で、2kVであった表面電位が600Vまで
減少した。除電効果は雰囲気温度が高いほど顕著で、7
0℃の雰囲気に保持した場合には、10分間の保持によ
り表面電位は100Vまで減少した。また、雰囲気温度
が高い方が、表面電位の収束値(保持していても表面電
位がほとんど減少しなくなる値)が低くなることが確認
された。また図11に、本装置を用い、除電処理温度を
種々変化させた際の、10分後の表面電位を示した。図
11より、温度と10分後の表面電位とは必ずしも比例
関係にはなく、表面電位として一般的に安全なレベルで
ある600V以下とするためには、50℃以上の雰囲気
に保持することが効果的であることが確かめられた。こ
の表面電位の経時変化は、図9に例示した、表面に薄膜
トランジスタ34や電極32が形成された基板33であ
っても、同様の傾向であった。また、図8に例示した、
表面に電極32が形成された、2枚の絶縁性の基板を組
み合わせた液晶素子31においても同様であった。
As is apparent from FIG. 10, almost no static electricity is removed by holding in the atmosphere of 23 ° C., while holding in the atmosphere of 50 ° C. takes 10 minutes. The surface potential, which was 2 kV, decreased to 600 V. The static elimination effect becomes more remarkable as the ambient temperature rises.
When kept in an atmosphere of 0 ° C., the surface potential decreased to 100 V after being kept for 10 minutes. It was also confirmed that the higher the ambient temperature, the lower the convergence value of the surface potential (the value at which the surface potential hardly decreases even when held). In addition, FIG. 11 shows the surface potential after 10 minutes when the static elimination treatment temperature was variously changed using this apparatus. From FIG. 11, the temperature and the surface potential after 10 minutes are not necessarily in a proportional relationship, and in order to keep the surface potential at 600 V or lower, which is a generally safe level, it is necessary to maintain the atmosphere at 50 ° C. or higher. It was confirmed to be effective. This temporal change in the surface potential had a similar tendency even in the substrate 33 having the thin film transistor 34 and the electrode 32 formed on the surface thereof illustrated in FIG. Also, as illustrated in FIG.
The same applies to the liquid crystal element 31 in which two insulating substrates each having the electrode 32 formed on the surface are combined.

【0015】(実施例2)本実施例が上記実施例1と異
なる点は、ガラス製の基板33に、風速1m/秒の50
℃に加熱された空気を吹き付けたことである。まず除電
処理に用いた静電気除去装置20に付いて図2を用いて
説明する。図2で、前記実施例と同じ部位には同じ符号
を付して説明を省略した。図2において符号12は空気
を圧送するための送風機構、符号13は空気中の浮遊塵
を除去するための除塵機構、符号16は断熱壁18の外
部から空気を取り入れるための外部吸気口、符号21は
断熱壁18内部の空気を取り入れるための内部吸気口、
符号17は基板33に加熱された気流を吹き付けるため
の吹き出し口、さらに符号19は内部の空気と外部の空
気とを適宜選択するための吸気制御弁である。
(Embodiment 2) The difference between this embodiment and Embodiment 1 is that the glass substrate 33 has a wind speed of 1 m / sec.
That is, the air heated to ℃ was blown. First, the static eliminator 20 used for the static elimination process will be described with reference to FIG. In FIG. 2, the same parts as those in the above-described embodiment are designated by the same reference numerals and the description thereof is omitted. In FIG. 2, reference numeral 12 is a blower mechanism for sending air under pressure, reference numeral 13 is a dust removing mechanism for removing suspended dust in the air, reference numeral 16 is an external intake port for taking in air from the outside of the heat insulating wall 18, and reference numeral 21 is an internal intake port for taking in the air inside the heat insulating wall 18,
Reference numeral 17 is an outlet for blowing a heated airflow onto the substrate 33, and reference numeral 19 is an intake control valve for appropriately selecting internal air or external air.

