JPH0719911B2 - Solar cell manufacturing equipment - Google Patents

Solar cell manufacturing equipment

Info

Publication number
JPH0719911B2
JPH0719911B2 JP63176939A JP17693988A JPH0719911B2 JP H0719911 B2 JPH0719911 B2 JP H0719911B2 JP 63176939 A JP63176939 A JP 63176939A JP 17693988 A JP17693988 A JP 17693988A JP H0719911 B2 JPH0719911 B2 JP H0719911B2
Authority
JP
Japan
Prior art keywords
reaction chamber
substrate
layer
amorphous semiconductor
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63176939A
Other languages
Japanese (ja)
Other versions
JPH0227775A (en
Inventor
健司 中谷
多嘉之 石崎
宏 岡庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP63176939A priority Critical patent/JPH0719911B2/en
Publication of JPH0227775A publication Critical patent/JPH0227775A/en
Publication of JPH0719911B2 publication Critical patent/JPH0719911B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 〈技術分野〉 本発明は、化学的気相分解により非晶質半導体層を形成
する所定数の反応室のプラズマ雰囲気中を通って基板を
搬送し、該基板上に順次所定の導電型の非晶質半導体層
を成膜して、pin等所定構造の光起電力層を形成するよ
うにした太陽電池の製造装置に関する。
TECHNICAL FIELD The present invention conveys a substrate through the plasma atmosphere of a predetermined number of reaction chambers for forming an amorphous semiconductor layer by chemical vapor decomposition and deposits the substrate on the substrate. The present invention relates to a solar cell manufacturing apparatus in which an amorphous semiconductor layer of a predetermined conductivity type is sequentially formed to form a photovoltaic layer having a predetermined structure such as a pin.

〈従来技術〉 化学的気相分解(CVD)によるプラズマ雰囲気中で基板
上に薄膜半導体層等を成膜して半導体装置等を製造する
プラズマ気相成長装置は、例えばシラン(SiH4)ガスを
放電分解して非晶質シリコン太陽電池を製造する方法と
して広く実用化された公知の技術である。
<Prior Art> A plasma vapor phase growth apparatus for manufacturing a semiconductor device or the like by forming a thin film semiconductor layer or the like on a substrate in a plasma atmosphere by chemical vapor decomposition (CVD) is, for example, silane (SiH 4 ) gas. This is a well-known technique that has been widely put into practical use as a method of manufacturing an amorphous silicon solar cell by discharge decomposition.

かかる製造方法において、効率よく非晶質シリコン薄膜
半導体層を成膜するものとして、特開昭58−216475号公
報,特開昭59−34668号公報等で公知のプラズマCVD装置
を用いてロール・ツ・ロール方式により搬送する基板上
に連続的に非晶質シリコン薄膜の成膜を行うことが知ら
れている。
In such a manufacturing method, as a method for efficiently forming an amorphous silicon thin film semiconductor layer, rolls are formed by using a plasma CVD apparatus known in JP-A-58-216475 and JP-A-59-34668. It is known that an amorphous silicon thin film is continuously formed on a substrate to be conveyed by a two-roll method.

この方式で非晶質シリコン太陽電池を作成する場合は少
なくともp,i,nの非晶質シリコンあるいは微結晶化非晶
質シリコンをそれぞれ独立の反応室で成膜する為複数の
専用反応室を連結して反応室ごとに反応ガスを変えて成
膜し、順次基板を移送させる方法が行われている。これ
は単一の反応室内ではプラズマ雰囲気中のガス組成は空
間的にほぼ均一であり、反応室内に組成の異なったガス
雰囲気を適当に分布させることができないためである。
When an amorphous silicon solar cell is produced by this method, a plurality of dedicated reaction chambers are formed in order to form at least p, i, n amorphous silicon or microcrystallized amorphous silicon in independent reaction chambers. A method of connecting the substrates to form a film by changing the reaction gas for each reaction chamber and sequentially transferring the substrate is performed. This is because the gas composition in the plasma atmosphere is spatially substantially uniform in a single reaction chamber, and gas atmospheres having different compositions cannot be appropriately distributed in the reaction chamber.

ところで、かかる複数の反応室間で長尺の可撓性基板を
連続搬送するロール・ツ・ロール方式においては、各反
応室は完全に分離・独立している訳ではなく、基板の通
路で連結されている。このため、隣接した反応室間で該
基板通路を経由して各反応室の反応ガスの相互混合をさ
けることができない。この相互混合が作成しよとする非
晶質シリコン太陽電池の特性を劣化させる場合には反応
室間の基板通路に一方向性のガスの流れを形成したり、
特開昭58−216475号公報,特開昭59−34668号公報等に
開示の如く、反応室間に専用の緩衝室を設けて抽気又は
差動排気して必要な程度迄ガス分離を行っていた。しか
し、かかる従来方法ではひとたびこれらガス分離機構を
越えて侵入した隣接反応室の反応ガスは反応室全域に拡
散して反応室内で均一となり、非晶質シリコン太陽電池
の特性向上に有効な隣接層との界面の膜厚方向の組成分
布や不純物分布のプロファイルの制御性、例えばゆるや
かな傾斜接合にするか、シャープな階段接合にするかと
云った制御性にとぼしかった。
By the way, in the roll-to-roll system in which a long flexible substrate is continuously transported between a plurality of reaction chambers, each reaction chamber is not completely separated and independent, but is connected by a substrate passage. Has been done. For this reason, it is not possible to avoid mutual mixing of the reaction gases in the reaction chambers between the adjacent reaction chambers via the substrate passage. When this mutual mixing deteriorates the characteristics of the amorphous silicon solar cell to be created, a unidirectional gas flow is formed in the substrate passage between the reaction chambers,
As disclosed in JP-A-58-216475 and JP-A-59-34668, a dedicated buffer chamber is provided between the reaction chambers to bleed or differentially evacuate the gas to the required extent. It was However, in such a conventional method, once the reaction gas in the adjacent reaction chamber which has penetrated beyond these gas separation mechanisms diffuses into the entire reaction chamber and becomes uniform in the reaction chamber, the adjacent layer effective for improving the characteristics of the amorphous silicon solar cell is obtained. The controllability of the profile of the composition distribution in the film thickness direction and the profile of the impurity distribution at the interface with and, for example, the controllability such as a gentle graded junction or a sharp stepwise junction was poor.