【0016】この様な構成の静電気除去装置20内に、
前記実施例1と同様に、2kVに帯電させたガラス製の
基板33を設置した。このガラス製の基板33に、外部
吸気口16または内部吸気口21から吸い込まれた空気
を、吸気制御弁19により適宜混合し、気体加熱機構1
1により50℃に加熱し、さらに送風機構12により、
風速1m/秒に加速して、除塵機構13により空気中の
浮遊塵を除去して、吹き出し口17より吹き付けた。風
速1m/秒の50℃に加熱された空気を吹き付けて、基
板33の表面電位の経時変化を測定した。この結果を図
12に実線で示した。図12には、図10と同様に比較
例として、2kVに帯電させた後、実験室内(23℃・
50%RH)に静置し、このガラス製の基板33に、風
速1m/秒の室温の空気を吹き付けて、表面電位の経時
変化を測定し、破線で示した。さらに断熱壁18内部の
温度だけを70℃(50%RH)として保持処理したガ
ラス製の基板33の表面電位の経時変化を一点鎖線で示
した。
In the static electricity removing device 20 having such a structure,
As in Example 1, the glass substrate 33 charged to 2 kV was installed. Air sucked from the external intake port 16 or the internal intake port 21 is appropriately mixed with the glass substrate 33 by the intake control valve 19 to form the gas heating mechanism 1.
1 is heated to 50 ° C., and the blower mechanism 12 is used to
The wind velocity was accelerated to 1 m / sec, the suspended dust in the air was removed by the dust removing mechanism 13, and the dust was blown from the outlet 17. Air heated at 50 ° C. with a wind speed of 1 m / sec was blown to measure the change over time in the surface potential of the substrate 33. The result is shown by the solid line in FIG. In FIG. 12, as in the case of FIG. 10, as a comparative example, after being charged to 2 kV, it was stored in the laboratory (23 °
The glass substrate 33 was allowed to stand still at 50% RH), and air at room temperature with a wind velocity of 1 m / sec was blown onto the glass substrate 33 to measure the time-dependent change in surface potential. Further, the time-dependent change of the surface potential of the glass substrate 33, which has been subjected to the holding treatment with the temperature inside the heat insulating wall 18 set at 70 ° C. (50% RH), is shown by a chain line.

【0017】図12より明らかなように、23℃・1m
/秒の気流雰囲気内に保持したのではほとんど除電がさ
れていないのに対して、50℃・1m/秒の気流雰囲気
に保持した場合には、10分間の保持時間で、2kVで
あった表面電位が500Vまで減少した。除電効果は雰
囲気温度が高いほど顕著で、70℃・1m/秒の気流雰
囲気に保持した場合には、10分間の保持により表面電
位は100Vまで減少した。また図12と図10とを比
較すると、10分間後の表面電位および表面電位の収束
値とも同じ温度条件であれば1m/秒の気流があった方
が除電効果が高いことが確認された。また図13に、本
装置を用い、除電処理温度を50℃に固定し、吹き付け
る空気の流速を種々変化させた際の、10分後の表面電
位を示した。図13より空気の流速を1m/秒以上とす
ることが表面電位の除電に効果的であることが確かめら
れた。
As is apparent from FIG. 12, 23 ° C. and 1 m
The static electricity was hardly removed by keeping it in the airflow atmosphere of 1 / sec, whereas it was 2 kV in the holding time of 10 minutes when kept in the airflow atmosphere of 50 ° C and 1 m / sec. The potential decreased to 500V. The static elimination effect is more remarkable as the ambient temperature is higher, and the surface potential was reduced to 100 V by holding for 10 minutes when the atmosphere was maintained at 70 ° C. for 1 m / sec. Further, when comparing FIG. 12 and FIG. 10, it was confirmed that if the surface potential after 10 minutes and the convergent value of the surface potential were the same temperature condition, there was an air flow of 1 m / sec. Further, FIG. 13 shows the surface potential after 10 minutes when the static elimination treatment temperature was fixed to 50 ° C. and the flow velocity of the air to be blown was variously changed by using this apparatus. From FIG. 13, it was confirmed that setting the flow velocity of air to 1 m / sec or more is effective in removing the surface potential.

【0018】この表面電位の経時変化は前記実施例1と
同様に、図9に例示した、表面に薄膜トランジスタ34
や電極32が形成された基板33であっても、同様の傾
向であった。また、図8に例示した、表面に電極32が
形成された、2枚の絶縁性の基板を組み合わせた液晶素
子31においても同様であった。本実施例では、HEP
Aフィルターよりなる除塵機構13を用いたため、空気
中の浮遊塵を効果的に除去することが出来た。このた
め、図9に例示したような、表面を清浄に保つ必要があ
り、薄膜トランジスタ34が多数絶縁物の基板表面に形
成されたアクティブマトリックス液晶素子の基板33
に、基板33の汚染を心配すること無く本装置を用いる
ことができた。なお、除電能力はこの除塵機構13の有
無により影響を受けるものではなかった。
The change of the surface potential with time is similar to that of the first embodiment, and the thin film transistor 34 on the surface illustrated in FIG. 9 is used.
The same tendency was observed with the substrate 33 having the electrodes 32 and 32 formed thereon. Further, the same applies to the liquid crystal element 31 illustrated in FIG. 8 in which two insulating substrates each having the electrode 32 formed on the surface are combined. In this embodiment, HEP
Since the dust removing mechanism 13 including the A filter was used, the suspended dust in the air could be effectively removed. Therefore, as shown in FIG. 9, it is necessary to keep the surface clean, and the substrate 33 of the active matrix liquid crystal element in which the thin film transistors 34 are formed on the substrate surface of a large number of insulators.
Moreover, the present apparatus could be used without worrying about contamination of the substrate 33. Note that the static elimination ability was not affected by the presence or absence of the dust removing mechanism 13.

【0019】(実施例3)本実施例が上記実施例2と異
なる点は、ガラス製の基板33に吹き付ける空気を電離
した空気としたことである。まず除電処理に用いた静電
気除去装置20に付いて図3を用いて説明する。図3
で、前記実施例と同じ部位には同じ符号を付して説明を
省略した。図3において符号14は加熱圧送された空気
を電離するための気体電離機構(エアーイオナイザー除
電装置)である。
(Embodiment 3) This embodiment is different from Embodiment 2 in that the air blown onto the glass substrate 33 is ionized air. First, the static eliminator 20 used in the static elimination process will be described with reference to FIG. Figure 3
The same parts as those in the above embodiment are designated by the same reference numerals and the description thereof is omitted. In FIG. 3, reference numeral 14 is a gas ionization mechanism (air ionizer static eliminator) for ionizing the air heated and fed.

【0020】この様な構成の静電気除去装置20内に、
前記実施例2と同様に、2kVに帯電させたガラス製の
基板33を設置し、このガラス製の基板33に、風速1
m/秒の50℃に加熱され、さらに従来技術で示したエ
アーイオナイザー除電装置を用いた気体電離機構14に
より電離された空気を吹き出し口17より吹き付けて、
表面電位の経時変化を測定した。この結果を図14に示
した。10分間の保持時間で、2kVであった表面電位
が200Vまで減少した。
In the static electricity removing device 20 having such a structure,
As in the case of Example 2, a glass substrate 33 charged to 2 kV was set, and a wind speed of 1 was applied to the glass substrate 33.
Air heated to 50 ° C. of m / sec and further ionized by the gas ionization mechanism 14 using the air ionizer static eliminator shown in the prior art is blown from the outlet 17.
The change in surface potential with time was measured. The result is shown in FIG. With a holding time of 10 minutes, the surface potential, which was 2 kV, decreased to 200 V.

【0021】この表面電位の経時変化は前記実施例1と
同様に、図9に例示した、表面に薄膜トランジスタ34
や電極32が形成された基板33であっても、同様の傾
向であった。また、図8に例示した、表面に電極32が
形成された、2枚の絶縁性の基板を組み合わせた液晶素
子31においても同様であった。ただし、本実施例で除
塵機構13を用い無い場合には、基板33の表面が汚染
されないように充分注意する必要がある。
The change of the surface potential with time is similar to that in the first embodiment, and the thin film transistor 34 on the surface illustrated in FIG. 9 is used.
The same tendency was observed with the substrate 33 having the electrodes 32 and 32 formed thereon. Further, the same applies to the liquid crystal element 31 illustrated in FIG. 8 in which two insulating substrates each having the electrode 32 formed on the surface are combined. However, when the dust removing mechanism 13 is not used in the present embodiment, it is necessary to take sufficient care so that the surface of the substrate 33 is not contaminated.

【0022】(実施例4)本実施例が前記実施例2と異
なる点は、断熱壁18を用いなかった点である。図4に
概念図を示した静電気除去装置20で、外部吸気口16
から取り込んだ空気は、気体加熱機構11により50℃
に加熱され、さらに送風機構12により、風速1m/秒
に加速され、吹き出し口17よりガラス製の基板33に
吹き付けられた。基板33は、前記実施例2と同様にあ
らかじめ2kVに帯電されていた。
(Embodiment 4) This embodiment is different from Embodiment 2 in that the heat insulating wall 18 is not used. In the static eliminator 20 whose conceptual diagram is shown in FIG.
The air taken in from the air is heated to 50 ° C by the gas heating mechanism 11.
It was heated to 1 m / sec by the blower mechanism 12, and was blown onto the glass substrate 33 from the blowout port 17. The substrate 33 was previously charged to 2 kV as in the second embodiment.