さらに、非晶質シリコン太陽電池の特性向上において、
少なくとも太陽光入射側p層あるいはn層は100Å前後
と極めて薄い微結晶化シリコン層を均一に堆積する必要
があることが知られてきた。ところで、これらの微結晶
化シリコン薄膜を前述のロール・ツ・ロール方式で堆積
する場合、その薄膜の膜質及び膜厚調整を行う為に、一
般にはマスクを設け、基板面に達するプラズマ量をその
開口部幅によって調整し、堆積膜質及び膜厚を制御して
いる。又、所定のパターンに形成するためにもマスクが
用いられている。
Furthermore, in improving the characteristics of the amorphous silicon solar cell,
It has been known that it is necessary to uniformly deposit an extremely thin microcrystalline silicon layer having a thickness of about 100 Å at least on the p-layer or the n-layer on the sunlight incident side. By the way, when these microcrystallized silicon thin films are deposited by the roll-to-roll method described above, a mask is generally provided to adjust the film quality and film thickness of the thin film, and the amount of plasma reaching the substrate surface is adjusted. The quality and thickness of the deposited film are controlled by adjusting the width of the opening. A mask is also used to form a predetermined pattern.

しかしながら、このように基板と放電電極との間にマス
クが設置されたプラズマCVD装置を用い、微結晶化非晶
質シリコン膜を成膜したところ、マスクの開口エッヂ部
に近い部分では微結晶化しているが、中央部に近づくに
従って徐々に導電率が低下し、ついにはアモルファス膜
のままで微結晶化がおこらないことが確認された。
However, when a microcrystallized amorphous silicon film was formed using a plasma CVD apparatus in which a mask was placed between the substrate and the discharge electrode in this manner, microcrystallization occurred in the portion near the opening edge portion of the mask. However, it was confirmed that the electric conductivity gradually decreased as it approached the central part, and finally the amorphous film remained as it was and did not crystallize.

すなわち、マスク設置によりマスク開口部の中央部具体
的には基板中央部とマスク開口部のエッヂに近い部分す
なわち基板両端部では得られる膜質が大きく変化する問
題が生じることを見出した。
That is, it has been found that the quality of the obtained film changes greatly at the center of the mask opening, specifically, at the center of the substrate and at a portion close to the edge of the mask opening, that is, at both ends of the substrate due to the installation of the mask.

以上に述べた様にロール・ツ・ロール法を用いて高性能
な非晶質シリコン太陽電池を能率よく作成する為には上
述の問題点を解決しなければならない。
As described above, in order to efficiently produce a high-performance amorphous silicon solar cell by using the roll-to-roll method, the above problems must be solved.

〈発明の目的〉 本発明はかかる現状に鑑みなされたもので、i層形成に
おいて隣接半導体層との界面急崚性を制御し、且つ層内
でも組成や不純物分布に所望のデプスプロファイルをも
たせることを可能とすると共に、微結晶化半導体層の形
成において、膜質膜厚の分布なく均一な膜形成を可能と
する量産に適した太陽電池の製造装置を提供することを
目的とする。
<Objects of the Invention> The present invention has been made in view of the above circumstances, and it is possible to control the interface sharpness with an adjacent semiconductor layer in forming an i layer and to have a desired depth profile in composition and impurity distribution even in the layer. In addition to the above, it is an object of the present invention to provide a solar cell manufacturing apparatus suitable for mass production, which enables uniform film formation without distribution of film thickness in forming a microcrystallized semiconductor layer.

〈発明の構成〉 上述の目的は以下の本発明によって達成される。すなわ
ち、本発明は、基板がその放電電極間を通って搬送でき
るように連結された化学的気相分解法により所定の非晶
質半導体膜を形成する所定数の反応室を備え、該基板を
各反応室を通して搬送し、該基板上に少なくとも一層の
微結晶化非晶質半導体層とi型非晶質半導体層とを有す
る光起電力層を形成するようになした太陽電池の製造装
置において、反応ガスを遮断する仕切板を基板搬送方向
に所定間隔で放電電極面に垂直方向に配設して、少なく
ともプラズマ雰囲気を基板通路等の限られた隙間を除い
て基板搬送方向にガス拡散のない複数の区域に区画し
た、前記i型非晶質半導体層を形成するi層反応室と、
基板と放電電極との間にマスクを配置すると共にその開
口部に開口部の電界分布を調節するための電界調整部材
を設けた前記微結晶化非晶質半導体層を形成する微結晶
化反応室とを具備したことを特徴とする太陽電池の製造
装置である。
<Structure of Invention> The above-mentioned object is achieved by the present invention described below. That is, the present invention is provided with a predetermined number of reaction chambers for forming a predetermined amorphous semiconductor film by a chemical vapor phase decomposition method connected so that the substrate can be conveyed through between the discharge electrodes. In a solar cell manufacturing apparatus, which is transported through each reaction chamber, and on which a photovoltaic layer having at least one layer of a microcrystalline amorphous semiconductor layer and an i-type amorphous semiconductor layer is formed on the substrate. , Partition plates for blocking the reaction gas are arranged at a predetermined interval in the substrate transport direction in a direction vertical to the discharge electrode surface, and at least the plasma atmosphere is provided for gas diffusion in the substrate transport direction except for a limited gap such as a substrate passage. An i-layer reaction chamber for forming the i-type amorphous semiconductor layer, which is partitioned into a plurality of areas,
A microcrystallization reaction chamber for forming the microcrystallized amorphous semiconductor layer in which a mask is arranged between a substrate and a discharge electrode and an electric field adjusting member for adjusting an electric field distribution in the opening is provided in the opening. And a solar cell manufacturing apparatus.

上述の本発明において、基板を合成樹脂フイルム等の長
尺の可撓性帯状基板とし、前記連結された反応室の前後
に巻出室と巻取室とを連結し、該基板をロール・ツ・ロ
ールで搬送しつつ各非晶質半導体薄膜を基板上に形成す
るようにした構成により、特に量産に適した生産性の良
い太陽電池の製造装置が得られる。
In the above-mentioned present invention, the substrate is a long flexible strip-shaped substrate such as a synthetic resin film, and the unwinding chamber and the winding chamber are connected before and after the connected reaction chamber, and the substrate is rolled. With the configuration in which each amorphous semiconductor thin film is formed on the substrate while being transported by rolls, a highly productive solar cell manufacturing apparatus suitable for mass production can be obtained.