【0023】本静電気除去装置20を用いて、風速1m
/秒の50℃に加熱された空気を吹き付けて、基板33
の表面電位の経時変化を測定した。この結果を図15に
実線で示した。図15には、図10と同様に比較例とし
て、2kVに帯電させた後、実験室内(23℃・50%
RH)に静置し、このガラス製の基板33に、風速1m
/秒の室温の空気を吹き付けて、表面電位の経時変化を
測定し、破線で示した。
Using this static electricity removing device 20, a wind speed of 1 m
The substrate 33 is sprayed with air heated to 50 ° C./sec.
The time-dependent change of the surface potential of was measured. The result is shown by the solid line in FIG. In FIG. 15, as in the case of FIG. 10, as a comparative example, after charging to 2 kV, it was stored in the laboratory (23 ° C./50%).
RH), the wind speed of 1 m on the glass substrate 33.
Air temperature was blown at room temperature for 1 second per second, and the change in surface potential with time was measured, which is shown by a broken line.

【0024】図15より、明らかなように、50℃・1
m/秒の気流の空気を吹き付けることにより、10分間
の処理時間で、2kVであった表面電位が500Vまで
減少した。これに対し、23℃・1m/秒の気流の空気
を吹き付けたのではほとんど除電がされなかった。本実
施例でも50℃・1m/秒の気流の空気を吹き付けるこ
とにより、短時間に表面電位の収束値に達することが確
認された。また図16に、本装置を用い、除電処理温度
を種々変化させた際の、10分後の表面電位を示した。
この結果、表面電位を600V以下とするためには、5
0℃以上の空気を吹き付けることが効果的であることが
確かめられた。図16より、本実施例でも吹き付ける気
体の温度と10分後の表面電位とは必ずしも比例関係に
はなく、50℃以上・1m/秒の気流の空気を吹き付け
ることが効果的であることが確認された。この表面電位
の経時変化は前記実施例2と同様に、図9に例示した、
表面に薄膜トランジスタ34や電極32が形成された基
板33であっても、同様の傾向であった。また、図8に
例示した、表面に電極32が形成された、2枚の絶縁性
の基板を組み合わせた液晶素子31においても同様であ
った。また図5に示したように、気体加熱機構11と送
風機構12の配置を逆にしたとしても、得られる除電効
果に差異は認められなかった。
As is apparent from FIG. 15, 50 ° C. · 1
By blowing air with an air flow of m / sec, the surface potential, which was 2 kV, was reduced to 500 V in the treatment time of 10 minutes. On the other hand, static electricity was hardly removed by blowing air at 23 ° C. and 1 m / sec. Also in this example, it was confirmed that the converged value of the surface potential was reached in a short time by blowing air of 50 ° C. and 1 m / sec of air flow. In addition, FIG. 16 shows the surface potential after 10 minutes when the static elimination treatment temperature was variously changed using this apparatus.
As a result, in order to reduce the surface potential to 600 V or less, 5
It was confirmed that blowing air at 0 ° C. or higher was effective. From FIG. 16, it is confirmed that the temperature of the gas to be sprayed and the surface potential after 10 minutes are not necessarily in a proportional relationship also in this embodiment, and that it is effective to spray the air of the air current of 50 ° C. or more and 1 m / sec. Was done. The change with time of the surface potential is illustrated in FIG. 9 as in the second embodiment.
The same tendency was observed with the substrate 33 having the thin film transistor 34 and the electrode 32 formed on the surface. Further, the same applies to the liquid crystal element 31 illustrated in FIG. 8 in which two insulating substrates each having the electrode 32 formed on the surface are combined. Further, as shown in FIG. 5, even if the arrangements of the gas heating mechanism 11 and the air blowing mechanism 12 were reversed, no difference was observed in the obtained static elimination effect.