以下本発明の詳細を説明する。The details of the present invention will be described below.

すなわち、放電電極間に垂直にガスを遮断する仕切板を
設けてプラズマ雰囲気を区画してもプラズマ放電は影響
されず安定製膜ができることを見出すと共に、ガスを遮
断できる仕切板により区画されたプラズマ雰囲気の各区
域間の反応ガスの流路を基板表面近傍等に限定すること
により、ガス導入口と排気口の基板搬送方向の位置によ
り基板搬送方向のガス組成分布を制御できることを見出
しなされたものである。
That is, it was found that even if a partition plate for vertically blocking gas is provided between discharge electrodes to partition the plasma atmosphere, stable discharge can be performed without affecting plasma discharge, and a plasma partitioned by a partition plate capable of blocking gas is formed. It was found that the gas composition distribution in the substrate transfer direction can be controlled by limiting the flow path of the reaction gas between each area of the atmosphere to the vicinity of the substrate surface etc. by the position of the gas introduction port and the exhaust port in the substrate transfer direction. Is.

なお、この理由は前記仕切板により区画されたプラズマ
雰囲気の各区域間の基板搬送方向のガスの相互拡散が限
定され、各区域のガス組成は略独立したものとなるため
と思われる。
It is considered that this is because the mutual diffusion of the gas in the substrate transport direction between the areas of the plasma atmosphere partitioned by the partition plate is limited, and the gas composition of each area becomes substantially independent.

従って、本発明の仕切板はガスを遮断できるものであれ
ば良く、その材質は特に限定されないが、中でもプラズ
マ損傷のないものが好ましく、ステンレス等が使用され
る。なお、仕切板は反応室と共に接地するのが一般であ
るが、浮遊もしくは適当なバイアス電圧を印加させても
良い。そしてその形状は、基板搬送方向のガスの拡散が
無視できるものであれば良く、通常は基板搬送路及び放
電電極面との間に微小な間隙を有するのみで、その他の
部分は完全に遮断し、前記間隔以外ではガス移動のない
形状が選定される。このようにすると間隙部でガス流速
が大となり、ガス拡散の防止がより完全となる点で好ま
しい。しかし、反応室内の部材の配置によりガス流路が
限定される場合には該ガス流路を遮断するように仕切板
は設置すれば良いことは云うまでもない。なお、仕切板
は少なくとも基板前面との間にガス流路となるスリット
を有する必要がある。
Therefore, the partition plate of the present invention is not particularly limited as long as it can block gas, and the material is not particularly limited to plasma damage, and stainless steel or the like is used. The partition plate is generally grounded together with the reaction chamber, but it may be floating or an appropriate bias voltage may be applied. The shape thereof should be such that the diffusion of gas in the substrate transport direction can be ignored, and normally there is only a minute gap between the substrate transport path and the discharge electrode surface, and the other parts are completely blocked. A shape having no gas migration other than the above-mentioned interval is selected. This is preferable in that the gas flow velocity in the gap becomes large and the prevention of gas diffusion becomes more complete. However, it goes without saying that when the gas flow path is limited by the arrangement of the members in the reaction chamber, the partition plate may be installed so as to block the gas flow path. The partition plate needs to have a slit serving as a gas flow path at least between the partition plate and the front surface of the substrate.

又仕切板の数及びその間隙は、形成する膜の膜厚方向の
プロファイルに応じて選定される。この選定は実験によ
る。
Further, the number of partition plates and their gaps are selected according to the profile of the film to be formed in the film thickness direction. This selection depends on the experiment.

一方反応ガスの導入口,排気口の配置も、同様に形成す
る膜厚方向のプロファイルに応じて実験により選定され
る。例えば膜内の組成を変化させたい場合は夫々の反応
ガスの導入口を反応室の基板搬送方向の両端部に配置
し、その一端に共通の排気口を設けること等により適当
な勾配の組成分布を得ることができる。
On the other hand, the disposition of the reaction gas inlet and exhaust port is also selected by experiment according to the profile in the film thickness direction to be similarly formed. For example, when it is desired to change the composition in the film, the respective reaction gas inlets are arranged at both ends of the reaction chamber in the substrate transport direction, and a common exhaust port is provided at one end of the reaction chamber to provide an appropriate gradient composition distribution. Can be obtained.

次に本発明のもう一つの要件である微結晶化反応室につ
いて説明する。
Next, the microcrystallization reaction chamber which is another requirement of the present invention will be described.

微結晶化反応室の構成は以下のようにしてなされたもの
である。すなわち、前述のマスクによる膜質変化の原因
を検討したところ、マスクの開口エッヂ部に電界の集中
が生じ、基板とマスク開口エッヂ部との間に局部放電が
発生して強いプラズマが生じ、一方これによって基板中
央部の電界強度が弱められることが原因と判明した。
The structure of the microcrystallization reaction chamber is as follows. That is, when the cause of the change in film quality due to the above-mentioned mask was examined, electric field concentration occurred in the opening edge portion of the mask, local discharge occurred between the substrate and the mask opening edge portion, and strong plasma was generated. It was found that the electric field strength in the central part of the substrate was weakened by this.

そこで、該マスク開口エッヂ部での電界集中を緩和する
ため、エッヂ周辺部を等電位面に沿ったものに近い形に
丸める、マスクを極力基板に近づける、印加パワーをな
るべく抑える等種々の方法を検討したが大きな効果を得
られなかった。そして、電極と基板の間に設置されたマ
スクの開口中央部に、電界が集中するような電界調整部
材を設け、マスクの開口部の電界分布を均一化すること
により解決することを見出し前記構成に想到したもので
ある。
Therefore, in order to alleviate the electric field concentration at the edge portion of the mask opening, various methods such as rounding the edge portion to a shape close to that along the equipotential surface, bringing the mask as close to the substrate as possible, and suppressing the applied power as much as possible are available. I examined it but could not get a big effect. Further, it has been found that the problem can be solved by providing an electric field adjusting member for concentrating an electric field in the central portion of the opening of the mask installed between the electrode and the substrate and making the electric field distribution in the opening of the mask uniform. It was thought of.

従って、本発明のマスクの開口部に設ける電界調整部材
は開口部の機能を損わない範囲で、開口部の電界分布を
均一化できるものであれば特に限定されないが、膜厚分
布等への影響がなく効果的に電界分布を調整できる点か
ら線状材が好ましい。そして線材の配置は、単なる開口
部の中央配置、あるいは適当な間隔の平行配置、格子状
配置、更には同心円状配置等開口部の大きさ,形状に応
じて実験的に選定するのが好ましい。又その材質は、RF
放電中で電界を集中させることができ、開口部の電界分
布を調整できるものなら如何なる物質でもよいが、好ま
しくは加工性のよい導電性物質がよく、更に好ましくは
放電中脱ガスが少ない金属が好ましく、ステンレス,タ
ングステン,チタン,モリブデン等の対プラズマ耐性の
ある金属材料の中から選択される。
Therefore, the electric field adjusting member provided in the opening of the mask of the present invention is not particularly limited as long as it can make the electric field distribution of the opening uniform within a range that does not impair the function of the opening. A linear material is preferable because it has no influence and the electric field distribution can be adjusted effectively. It is preferable to experimentally select the arrangement of the wire rods according to the size and shape of the openings, such as a simple central arrangement of the openings, a parallel arrangement with an appropriate interval, a lattice arrangement, or a concentric arrangement. The material is RF
Any substance can be used as long as it can concentrate the electric field in the discharge and adjust the electric field distribution in the opening. However, a conductive substance having good workability is preferable, and a metal that is less likely to be outgassed during discharge is preferable. It is preferably selected from metal materials having resistance to plasma such as stainless steel, tungsten, titanium and molybdenum.

なお、良好な微結晶化非晶質半導体膜を得る為には、基
板表面に印加されるパワーがいかなる箇所においても少
なくとも5mW/cm2以上必要であるのでこの条件を満すた
めに好ましくは直径0.5〜2mm、,更に好ましくは直径1
〜1.5mm程度の線状材(単線でも撚線でも良い)で電界
調整部材を構成することが望ましい。
Note that in order to obtain a good microcrystalline amorphous semiconductor film, the power applied to the substrate surface needs to be at least 5 mW / cm 2 or more at any place, so that the diameter is preferably set to satisfy this condition. 0.5-2 mm, more preferably diameter 1
It is desirable to construct the electric field adjusting member with a wire material (single wire or stranded wire) of about 1.5 mm.

又、その電界強度の調整は、電界調整部材と基板との距
離で自由に調整できる。
Further, the adjustment of the electric field strength can be freely adjusted by the distance between the electric field adjusting member and the substrate.

本発明の適用できる放電電極の形状は、平行平板型,キ
ャンを用いた平行曲面型はもちろんのこと、非平行な電
極においても電界調整部材の形状,位置,材質等を変え
ることによって不平等電界の緩和ができ、適用できる。
The shape of the discharge electrode to which the present invention can be applied is not limited to the parallel plate type, the parallel curved surface type using a can, and also for non-parallel electrodes, the unequal electric field can be obtained by changing the shape, position, material, etc. of the electric field adjusting member. Can be relaxed and applied.

以上本発明の特徴要件であるi層反応室及び微結晶化反
応室について説明した。
The i-layer reaction chamber and the microcrystallization reaction chamber, which are the characteristic requirements of the present invention, have been described above.

本発明はこれらi層反応室及び微結晶化反応室を具備す
るものであるが、全体としては製造する太陽電池の光起
電力層の構成に応じて従来より公知の反応室をこれら反
応室に組み合わせるものであることは云うまでもない。
又必要な各反応室の数、その配列等は特に限定されず、
製造する太陽電池の光起電力層及びその形成法により決
定すべきであることは本発明の趣旨より明らかである。
The present invention comprises the i-layer reaction chamber and the microcrystallization reaction chamber, but as a whole, conventionally known reaction chambers are set in these reaction chambers depending on the configuration of the photovoltaic layer of the solar cell to be manufactured. It goes without saying that they are combined.
The number of required reaction chambers, their arrangement, etc. are not particularly limited,
It is clear from the gist of the present invention that it should be determined depending on the photovoltaic layer of the solar cell to be manufactured and the method for forming the photovoltaic layer.

更に本発明が適用できる太陽電池の構成は、少なくとも
i形の非晶質半導体層及び微結晶化半導体層を有するも
のであればよい。代表例としては非晶質シリコン半導体
からなるpin構成のp層あるいはn層のいずれかの層又
はこの両層を微結晶化層としたもの、あるいはこれのタ
ンデム構成等挙げることができるが、いずれの構成にお
いても少なくとも光入射側のp層あるいはn層を微結晶
化層とすることが太陽光の利用効率の面からは好まし
い。
Further, the structure of the solar cell to which the present invention can be applied may be one having at least an i-type amorphous semiconductor layer and a microcrystallized semiconductor layer. As a typical example, either a p-layer or an n-layer having a pin structure made of an amorphous silicon semiconductor, or both layers of which are microcrystallized layers, or a tandem structure thereof can be used. Also in this configuration, at least the p-layer or the n-layer on the light incident side is preferably a microcrystallized layer from the viewpoint of the utilization efficiency of sunlight.

以上の点より本発明の好ましい基本的な態様としては、
導電形がp形又はn形の非晶質半導体層を形成する第一
層反応室と、i形の非晶質半導体層を形成するi層反応
室と、第一層反応室と逆の導電形の非晶質半導体層を形
成する微結晶化反応室を基板搬送方向にこの順序で配置
したものであり、中でも第一層反応室の前に巻出室を、
微結晶化反応室の後に巻取室を連結してロール・ツ・ロ
ール方式により長尺の帯状基板を連続的に移送しつつ膜
形成するようにしたものが、生産性面,安定した連続膜
形成面で好ましい。
From the above points, as a preferable basic aspect of the present invention,
A first-layer reaction chamber for forming an amorphous semiconductor layer having a p-type or n-type conductivity, an i-layer reaction chamber for forming an i-type amorphous semiconductor layer, and conductivity opposite to that of the first-layer reaction chamber The microcrystallizing reaction chamber for forming the amorphous semiconductor layer of the shape is arranged in this order in the substrate transport direction, and in particular, the unwinding chamber is provided in front of the first layer reaction chamber,
A continuous film that is stable in terms of productivity is a film that is formed by continuously transferring long strip-shaped substrates by a roll-to-roll method by connecting a winding chamber after a microcrystallization reaction chamber. It is preferable in terms of formation.