【0025】(実施例5)本実施例が前記実施例3と異
なる点は、断熱壁18を用いなかった点である。図6に
概念図を示した静電気除去装置20で、ガラス製の基板
33に、外部吸気口16から取り込んだ空気は、気体加
熱機構11および送風機構12により、風速1m/秒の
50℃に加熱され、さらにエアーイオナイザー除電装置
を用いた気体電離機構14により電離された空気を吹き
出し口17より吹き付けて、表面電位の経時変化を測定
した。この結果を図17に示した。10分間の保持時間
で、2kVであった表面電位が効果的に除電され200
Vまで減少した。この表面電位の経時変化は前記実施例
1と同様に、図9に例示した、表面に薄膜トランジスタ
34や電極32が形成された基板33であっても、同様
の傾向であった。また、図8に例示した、表面に電極3
2が形成された、2枚の絶縁性の基板を組み合わせた液
晶素子31においても同様であった。ただし、本実施例
では、基板33の表面が汚染されないように充分注意す
る必要がある。
(Embodiment 5) This embodiment is different from Embodiment 3 in that the heat insulating wall 18 is not used. In the static eliminator 20 whose conceptual diagram is shown in FIG. 6, the air taken in from the external intake port 16 to the glass substrate 33 is heated to 50 ° C. at a wind speed of 1 m / sec by the gas heating mechanism 11 and the blowing mechanism 12. Further, the air ionized by the gas ionization mechanism 14 using the air ionizer static eliminator was blown from the outlet 17 to measure the change in surface potential with time. The result is shown in FIG. With a holding time of 10 minutes, the surface potential of 2 kV was effectively eliminated and the surface potential was reduced to 200
It decreased to V. Similar to the first embodiment, this temporal change in the surface potential has the same tendency even in the substrate 33 having the thin film transistor 34 and the electrode 32 formed on the surface thereof illustrated in FIG. In addition, the electrode 3 on the surface illustrated in FIG.
The same applies to the liquid crystal element 31 in which two insulating substrates each having the number 2 formed therein are combined. However, in this embodiment, it is necessary to pay sufficient attention so that the surface of the substrate 33 is not contaminated.

【0026】(実施例6)本実施例が上記実施例5と異
なる点は、図7に概念図を示した、保持機構15を有す
る静電気除去装置を用いて、ガラス製の基板33を移動
させながら除電したことである。本実施例においては、
図17に示した実施例5と同様の効果が得られる上、保
持機構をエンドレスベルトまたはターンテーブルにする
ことにより、流れ作業でガラス製の基板33の除電が行
え、非常に能率的であった。
(Sixth Embodiment) This embodiment differs from the fifth embodiment in that the glass substrate 33 is moved by using the static eliminator having the holding mechanism 15 shown in the conceptual diagram of FIG. That is, the charge was removed. In this embodiment,
The effect similar to that of the fifth embodiment shown in FIG. 17 is obtained, and the holding mechanism is an endless belt or a turntable, so that static electricity can be removed from the glass substrate 33 by flow work, which is very efficient. .

【0027】[0027]

【発明の効果】以上説明してきたように、本発明による
静電気除去方法では、高電圧を用いる必要がなく、漏電
や不用意な電撃を防止するための特別の工夫が不要とな
る。また、コロナ放電に伴う、オゾンの発生が皆無とな
るためオゾンを除去する装置が不要となる。さらに放電
現象に起因して放電電極に微粒子が付着することが皆無
になり、微粒子が脱落・飛散し対象物を汚染する問題が
無くなる。さらには、対象物の帯電量や極性との整合性
を考慮する必要がなく、常に安定して除電することが可
能となる。
As described above, in the method of removing static electricity according to the present invention, it is not necessary to use a high voltage, and a special device for preventing electric leakage and careless electric shock is unnecessary. Further, since ozone is not generated at all due to corona discharge, a device for removing ozone is unnecessary. Further, since the fine particles do not adhere to the discharge electrode due to the discharge phenomenon, fine particles are not dropped or scattered and the problem of contaminating the object is eliminated. Furthermore, it is not necessary to consider the matching with the charge amount and polarity of the target object, and it is possible to always perform stable charge removal.

【0028】また、本発明による静電気除去装置では、
安価に上記静電気除去方法を確実に実施することが可能
である。
Further, in the static eliminator according to the present invention,
It is possible to reliably carry out the above static electricity removal method at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す概念図である。FIG. 1 is a conceptual diagram showing an embodiment of the present invention.

【図2】本発明の実施例を示す概念図である。FIG. 2 is a conceptual diagram showing an embodiment of the present invention.

【図3】本発明の実施例を示す概念図である。FIG. 3 is a conceptual diagram showing an embodiment of the present invention.

【図4】本発明の実施例を示す概念図である。FIG. 4 is a conceptual diagram showing an embodiment of the present invention.

【図5】本発明の実施例を示す概念図である。FIG. 5 is a conceptual diagram showing an embodiment of the present invention.

【図6】本発明の実施例を示す概念図である。FIG. 6 is a conceptual diagram showing an embodiment of the present invention.

【図7】本発明の実施例を示す概念図である。FIG. 7 is a conceptual diagram showing an example of the present invention.

【図8】液晶素子の斜視図である。FIG. 8 is a perspective view of a liquid crystal element.

【図9】表面に薄膜トランジスタが形成された基板の概
念図である。
FIG. 9 is a conceptual diagram of a substrate having a thin film transistor formed on its surface.

【図10】基板表面の表面電位の経時変化を示す図であ
る。
FIG. 10 is a diagram showing a time-dependent change in the surface potential of the substrate surface.

【図11】基板表面の表面電位と除電処理温度との関係
を示す図である。
FIG. 11 is a diagram showing the relationship between the surface potential of the substrate surface and the charge removal processing temperature.

【図12】基板表面の表面電位の経時変化を示す図であ
る。
FIG. 12 is a diagram showing changes in the surface potential of the substrate surface over time.

【図13】基板表面の表面電位と空気圧送速度との関係
を示す図である。
FIG. 13 is a diagram showing the relationship between the surface potential of the substrate surface and the pneumatic feeding speed.

【図14】基板表面の表面電位の経時変化を示す図であ
る。
FIG. 14 is a diagram showing a time-dependent change in the surface potential of the substrate surface.

【図15】基板表面の表面電位の経時変化を示す図であ
る。
FIG. 15 is a diagram showing changes with time in surface potential of the substrate surface.

【図16】基板表面の表面電位と除電処理温度との関係
を示す図である。
FIG. 16 is a diagram showing the relationship between the surface potential of the substrate surface and the temperature of static elimination treatment.

【図17】基板表面の表面電位の経時変化を示す図であ
る。
FIG. 17 is a diagram showing a time-dependent change in the surface potential of the substrate surface.

【符号の説明】[Explanation of symbols]

11 気体加熱機構 12 送風機構 13 除塵機構 14 気体電離機構 15 保持機構 16 外部吸気口 17 吹き出し口 18 断熱壁 19 吸気制御弁 20 静電気除去装置 21 内部吸気口 31 液晶素子 32 電極 33 基板 34 薄膜トランジスタ 11 Gas Heating Mechanism 12 Blower Mechanism 13 Dust Removal Mechanism 14 Gas Ionization Mechanism 15 Holding Mechanism 16 External Intake Port 17 Outlet Port 18 Insulation Wall 19 Intake Control Valve 20 Static Eliminator 21 Internal Intake Port 31 Liquid Crystal Element 32 Electrode 33 Substrate 34 Thin Film Transistor

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 電子装置を構成する少なくとも一部が絶
縁性である絶縁物部材の表面の静電気を除去する方法で
あって、前記絶縁物部材を50℃以上に加熱された雰囲
気に保持することを特徴とする静電気除去方法。
1. A method for removing static electricity from a surface of an insulating member, at least a part of which constitutes an electronic device, which is insulative, wherein the insulating member is held in an atmosphere heated to 50 ° C. or higher. A method of removing static electricity.
【請求項2】 電子装置を構成する少なくとも一部が絶
縁性である絶縁物部材の表面の静電気を除去する方法で
あって、前記絶縁物部材に風速1m/秒以上の50℃以
上に加熱された気体を吹き付けることを特徴とする静電
気除去方法。
2. A method for removing static electricity from a surface of an insulating member at least a part of which constitutes an electronic device, wherein the insulating member is heated to 50 ° C. or more at a wind speed of 1 m / sec or more. A method of removing static electricity, characterized by spraying a gas.
【請求項3】 前記電子装置は、液晶素子であることを
特徴とする請求項1または請求項2に記載の静電気除去
方法。
3. The static electricity removing method according to claim 1, wherein the electronic device is a liquid crystal element.
【請求項4】 前記絶縁物部材は、一部に電極が形成さ
れた基板であることを特徴とする請求項1ないし請求項
3のいずれかに記載の静電気除去方法。
4. The static electricity removing method according to claim 1, wherein the insulator member is a substrate having an electrode formed on a part thereof.
【請求項5】 電子装置を構成する少なくとも一部が絶
縁物である絶縁物部材の表面の静電気を除去する装置で
あって、気体を50℃以上に加熱する気体加熱機構と、
前記気体を風速1m/秒以上の気流にし前記気体を前記
絶縁物部材に吹き付ける送風機構とを有することを特徴
とする静電気除去装置。
5. A device for removing static electricity on a surface of an insulating member, at least a part of which constitutes an electronic device is an insulating material, and a gas heating mechanism for heating a gas to 50 ° C. or higher,
A static electricity removing device, comprising: a blowing mechanism that blows the gas into the air flow at a wind velocity of 1 m / sec or more and blows the gas onto the insulator member.
【請求項6】 前記気体を清浄化する除塵機構を有する
ことを特徴とする請求項5に記載の静電気除去装置。
6. The static electricity eliminator according to claim 5, further comprising a dust removing mechanism for cleaning the gas.
【請求項7】 前記絶縁物部材が液晶素子または液晶素
子を構成する少なくとも一部が絶縁性である基板であ
り、前記絶縁物部材を保持または搬送する保持機構を有
することを特徴とする請求項5または請求項6に記載の
静電気除去装置。
7. The insulating member is a liquid crystal element or a substrate at least a part of which constitutes the liquid crystal element is insulative, and has a holding mechanism for holding or carrying the insulating member. 5. The static eliminator according to claim 5 or claim 6.
JP35280793A 1993-12-28 1993-12-28 Static eliminating method and device Withdrawn JPH07201486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35280793A JPH07201486A (en) 1993-12-28 1993-12-28 Static eliminating method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35280793A JPH07201486A (en) 1993-12-28 1993-12-28 Static eliminating method and device

Publications (1)

Publication Number Publication Date
JPH07201486A true JPH07201486A (en) 1995-08-04

Family

ID=18426574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35280793A Withdrawn JPH07201486A (en) 1993-12-28 1993-12-28 Static eliminating method and device

Country Status (1)

Country Link
JP (1) JPH07201486A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016139677A (en) * 2015-01-27 2016-08-04 パナソニックIpマネジメント株式会社 Component mounting device
CN111933522A (en) * 2020-08-17 2020-11-13 业成科技(成都)有限公司 Jig and annealing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016139677A (en) * 2015-01-27 2016-08-04 パナソニックIpマネジメント株式会社 Component mounting device
CN111933522A (en) * 2020-08-17 2020-11-13 业成科技(成都)有限公司 Jig and annealing device
CN111933522B (en) * 2020-08-17 2023-07-18 业成科技(成都)有限公司 Jig and annealing device

Similar Documents

Publication Publication Date Title
JP2930702B2 (en) Air ionization system
JP2977098B2 (en) Charged material neutralization device
WO2007102191A1 (en) Neutralization apparatus having minute electrode ion generation element
JPH06325894A (en) Ionizer for clean room
JP2000311797A (en) Static eliminator and its method
JPH07201486A (en) Static eliminating method and device
JP3121520B2 (en) Local clean space
JP4161533B2 (en) Plasma processing method and plasma processing apparatus
JP3508183B2 (en) Substrate transfer device
JP2541857B2 (en) Ion generator and static elimination equipment for charged articles in clean space using the same
JP3184676B2 (en) Substrate transfer device
JP4986191B2 (en) Static elimination device and static elimination method
JPH04370697A (en) Charged object neutralizing device
TW200527483A (en) Method for manufacturing an antistatic glass substrate and antistatic glass substrate manufactured by the same method
JP3497642B2 (en) Local clean space
KR100421171B1 (en) Method for removing particulate contaminant on the surface of substrate and Apparatus for removing thereof
JPH06231897A (en) Static electricity erasing method and device therefor
JPH06267899A (en) Etching device
JPH11329783A (en) Charged charge neutralization method charged charge neutralization device
JP3076146B2 (en) Unloader device
JP3660818B2 (en) Substrate neutralization method and stage with neutralization function
JP4387642B2 (en) Residual charge removal method and residual charge removal apparatus
JP2004163738A (en) Film peeling apparatus and film peeling method
JPH04306596A (en) Ac type ion generating device and deelectrifying facility for electrostatically charged object in clean space
KR20010038334A (en) Dust cleaning process and dust cleaning apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306