以下、本発明の詳細を窓側に微結晶化n層を配したpin
構成の非晶質シリコン太陽電池の製造に適用した実施例
に基いて説明する。
The details of the present invention will be described below with reference to a pin in which a microcrystallized n layer is arranged on the window side.
A description will be given based on an example applied to manufacture of an amorphous silicon solar cell having a structure.

〈実施例〉 第1図は上記実施例の構成図である。<Embodiment> FIG. 1 is a block diagram of the above embodiment.

その基本構成は前述の特開昭58−216475号公報,特開昭
59−34668号公報開示のものと同じで、p型,i型及び微
結晶化n(n(μc))型の各非晶質シリコン層を形成
するCVDプラズマ放電の第一層反応室1,i層反応室2,微結
晶化反応室3及び巻出室18並びに巻取室19を排気系(図
示省略)により所定のガス圧まで排気されるガス隔離の
ための緩衝室13で連結し、巻出しロール20から巻取りロ
ール21へ基板17をロール・ツ・ロール方式で移送しつ
つ、p,i,n(μc)の3層を連続形成する構成となって
いる。なお、図の4〜9は放電電極で、図の10は各放電
電極に高周波電力を供給する高周波電源具体的にはRF電
源であり、各反応室1,2,3は夫々ガス導入口15と排気ポ
ート16を有し、所定のガスを導入してCVD法により所定
の非晶質半導体膜が形成できるようになっている。
The basic structure is as described in the above-mentioned JP-A-58-216475,
First layer reaction chamber of CVD plasma discharge for forming p-type, i-type, and microcrystallized n (n (μc))-type amorphous silicon layers, which are the same as those disclosed in JP-A-59-34668. The i-layer reaction chamber 2, the microcrystallization reaction chamber 3, the unwinding chamber 18, and the winding chamber 19 are connected by a buffer chamber 13 for gas isolation that is exhausted to a predetermined gas pressure by an exhaust system (not shown), The substrate 17 is transferred from the unwinding roll 20 to the winding roll 21 by a roll-to-roll method, and three layers of p, i, n (μc) are continuously formed. 4 to 9 in the figure are discharge electrodes, 10 in the figure is a high-frequency power source for supplying high-frequency power to each discharge electrode, specifically, an RF power source, and each reaction chamber 1, 2 and 3 is provided with a gas inlet 15 respectively. And an exhaust port 16 so that a predetermined gas can be introduced to form a predetermined amorphous semiconductor film by the CVD method.

ところで、i形非晶質シリコンを形成するi層反応室2
は本発明に従い以下の構成となっている。対向する放電
電極6,7の中間のプラズマ雰囲気を基板搬送方向に必要
な通路を除いて区画する仕切板11を電極面に垂直かつ第
2図の通り隙間14を除いて反応室の全断面を遮断するよ
うに基板の搬送方向に所定間隔になるように5枚設置し
た。従って該仕切板11によりプラズマ空間は、電極間で
複数の区域に区分され、反応室2の基板搬送方向下流端
に設けたガス導入口15から供給された反応ガスはその上
流端部の排気ポート16に達するためには必ず該仕切板11
で設定された隙間14を通って流れる。
By the way, i-layer reaction chamber 2 for forming i-type amorphous silicon
Has the following configuration according to the present invention. A partition plate 11 for partitioning a plasma atmosphere in the middle of the discharge electrodes 6 and 7 facing each other except a passage required in the substrate transport direction is perpendicular to the electrode surface and the entire cross section of the reaction chamber is formed except for a gap 14 as shown in FIG. Five pieces were installed at predetermined intervals in the substrate transfer direction so as to be cut off. Therefore, the partition plate 11 divides the plasma space into a plurality of areas between the electrodes, and the reaction gas supplied from the gas introduction port 15 provided at the downstream end of the reaction chamber 2 in the substrate transport direction is exhausted at its upstream end. The partition plate must be 11 to reach 16
Flow through the gap 14 set in.

なお、前述の通り仕切板11は隙間14を形成するように対
向する放電電極の双方に対して若干の距離を離して設置
されている。この隙間14は1つには反応ガスの通路とし
て、また、図で下方のパワー電極7に対して電極絶縁の
ため、そして図で上方のアース電極6に対しては基板17
の通路を目的としており、本実施例では3mmとした。ガ
ス仕切板11の材料は電気的に導体,不導体のいずれであ
っても本発明の目的を達するが、プラズマ雰囲気中に不
純物を放出しないことが必要である。本例ではステンレ
ス合金で作成し、電気的にはアースに接続した。
As described above, the partition plate 11 is installed so as to form the gap 14 with a slight distance from both of the discharge electrodes facing each other. This gap 14 serves as a passage for the reaction gas, and also serves as an electrode insulation for the lower power electrode 7 in the drawing, and a substrate 17 for the upper ground electrode 6 in the drawing.
The purpose of this passage is to set the width to 3 mm in this embodiment. Although the material of the gas partition plate 11 is either electrically conductive or non-conductive, the object of the present invention is achieved, but it is necessary that impurities are not emitted into the plasma atmosphere. In this example, it was made of a stainless alloy and electrically connected to the ground.

さらに太陽電池の窓層としてn(μc)層の微結晶化非
晶質シリコンを形成する微結晶化反応室3は本発明に従
い以下の構成となっている。すなわち、第3図にその反
応室内の側断面を示した如く、8は基板側電極でアース
されている。17は高分子フイルム基板で矢印の方向に移
動走行する。30は開口部(30a)を有する堆積膜厚調整
用のマスクで、本例では接地したが浮遊していても良
い。なお、開口部の大きさは本例では50mmL×250mmWで
ある。31の点線はプラズマである。9,10は前述の通り、
放電電極とそのRF電源であり、よって放電周波数は公知
の通り13.56MHzである。この装置を用いてまず、比較の
ため第4図に示された単に前述の面積の開口部(30a)
を設けた従来のマスクで、n型微結晶化非晶質シリコン
膜を作成した。(水素+シラン+ホスフィン)混合ガス
を用い、放電圧力が1Torr,基板温度が160℃,印加パワ
ーが0.05W/cm2の条件下で、基板の走行を停止して30分
間静止状態で形成した。その結果、マスク開口部(30
a)のエッヂ部付近では、導電率が約5S・cm-1と微結晶
化していることが認められたが、中央部では9×10-4
・cm-1とかなり高い値を示し、アモルファス膜のままで
あることが確認された。
Further, the microcrystallization reaction chamber 3 for forming n (μc) layer of microcrystallized amorphous silicon as the window layer of the solar cell has the following configuration according to the present invention. That is, as shown in the side cross section of the reaction chamber in FIG. 3, 8 is grounded at the substrate side electrode. 17 is a polymer film substrate which moves and runs in the direction of the arrow. Reference numeral 30 is a mask for adjusting the deposited film thickness having an opening (30a), which is grounded in this example, but may be floating. The size of the opening is 50 mmL × 250 mmW in this example. The dotted line at 31 is plasma. 9,10 is as described above
The discharge electrode and its RF power supply, so the discharge frequency is 13.56 MHz, as is known. Using this device, first, for comparison, the opening (30a) shown in FIG.
An n-type microcrystallized amorphous silicon film was formed with a conventional mask provided with. Using a mixed gas of (hydrogen + silane + phosphine), the discharge pressure was 1 Torr, the substrate temperature was 160 ° C, and the applied power was 0.05 W / cm 2 , and the substrate was stopped for 30 minutes to form a static state. . As a result, the mask opening (30
It was confirmed that the electric conductivity was about 5 S · cm −1 near the edge part of a) and was crystallized, but it was 9 × 10 −4 S in the central part.
・ It was confirmed that the film remained as an amorphous film, showing a considerably high value of cm -1 .

次に第5図に示す本発明の電界調整部材32として開口部
(30a)の基板17の移送方向の中央部に基板17の巾方向
に一本の線材を設けたマスクを用いて印加パワーを除い
ては、同じ条件で成膜を行った。ここで電界調整部材32
には1mmφのステンレス線を用いた。印加パワーは、0.0
1〜0.04W/cm2と変化させて行った。
Next, as shown in FIG. 5, as the electric field adjusting member 32 of the present invention, a mask having a wire rod provided in the width direction of the substrate 17 at the center of the opening (30a) in the transfer direction of the substrate 17 is used to apply the applied power. Except for this, the film formation was performed under the same conditions. Here, the electric field adjusting member 32
A 1 mmφ stainless wire was used for this. Applied power is 0.0
It was carried out by changing it to 1 to 0.04 W / cm 2 .

第6図は上記条件で製膜した基板中央部の導電率を示し
たものである。この図で白丸印は光照射時、黒丸印を暗
中の測定値であり、この結果よりn型非晶質シリコン
は、中央部においても完全微結晶化がおこっていること
が確認され、且つ、開口部(30a)全面で均一な特性の
微結晶化非晶質シリコン膜が得られることが確認され、
所期の特性の改善がはかられることがわかった。
FIG. 6 shows the conductivity of the central portion of the substrate formed under the above conditions. In this figure, the white circles are the measured values when the black circles were in the dark at the time of light irradiation, and from this result, it was confirmed that the n-type amorphous silicon was completely microcrystallized even in the central portion, and It was confirmed that a microcrystalline amorphous silicon film with uniform characteristics could be obtained over the entire opening (30a),
It was found that the desired characteristics could be improved.

更に、印加パワーも従来のマスクを用いた場合に比し1/
2以下の低パワーの0.02W/cm2程度で十分微結晶化するこ
とも合せて確認され、生産プロセス上有利であることも
判明した。なお、膜厚分布等は従来のマスクと同様であ
り、全く問題ないことを確認した。
In addition, the applied power is 1/100 of that of the conventional mask.
It was also confirmed that sufficient microcrystallization was achieved at a low power of 0.02 W / cm 2 of 2 or less, and it was also found to be advantageous in the production process. It was confirmed that the film thickness distribution and the like were the same as those of the conventional mask, and that there was no problem at all.

一方本例のロール・ツ・ロール方式では、通常、隣接す
るp,n(μc)形非晶質シリコンを形成する第1層反応
室1と微結晶化反応室3からi層を形成するi層反応室
2へB2H6及びPH3ガスが緩衝室13を経由して微量混入す
る。
On the other hand, in the roll-to-roll method of this example, i layer is usually formed from the first layer reaction chamber 1 and the microcrystallization reaction chamber 3 which form the adjacent p, n (μc) type amorphous silicon. A small amount of B 2 H 6 and PH 3 gas is mixed into the layer reaction chamber 2 via the buffer chamber 13.

これに対してi層反応室2は前述の構成としてあるの
で、i形非晶質シリコンを形成するi層反応室2におい
て反応ガスはn(μc)層用の微結晶化反応室3寄りの
ガス導入口15から導入されp層用の第1層反応室1寄り
の排気口16の方向に流れる。従って前述の作用が得られ
る。
On the other hand, since the i-layer reaction chamber 2 is configured as described above, the reaction gas in the i-layer reaction chamber 2 for forming i-type amorphous silicon is near the microcrystallization reaction chamber 3 for the n (μc) layer. The gas is introduced from the gas introduction port 15 and flows toward the exhaust port 16 near the first layer reaction chamber 1 for the p layer. Therefore, the above-mentioned effect is obtained.

この点を確認するため、本実施例において、100μm厚
のポリエチレンテレフタレートフイルム上に下部電極層
としてアルミニウム層とステンレス層を順次積層した基
板を用い、公知の常法と同様第1反応室1に水素ガス希
釈のB2H6とSiH4の混合ガスを、i層反応室2にSiH4ガス
を、微結晶化反応室3に水素ガス希釈のPH3とSiH4の混
合ガスを供給し、p,i,n(μc)積層構造の非晶質シリ
コンからなる光起電力層を形成し、以下のように評価し
た。すなわち、光起電力層について、ボロン(B)原子
のデプスプロファイルを二次イオン質量分析法(SiMS)
で測定した。その結果を第7図に実線Aで示す。比較の
ために、他の条件は同じで、仕切板11及び電界調整部材
32を設置しない従来装置の場合により形成した同じp,i,
n積層型の光起電力層の分析結果を破線Bで同図に示し
た。
In order to confirm this point, in this example, a substrate in which an aluminum layer and a stainless layer were sequentially laminated as a lower electrode layer on a polyethylene terephthalate film having a thickness of 100 μm was used, and hydrogen was placed in the first reaction chamber 1 in the same manner as a known ordinary method. a mixed gas of B 2 H 6 and SiH 4 gas diluted, the SiH 4 gas into the i layer reaction chamber 2, supplying a mixed gas of PH 3 and SiH 4 gas diluted with a hydrogen gas in the microcrystalline reaction chamber 3, p A photovoltaic layer made of amorphous silicon having a laminated structure of i, n (μc) was formed and evaluated as follows. That is, the depth profile of the boron (B) atom in the photovoltaic layer is determined by secondary ion mass spectrometry (SiMS).
It was measured at. The result is shown by the solid line A in FIG. For comparison, other conditions are the same, the partition plate 11 and the electric field adjusting member.
The same p, i,
The analysis result of the n-stacked photovoltaic layer is shown by the broken line B in FIG.

仕切板11を設けない従来装置の場合には第1層反応室1
から混入したB2H6ガスがi層反応室2全体に均一に拡散
する結果、i層中のB原子の膜厚方向の濃度プロファイ
ルはフラットになっている。一方、仕切板11を設置した
実施例の場合はp層とi層との界面におけるB原子の組
成プロファイルは切れが急崚になっており、また、i層
中のプロファイルは一定の勾配の傾斜をもっていること
がわかる。この結果は、仕切板11によってi層反応室2
のプラズマ空間を区分することにより、同一反応室内で
あっても微結晶化反応室3寄りの部分から第1層反応室
1寄りの部分に亘ってプラズマ雰囲気中の反応ガスの組
成が一定の空間分布を有することを示している。即ち本
発明より1つ反応室内の反応ガスに必要な空間分布が実
現できることを意味しており、本発明が従来不可能であ
って膜組成制御を可能とする優れた効果のあることを示
している。
In the case of the conventional apparatus without the partition plate 11, the first layer reaction chamber 1
As a result, the B 2 H 6 gas mixed from the above diffuses uniformly throughout the i-layer reaction chamber 2, and as a result, the concentration profile of B atoms in the i-layer in the film thickness direction is flat. On the other hand, in the case of the embodiment in which the partition plate 11 is installed, the composition profile of B atoms at the interface between the p layer and the i layer is sharply cut off, and the profile in the i layer has a constant gradient. You know that you have. This result is shown by the partition plate 11 in the i-layer reaction chamber 2
By dividing the plasma space of the above, even in the same reaction chamber, a space in which the composition of the reaction gas in the plasma atmosphere is constant from the portion near the microcrystallization reaction chamber 3 to the portion near the first layer reaction chamber 1 It has a distribution. That is, it means that one embodiment of the present invention can realize the spatial distribution required for the reaction gas in the reaction chamber, and shows that the present invention has an excellent effect that the composition of the film can be controlled, which has been impossible in the past. There is.

次に上記で得られた光起電力層上にITO(Indium Tin
Oxide)からなる透明電極,Agからなる収集電極を積層
し、その太陽電池性能を調べた。
Next, on the photovoltaic layer obtained above, ITO (Indium Tin
The solar cell performance was investigated by stacking a transparent electrode made of Oxide) and a collecting electrode made of Ag.

その結果表1に見られるごとく、i層反応室2内へ仕切
板11を設置せず、また微結晶化反応室へ電界調整部材32
を設置しなかった場合を比較例としたとき、本発明を適
用して作成した太陽電池では短絡電流、及び、曲線因子
に向上が得られた。この結果変換効率も大幅な向上を示
し、本発明の有効性が確認された。短絡電流の向上は、
微結晶化n層が完全に微結晶化したことによる吸収の減
少によるものであり、一方、曲線因子の向上はi層中で
のホウ素原子の分布が改善されたためと考えられる。
As a result, as shown in Table 1, the partition plate 11 was not installed in the i-layer reaction chamber 2 and the electric field adjusting member 32 was added to the microcrystallization reaction chamber.
When the case where the solar cell was not installed was used as a comparative example, the solar cell manufactured by applying the present invention showed improvement in short-circuit current and fill factor. As a result, the conversion efficiency was significantly improved, and the effectiveness of the present invention was confirmed. The improvement of short circuit current is
This is due to the decrease in absorption due to the complete microcrystallization of the microcrystallized n layer, while the improvement of the fill factor is considered to be due to the improved distribution of boron atoms in the i layer.

【図面の簡単な説明】[Brief description of drawings]

第1図は実施例の非晶質シリコン太陽電池の製造装置の
構成説明図,第2図は第1図A−A′線での断面図,第
3図は微結晶化反応室の側断面図,第4図は従来例のマ
スクの平面図,第5図は実施例のマスクの平面図,第6
図は実施例で得られた微結晶化非晶質シリコン半導体層
のマスク中心部の導電率の測定結果を示すグラフ,第7
図は実施例で得られた太陽電池の起電力層中でのB(ボ
ロン)原子の膜厚方向分布の測定結果を示すグラフであ
る。 1:第1層反応室,2:i層反応室,3:微結晶化反応室,11:仕
切板,13:緩衝室,17:基板,30:マスク,32:電界調整部材
FIG. 1 is an explanatory view of the structure of an amorphous silicon solar cell manufacturing apparatus according to an embodiment, FIG. 2 is a sectional view taken along the line AA ′ in FIG. 1, and FIG. 3 is a side sectional view of a microcrystallization reaction chamber. 4 and 5 are plan views of a mask of a conventional example, FIG. 5 is a plan view of a mask of an embodiment, and FIG.
FIG. 7 is a graph showing the measurement results of the conductivity of the central portion of the mask of the microcrystallized amorphous silicon semiconductor layer obtained in the Example,
The figure is a graph showing the measurement results of the film thickness direction distribution of B (boron) atoms in the electromotive force layers of the solar cells obtained in the examples. 1: 1st layer reaction chamber, 2: i layer reaction chamber, 3: microcrystallization reaction chamber, 11: partition plate, 13: buffer chamber, 17: substrate, 30: mask, 32: electric field adjusting member

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基板がその放電電極間を通って搬送できる
ように連結された化学的気相分解法により所定の非晶質
半導体膜を形成する所定数の反応室を備え、該基板を各
反応室を通して搬送し、該基板上に少なくとも一層の微
結晶化非晶質半導体層とi型非晶質半導体層とを有する
光起電力層を形成するようになした太陽電池の製造装置
において、反応ガスを遮断する仕切板を基板搬送方向に
所定間隔で放電電極面に垂直方向に配設して、少なくと
もプラズマ雰囲気を基板通路等の限られた隙間を除いて
基板搬送方向にガス拡散のない複数の区域に区画した、
前記i型非晶質半導体層を形成するi層反応室と、基板
と放電電極との間にマスクを配置すると共にその開口部
に開口部の電界分布を調節するための電界調整部材を設
けた前記微結晶化非晶質半導体層を形成する微結晶化反
応室とを具備したことを特徴とする太陽電池の製造装
置。
1. A substrate is provided with a predetermined number of reaction chambers for forming a predetermined amorphous semiconductor film by a chemical vapor decomposition method connected so that the substrate can be conveyed between discharge electrodes. In a manufacturing apparatus of a solar cell, which is transported through a reaction chamber and is configured to form a photovoltaic layer having at least one microcrystallized amorphous semiconductor layer and an i-type amorphous semiconductor layer on the substrate, Partition plates that block the reaction gas are arranged at a predetermined interval in the substrate transport direction in the direction perpendicular to the discharge electrode surface, and at least the plasma atmosphere does not diffuse in the substrate transport direction except for a limited gap such as a substrate passage. Divided into multiple areas,
A mask was disposed between the i-layer reaction chamber for forming the i-type amorphous semiconductor layer and the substrate and the discharge electrode, and an electric field adjusting member for adjusting the electric field distribution in the opening was provided in the opening. An apparatus for manufacturing a solar cell, comprising: a microcrystallization reaction chamber for forming the microcrystallized amorphous semiconductor layer.
【請求項2】前記連結された反応室の前後に巻出室と巻
取室とを連結して設け、長尺の可撓性の帯状基板をロー
ル・ツ・ロール方式で搬送するようになした請求項第1
項記載の太陽電池の製造装置。
2. An unwinding chamber and a winding chamber are connected to each other before and after the connected reaction chamber to convey a long flexible belt-shaped substrate in a roll-to-roll system. Claim 1
An apparatus for manufacturing a solar cell according to the item.
【請求項3】p形又はn形の非晶質半導体層を形成する
第1層反応室,前記i型反応室,第1層反応室と逆の導
電形の非晶質半導体層を形成する前記微結晶化反応室が
巻出室から巻取室の間にこの順序で配置された請求項第
1項又は第2項記載の太陽電池の製造装置。
3. A first layer reaction chamber for forming a p-type or n-type amorphous semiconductor layer, the i-type reaction chamber, and an amorphous semiconductor layer having a conductivity type opposite to that of the first layer reaction chamber. The solar cell manufacturing apparatus according to claim 1, wherein the microcrystallization reaction chamber is arranged between the unwinding chamber and the winding chamber in this order.
JP63176939A 1988-07-18 1988-07-18 Solar cell manufacturing equipment Expired - Fee Related JPH0719911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63176939A JPH0719911B2 (en) 1988-07-18 1988-07-18 Solar cell manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63176939A JPH0719911B2 (en) 1988-07-18 1988-07-18 Solar cell manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH0227775A JPH0227775A (en) 1990-01-30
JPH0719911B2 true JPH0719911B2 (en) 1995-03-06

Family

ID=16022382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63176939A Expired - Fee Related JPH0719911B2 (en) 1988-07-18 1988-07-18 Solar cell manufacturing equipment

Country Status (1)

Country Link
JP (1) JPH0719911B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100070753A (en) * 2008-12-18 2010-06-28 삼성전자주식회사 Manufacturing method of photovoltaic devices

Also Published As

Publication number Publication date
JPH0227775A (en) 1990-01-30

Similar Documents

Publication Publication Date Title
US4920917A (en) Reactor for depositing a layer on a moving substrate
US6653554B2 (en) Thin film polycrystalline solar cells and methods of forming same
US5927994A (en) Method for manufacturing thin film
JP4560245B2 (en) Photovoltaic element
EP0099257B1 (en) Apparatus for uniformly heating a substrate
US5637537A (en) Method of severing a thin film semiconductor device
US6268235B1 (en) Method for manufacturing a photoelectric conversion device
JP3437386B2 (en) Photovoltaic element and manufacturing method thereof
EP0616729B1 (en) Semiconductor device and microwave process for its manufacture
JPS58199571A (en) Gas gate for photovoltaic device producing apparatus
GB2148947A (en) Method of depositing an amorphous semiconductor layer from a glow discharge
JPH08298333A (en) Semiconductor coating film forming equipment, and thin film solar cell and forming method of thin film solar cell
CA1218167A (en) Ohmic contact layer
JPH0719911B2 (en) Solar cell manufacturing equipment
JPH10209479A (en) Manufacturing apparatus of semiconductor thin film and photovoltaic device
JP2592809B2 (en) Method for manufacturing photovoltaic element
JP3403039B2 (en) Apparatus and method for manufacturing thin film semiconductor by plasma CVD method
JP3554314B2 (en) Deposition film formation method
JP3690772B2 (en) Photovoltaic element forming apparatus and forming method
JP2757896B2 (en) Photovoltaic device
JP3403001B2 (en) Apparatus and method for manufacturing thin film semiconductor by plasma CVD method
JP2004266111A (en) Method for manufacturing microcrystal film and microcrystal film solar cell
JPH0436448B2 (en)
EP0087479A1 (en) Method and device producing amorphous silicon solar battery
JP3403038B2 (en) Apparatus and method for manufacturing thin film semiconductor by plasma CVD method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees