JP2004266111A - Method for manufacturing microcrystal film and microcrystal film solar cell - Google Patents

Method for manufacturing microcrystal film and microcrystal film solar cell Download PDF

Info

Publication number
JP2004266111A
JP2004266111A JP2003055280A JP2003055280A JP2004266111A JP 2004266111 A JP2004266111 A JP 2004266111A JP 2003055280 A JP2003055280 A JP 2003055280A JP 2003055280 A JP2003055280 A JP 2003055280A JP 2004266111 A JP2004266111 A JP 2004266111A
Authority
JP
Japan
Prior art keywords
film
microcrystalline
electrode
manufacturing
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003055280A
Other languages
Japanese (ja)
Inventor
Katsuhito Wada
雄人 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003055280A priority Critical patent/JP2004266111A/en
Publication of JP2004266111A publication Critical patent/JP2004266111A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a microcrystal film and a microcrystal film solar cell which enhances qualities and deposition rate of the microcrystal film, and enhances performances, and reduces manufacturing costs of a thin-film semiconductor device, in particular a solar cell employing the microcrystal film. <P>SOLUTION: The microcrystal film is formed to satisfy such deposition requirements that a light generation section 5 caused in the vicinity of a high-frequency electrode 1 and a light generation section 6 caused in the vicinity of a ground electrode 2 are superposed. Further, letting d be a spatial distance between the electrode 1 and the electrode 2, s1 be a thickness of a dark section in the vicinity of the electrode 1, p1 be a thickness of the section 5, s2 be a thickness of a dark section in the vicinity of the electrode 2, and p2 be a thickness of the section 6, the following conditional equation should be satisfied: s1+p1+s2+p2>d>s1+s2+(p1+p2)/2. In the method for manufacturing the microcrystal film solar cell, at least an optical active layer consists of the microcrystal film, the microcrystal film is formed to satisfy the deposition requirements mentioned above, and the optical active layer is formed so that the crystal volume fraction of the microcrystal film falls within a range of 30-70%. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、薄膜トランジスタや薄膜太陽電池など薄膜半導体デバイスに用いられる微結晶膜の製造方法、ならびに、少なくとも光活性層(i層)が前記微結晶膜からなる微結晶薄膜太陽電池の製造方法に関する。
【0002】
【従来の技術】
太陽光を電気エネルギーに変換する太陽電池は、無尽蔵なクリーンエネルギー装置として注目されている。なかでも、アモルファスシリコン(a−Si)薄膜太陽電池は、結晶の太陽電池と比べて効率は低いものの大面積化が容易であり、低い製造コストで量産できる利点があるが、光を照射すると特性が低下する、いわゆる光劣化を欠点として持つ。これに対して微結晶シリコン(μc−Si)太陽電池はa−Si太陽電池と同様のプロセスを適用できるため、低コスト化が図られる上、前記光劣化の問題がないため、近年注目を集めている(例えば、特許文献1参照)。
【0003】
特許文献1は、本件発明と同一出願人によって出願されたもので、微結晶膜を用いた薄膜半導体デバイスの性能向上を図るために、高い結晶体積分率を有する微結晶膜を形成可能な微結晶膜の製造方法を提供することを目的として、下記のような製造方法を開示している。
【0004】
即ち、微結晶膜形成用基板の一側に配設した平板状の接地電極と、他側に平行して配設した平板状の高周波電極と、原料ガス供給口とを備えた成膜室に、膜形成用の原料ガスを導入し、プラズマ放電によって前記基板主面に微結晶膜を形成する微結晶膜の製造方法において、前記両電極の間隔を減少することによって、あるいは、成膜圧力を減少することによって、高周波電極近傍に生ずる発光部とこの発光部に対向して接地電極近傍に生ずる発光部の双方が、隣接または重なる成膜条件として微結晶膜を形成する。
【0005】
【特許文献1】
特開2002−64066号公報(第1−5頁、図1−5)
【0006】
【発明が解決しようとする課題】
しかしながら、その後の研究の結果、前記特許文献1に開示された微結晶膜の製造方法においては、下記のような問題があることが判明した。
【0007】
まず、電極間距離を近づけすぎると電極部における電子及びイオンロスが増加して成膜速度が低下すること、さらにダメージが増加して膜質が低下する傾向があることが、その後の研究の結果明らかとなった。
【0008】
また、微結晶薄膜太陽電池の光活性層に、特許文献1に開示されたような微結晶膜の製造方法を適用した場合、特許文献1に記載されるように、微結晶膜の結晶体積分率が高ければ高い程よいわけではなく、後に詳述するように、太陽電池の特性向上のためには適切な範囲が存在し、この結晶体積分率は、水素希釈率と密接な関係があることが判明している。
【0009】
さらに、微結晶薄膜太陽電池において、微結晶薄膜は成膜初期にはアモルファスの層が形成されやすいが、導電層の成膜は、太陽電池の特性を低下させないように薄くする必要がある。そのため、特に基板側の導電層の成膜には、水素希釈率の高い条件を適用し、膜中のアモルファス成分が少ない微結晶薄膜を用いていた。一方水素希釈率が高すぎると、成膜時に電極や膜へのダメージが強くなり、特性の低下につながってしまう問題がある。そのため前記ダメージとアモルファス層の形成とを同時に抑制しながら、導電層の成膜を行う必要があった。
【0010】
さらにまた、光電変換層は、数μm程度と厚い膜厚が必要であるため、製造コスト低減のためには、成膜速度の高速化が必要である。また、導電層と同じく膜へのダメージが強いと特性の低下につながるため、ダメージを抑えながら成膜速度を向上させる必要があった。
【0011】
この発明は、上記の点に鑑みてなされたもので、本発明の課題は、微結晶膜の膜質の向上と成膜速度の増大を図り、さらに微結晶膜を用いた薄膜半導体デバイス、特に微結晶薄膜太陽電池の性能向上と製造コストの低減化を図った微結晶膜および微結晶薄膜太陽電池の製造方法を提供することにある。
【0012】
【課題を解決するための手段】
前述の課題を達成するため、この発明においては、微結晶膜形成用基板の一側に配設した平板状の接地電極と、他側に平行して配設した平板状の高周波電極と、原料ガス供給口とを備えた成膜室に、膜形成用の原料ガスを導入し、プラズマ放電によって前記基板主面に微結晶膜を形成する微結晶膜の製造方法において、前記高周波電極近傍に生ずる発光部とこの発光部に対向して接地電極近傍に生ずる発光部とが重なる成膜条件で微結晶膜を形成し、かつ、前記重なる成膜条件は、下記の条件式を満足することとする(請求項1の発明)。
【0013】
s1+p1+s2+p2 > d > s1+s2+(p1+p2)/2
前記条件式において、d は高周波電極と接地電極との空間距離、s1は高周波電極近傍の暗部の厚さ、p1は同発光部の厚さ、s2は基板側電極近傍の暗部の厚さ、p2は同発光部の厚さを示す。
【0014】
前記請求項1の発明において、前記条件式の左辺のs1+p1+s2+p2 > dは、前記高周波電極近傍に生ずる発光部とこの発光部に対向して接地電極近傍に生ずる発光部とが重なる成膜条件を示すが、さらに、右辺の条件d > s1+s2+(p1+p2)/2を満足するようにすることにより、前述の従来の問題、即ち、電極部における電子及びイオンロスが増加して成膜速度が低下する問題やダメージが増加して膜質が低下する問題を解消することができる。
【0015】
なお、具体的には、対象とする微結晶膜の仕様に応じて、予め、原料ガス組成,周波数,成膜時の圧力,パワー密度等を設定し、前記各暗部および発光部が全てできる状態の電極間隙の下で、前記s1,p1,s2,p2を計測し、その後、電極間隙d を狭めて、上記条件式を満足するようにして成膜する。
【0016】
前記請求項1の発明の実施態様としては、下記請求項2ないし3の発明が好ましい。即ち、前記請求項1に記載の微結晶膜の製造方法において、形成する前記微結晶膜の微結晶は、微結晶シリコン,微結晶ゲルマニウム,微結晶シリコン合金,微結晶ゲルマニウム合金の内のいずれかとする(請求項2の発明)。また、前記請求項2記載の微結晶膜の製造方法において、微結晶シリコン合金は、微結晶シリコンゲルマニウム,微結晶シリコンカーバイド,微結晶シリコンオキサイド,微結晶シリコンナイトライドの内のいずれかとする(請求項3の発明)。
【0017】
さらに、微結晶薄膜太陽電池の製造方法の発明としては、下記請求項4ないし5の発明が好ましい。即ち、基板上に第1電極層、第1導電層、実効的に真性な光活性層、第2導電層、第2電極層が積層され、少なくとも前記光活性層が微結晶膜からなる微結晶薄膜太陽電池の製造方法において、前記微結晶膜は、請求項1ないし3のいずれか1項に記載の製造方法によって形成する(請求項4の発明)。
【0018】
また、前記請求項4に記載の微結晶薄膜太陽電池の製造方法において、前記光活性層は、その微結晶膜の結晶体積分率が30〜70%の範囲となるように形成する(請求項5の発明)。前記請求項5の発明のように、前記微結晶膜の製造方法を微結晶薄膜太陽電池の光電変換層の成膜に適用すると共に、後述するように、成膜時の水素希釈率を制御して、結晶体積分率が30〜70%となるように制御することにより、成膜速度の向上と太陽電池の特性向上とをはかることができる。さらに、前記微結晶膜の製造方法を、微結晶薄膜太陽電池の導電層の成膜に適用した場合、薄い膜厚でアモルファス層が薄く、導電率の高い膜を電極や膜へのダメージを抑えて成膜し、特性の良い微結晶太陽電池を得ることができる。即ち、前記請求項4ないし5の発明により、微結晶薄膜太陽電池の性能向上と成膜速度の増大による製造コストの低減化を図ることができる。これに関しては、さらに実験結果とともに、後に詳述する。
【0019】
なお、請求項5の発明に関わり、微結晶膜の結晶体積分率を30〜70%の範囲とする意義とその理由ならびに、水素希釈率との関係について、以下に述べる。
【0020】
結晶はアモルファスと比べて、移動度が大きく、平均自由行程も長い特徴を持つ。そのため膜厚が厚くても電荷の収集ができる。また、結晶中に含まれる欠陥(結晶の粒界)は電荷のトラップとなり、特性の低下を引き起こす。
【0021】
微結晶(結晶とアモルファスの混合状態)の場合、結晶粒の粒界にアモルファスが存在すると電荷をトラップする作用が低下し、電気的特性が向上する。ただし、アモルファス成分が多くなりすぎ結晶粒同士がつながらない場合には、電荷の流れがアモルファスで阻害されるため、電気的特性が低下する。結晶体積分率30%程度が、結晶粒同士がつながって電流のパスができる下限である。
【0022】
また、結晶はアモルファスと比べてバンドギャップが小さいため、電荷の密度が大きくなる。太陽電池の発電層中の電荷密度は低い方が特性が良いため、この点からはアモルファス成分が多い方が特性は良くなる。上記観点から、適切な結晶体積分率が存在し、その好適範囲は、前記30〜70%である。
【0023】
さらに、前記結晶体積分率は、電極間隙,周波数,成膜時の圧力,パワー密度を固定した場合、主として、成膜時の水素希釈率により制御できる。原料ガスにはシランガスを水素で希釈したガスを用い、水素希釈率はその流量比で決まる。プラズマCVDで作製したアモルファスシリコン薄膜の特性は、製膜時に膜表面においてラジカルが十分に拡散した場合に良くなり、そして水素希釈率でそれを促進できる。ある程度水素希釈率を上昇させた場合には、膜の構造が変化し、結晶成分が形成される。更に希釈率を増加させると、結晶成分は増加し、80〜90%程度でほぼ飽和する。
【0024】
【発明の実施の形態】
この発明の実施例について以下に述べる。まず、微結晶膜の製造方法の成膜条件に関わる高周波プラズマCVDの放電モードについて述べる。
【0025】
図1に、高周波プラズマCVDの放電構造を模式的に示し、図1(a)はこの発明の実施例に関わる模式図、図1(b)は発光部の重なりがない状態の従来の一般的製造方法に係る模式図、図1(c)は発光部の重なりが過度の場合の模式図である。まず、プラズマ各部を分解して示した図1(b)について説明する。図1(b)に示すプラズマは、高周波を印加する高周波電極1、基板側の接地電極2、膜を形成する基板3、高周波電源4とから構成される系において、高周波電極4に高周波電力を印加して生成したものである。このプラズマは、高周波電極側及び接地電極側の発光部5及び6と、各電極近傍の暗部7及び8、並びに発光部間の暗部9とからなる。この範囲では、高周波電極側の発光部で発生したラジカルは基板側に拡散する間に再結合により損なわれる。
【0026】
図1(b)に示すように、両電極間の空隙距離をd、高周波電極近傍の暗部の厚さ,発光部の厚さをそれぞれs1,p1、接地電極近傍の暗部の厚さ,発光部の厚さをそれぞれs2,p2とすると、図1(b)においては、d > s1+p1+s2+p2で示され、中間に暗部9が存在するものとなる。なお、前記s1、s2、p1、p2は各電極の発光部が重なりきらない限りは、電極間距離dを変えてもほぼ変化しない。
【0027】
これに対し、この発明に係るs1+s2+(p1+p2)/2 < d < s1+p1+s2+p2の範囲では、図1(a)に示すように、発光部中に暗部が存在せず、両電極の発光部は重なりきらない。この領域では、電極間距離を縮める事で、発光部中で形成されたラジカルが基板に到達する割合が増加する。
【0028】
さらに、電極間距離を縮め、d <s1+s2+(p1+p2)/2 とすると、プラズマは最終的に図1(c)に示すように、両電極の発光部が完全に重なった状態となる。前記d <s1+s2+(p1+p2)/2 とすることにより、電極間隔の減少に伴って成膜速度が低下する傾向が見られた。これは電極における電子及びイオンのロスが増加するためと考えられる。
【0029】
次に、この発明の実施例に関わる微結晶膜の上記放電モード以外の具体的成膜条件について、以下に述べる。成膜に用いた装置の電極径は16mmである。印加する高周波電力の周波数としては、ここでは100MHzとしたが、10MHzから200MHzの範囲で成膜を行うことができる。また電力は20Wとしたが、2Wから200Wの範囲で成膜を行うことができる。
【0030】
原料ガスはシランガスを3〜20sccm、水素ガス流量を150sccm〜500sccmの範囲でマスフローコントローラーで制御して供給した。そしてターボポンプで圧力制御バルブを介して排気し、圧力を200Pa(1.5torr)に保って成膜を行った。なお、流量の単位sccmは、standard cc/min(標準状態換算の流量cm/min)を示す。また、原料ガスとしては、微結晶シリコン薄膜の成膜を行うため、シランガスを用いたが、他に、SiH、Si等のシランや高次シランの水素化物、もしくはその水素を重水素、フッ素、塩素に置換したガスが適している。さらに、微結晶ゲルマニウムやその合金を成膜する場合には、ゲルマニウムの原料としてGeHやその水素を重水素、フッ素、塩素に置換したガスが適している。希釈ガスとしてはHを用いたが、Ar、He等も適している。圧力13.3Pa(0.1torr)から2660Pa(20torr)程度の範囲で行うと良い。
【0031】
基板には50mm角のガラス基板を用いたが、他にセラミックス基板や、ステンレス基板、あるいはポリエステル、ポリエチレン、ポリアミド、ポリイミド、ポリプロピレン、ポリ塩化ビニル、ポリカーボネート、ポリスチレン等の樹脂製の基板を用いることもできる。基板温度は、基板側の接地電極のヒーター温度を300℃として制御した。基板の耐熱温度の範囲で、基板温度は50℃から600℃の範囲とすることができるが、100℃から400℃の範囲とするのが良い。
【0032】
次に、電極間距離を変えて種々実験した結果の一例について、後述する微結晶薄膜太陽電池に関係する結晶体積分率(以下、単に結晶分率ともいう。)や成膜速度等との関係について述べる。
【0033】
図2は、電極間距離と結晶分率との相関の実験結果の一例を示す。図2の実験条件は、成膜圧力200Pa(1.5torr)、水素希釈率20倍、周波数100MHz、パワー密度 75mW/cmである。こうした条件のもとで電極間距離(空隙距離)を14mmから縮めていくと、図2に示すように、基板側に到達する水素ラジカルのフラックスが増加するために、次第に結晶分率(%)が増加する。ここで、シランガス由来のラジカルのフラックスはほぼ変らず、従って製膜速度は変らない。更に、電極間距離(空隙距離)を短縮して4mmにすると電極におけるロスが増加し、結晶分率が低下する。
【0034】
図3は、微結晶薄膜太陽電池の光活性層としては、結晶分率が30〜70%の範囲であることが望まれるため、水素希釈率を低下させて結晶分率が一定(例えば60%)となるような条件で行なった実験結果の一例で、電極間距離と成膜速度との相関の実験結果の一例を示す。図3のように、結晶分率が変らないように実験を行う場合には、電極間隔を縮めていくと必要な希釈率が低下し、製膜速度が上昇する。製膜速度はほぼ希釈率に反比例し、更に電極間隔を4mmにすると電極におけるロスが増加するために希釈率は増加し、製膜速度が低下する。
【0035】
上記実験結果は、前述のように、s1+s2+(p1+p2)/2 < d < s1+p1+s2+p2の範囲が好ましく、かつ微結晶薄膜太陽電池に適用した場合に好ましいことを示すバックデータの一例でもある。
【0036】
次に、本発明に係る微結晶薄膜太陽電池の製造方法の実施例に関わり、まず、微結晶薄膜太陽電池の構造について述べる。図4に本発明に係わる微結晶薄膜太陽電池の構造例を示す。この太陽電池の構造は、サブストレートタイプのシングル構造であり、基板10上に、導電性の金属電極11、反射増加層12、n型の半導体層13、光活性層14、p型の半導体層15、透明電極16から構成される。本太陽電池に対して、光は透明電極16側から照射される。
【0037】
本実施例において、基板10にはガラス基板を用いたが、セラミックス基板や、ステンレス基板、さらにはポリエステル、ポリエチレン、ポリアミド、ポリイミド、ポリプロピレン、ポリ塩化ビニル、ポリカーボネート、ポリスチレン等の樹脂製の基板を用いることもできる。金属電極11には、Ni、Cr、Al、Ag、Pb、Zn、Ni、Au、Cr、Mo、Ir、Nb、Ta、V、Ti、Pt等の金属もしくは、その合金や多層膜からなる薄膜を、真空蒸着、電子ビーム蒸着、スパッタリング、印刷法などで基板表面に設けることができる。
【0038】
反射増加層12としては、ITO、ZnO、SnO、In、TiO等が好適なものとして挙げられる。この反射増加層12の堆積方法としては、真空蒸着法、スパッタリング法、CVD法、スプレー法などが適した方法として挙げられる。
【0039】
本実施例の微結晶薄膜太陽電池のn型層は、微結晶材料、特にμc−Siを用いたが他に、μc−Si:H、μc−SiC:H、μc−SiN:H、μc−SiO:H、μc−SiN:H、μc−SiGe:H等に、それぞれn型の価電子制御剤(第V族原子、P、As、Sb、Bi)を高濃
度に添加した材料を用いることができる。n型層の膜厚は、50〜500Åが好ましい。
【0040】
光活性層としては、実効的にintrinsicなμc−Si及びμc−SiGeを使用することができる。μc−Siは膜厚が5000〜40000Å、μc−SiGeは3000〜30000Åの膜厚が適している。原料ガスとしては、シリコンを供給するために、SiH、Si等のシランの水素化物、もしくはその水素を重水素、フッ素、塩素に置換したガスが適している。同様にゲルマニウムの原料としては、GeHやその水素を重水素、フッ素、塩素に置換したガスが適している。希釈ガスとしては、Hが適している。
【0041】
実施例のp型層は、微結晶材料、特にμc−Siを用いたが、a−Siでもよく、また他にμc−SiC:H、μc−SiN:H、μc−SiO:H、μc−SiN:H、μc−SiGe:H等に、それぞれp型の価電子制御剤であるBを高濃度に添加した材料が挙げられる。この膜厚は20〜200Åが好ましい。
【0042】
p型の荷電子制御用の材料としては、Bを使用したが、B10等の他の水素化ホウ素、BF、BCl等のハロゲン化ホウ素などを使うことができる。
【0043】
本発明の透明導電膜としては、ZnO、SnO、In、ITO等が適している。またその膜厚としては、500〜20000Å程度とするのが良い。また製膜方法としては、真空蒸着法、マグネトロンスパッタリング、反応性スパッタリング、プラズマCVD等が適している。
【0044】
さらに集電用の電極として、Ag、Au、Cu、Al等の金属からなるgrid電極を用いると良い。
【0045】
前述の説明において、太陽電池の構造としてはサブストレートのシングル構造について述べたが、他に図5に示すスーパーストレートタイプやシングルセルを複数重ね合わせたタンデム、トリプル構造のものに適用することもできる。なお、図5において、図4に示す部材と同一機能部材には同一番号を付して、詳細説明を省略するが、図5においては、透明電極17は、例えばガラスからなる基板10の直上に設けられ、光は基板10側から照射される。
【0046】
続いて、図4に示した微結晶薄膜太陽電池の製造方法の実施例の詳細について、比較例と共に、以下に述べる。
【0047】
(実施例:微結晶薄膜太陽電池の製造方法)
基板10には50mm角のガラス基板を用い、その上にマグネトロンスパッタリングによりAg及びZnOの金属電極11を積層した。Agは製膜時の基板温度を250℃とし、その膜厚はほぼ2000Åとした。また、ZnOはGaをドープしたものであり、製膜時の基板温度を250℃とし、膜厚は500Å程度とした。
【0048】
この金属電極11上にシリコン及びその合金からなる半導体層をプラズマCVDにより作製した。プラズマCVD装置は、電極の直径が160mmである容量結合型のプラズマCVD装置であり、n層、光活性層、p層の各層はそれぞれ別の製膜室で作製することができる。
【0049】
n層の製膜は次の手順で行った。基板加熱用のヒーターの温度を250℃とし、基板を載せたトレイをヒーター上に設置して加熱した後、SiHガス、Hガス、PHガス(水素バランス1000ppm)を、それぞれガス導入管から3、300、20sccmで導入し、圧力が266Pa(2torr)になるように、コンダクタンスバルブで調整した。続いて、13.56MHz、20Wの高周波を電極に投入した。そして微結晶のn層の膜厚が300Åになったところでグロー放電を停止した。
【0050】
続いて光活性層の成長領域の製膜を行った。電極間距離を6mmとして両電極の発光部が半分重なるようにした。基板加熱用のヒーターの温度を200℃とし、基板を設置、加熱した後、SiHガス、Hガスをそれぞれ15、200sccmで導入した。また、圧力が200Pa(1.5torr)となるように、コンダクタンスバルブで調整した。続いて100MHz、20Wの高周波を投入してグロー放電を発生させ、膜厚が2.5μmになったところで電力の投入をとめ、光活性層の成長領域の成膜を終えた。成膜速度は5Å/sであり、結晶分率は60%であった。
【0051】
続いてp層の製膜を行った。SiH、H、Bガスをそれぞれ3、500、15sccmで導入し、圧力を266Pa(2torr)に制御した後、13.56MHz、10Wの高周波を投入し、膜厚が70Åになったところで放電を停止した。電極間距離は10mmとした。この放電では、両電極の発光部は半分重なっていた。更にp層上にスパッタリングでITOからなる透明導電膜を800Å作製し、Agからなるグリッド電極を蒸着で作製した。
【0052】
(比較例1)
p層成膜時の電極間距離を20mmとし、他は前記実施例と同じ条件で太陽電池を試作した。なお、この条件ではp層成膜時には、両電極の発光部間の暗部の厚さは7mmであった。
【0053】
(比較例2)
前記実施例とほぼ同様の条件で作成した。ただし、光活性層成膜時の電極間距離を10mmとし、原料ガスをSiHガス、Hガスをそれぞれ10、200sccmで導入した。成膜速度は3Å/sで結晶分率は60%とした。両電極間の暗部の厚さは3mmであった。
【0054】
(比較例3)
前記実施例とほぼ同様の条件で作成した。ただし、光活性層成膜時の電極間距離を4mmとし、原料ガスをSiHガス、Hガスをそれぞれ15、180sccmで導入した。成膜速度は3Å/s、結晶分率は60%とした。
【0055】
上記実施例、比較例1、2、3の微結晶薄膜太陽電池の各種特性(Voc、FF、Jsc、Eff)の比較結果を表1に示す。表1において、Vocは開放端電圧、FFは曲線因子、Jscは短絡電流、Effは変換効率を示す。表1により、実施例の各比較例に対する優位性が確認された。
【0056】
【表1】

Figure 2004266111
【0057】
【発明の効果】
上記のとおり、この発明によれば、微結晶膜形成用基板の一側に配設した平板状の接地電極と、他側に平行して配設した平板状の高周波電極と、原料ガス供給口とを備えた成膜室に、膜形成用の原料ガスを導入し、プラズマ放電によって前記基板主面に微結晶膜を形成する微結晶膜の製造方法において、
前記高周波電極近傍に生ずる発光部とこの発光部に対向して接地電極近傍に生ずる発光部とが重なる成膜条件で微結晶膜を形成し、かつ、前記重なる成膜条件は、下記の条件式を満足することとした。
【0058】
s1+p1+s2+p2 > d > s1+s2+(p1+p2)/2
前記条件式において、d は高周波電極と接地電極との空間距離、s1は高周波電極近傍の暗部の厚さ、p1は同発光部の厚さ、s2は基板側電極近傍の暗部の厚さ、p2は同発光部の厚さを示す。
【0059】
また、微結晶薄膜太陽電池の製造方法の発明として、基板上に第1電極層、第1導電層、実効的に真性な光活性層、第2導電層、第2電極層が積層され、少なくとも前記光活性層が微結晶膜からなる微結晶薄膜太陽電池の製造方法において、前記微結晶膜は、前述の製造方法によって形成することとし、さらに、前記光活性層は、その微結晶膜の結晶体積分率が30〜70%の範囲となるように形成することとしたので、
微結晶膜の膜質の向上と成膜速度の増大を図り、さらに微結晶膜を用いた薄膜半導体デバイス、特に微結晶薄膜太陽電池の性能向上と製造コストの低減化を図ることができる。
【図面の簡単な説明】
【図1】この発明に関わり高周波プラズマCVDの放電構造を模式的に示す図
【図2】この発明に関わり電極間距離と結晶分率との相関の実験結果の一例を示す図
【図3】この発明に関わり電極間距離と成膜速度との相関の実験結果の一例を示す図
【図4】この発明に係わる微結晶薄膜太陽電池の構造例を示す図
【図5】この発明に係わる微結晶薄膜太陽電池の図4とは異なる構造例を示す図
【符号の説明】
1:高周波電極、2:接地電極、3:基板、4:高周波電源、5:高周波電極側発光部、6:接地電極側の発光部、7:高周波電極側の暗部、8:接地電極側の暗部、9:発光部間の暗部、10:基板(ガラス基板)、11:金属電極、12:反射増加層、13:n層、14:光活性層、15:p層、16,17:透明電極層。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a microcrystalline film used for a thin-film semiconductor device such as a thin film transistor or a thin-film solar cell, and a method for manufacturing a microcrystalline thin-film solar cell in which at least a photoactive layer (i-layer) includes the microcrystalline film.
[0002]
[Prior art]
2. Description of the Related Art Solar cells that convert sunlight into electric energy have attracted attention as an inexhaustible clean energy device. Above all, amorphous silicon (a-Si) thin-film solar cells have the advantage that they can be easily mass-produced at a low manufacturing cost, although their efficiency is lower than that of crystalline solar cells, but they are characteristic when irradiated with light. As a defect, that is, light degradation. On the other hand, a microcrystalline silicon (μc-Si) solar cell can be applied to the same process as that of an a-Si solar cell, so that the cost can be reduced and the problem of photodeterioration does not occur. (For example, see Patent Document 1).
[0003]
Patent Document 1 is an application filed by the same applicant as the present invention. In order to improve the performance of a thin-film semiconductor device using a microcrystalline film, a fine crystalline film having a high crystal volume fraction can be formed. For the purpose of providing a method for manufacturing a crystal film, the following manufacturing method is disclosed.
[0004]
That is, a plate-like ground electrode provided on one side of the microcrystalline film forming substrate, a plate-like high-frequency electrode provided parallel to the other side, and a film forming chamber provided with a source gas supply port. In a method for producing a microcrystalline film, in which a source gas for film formation is introduced and a microcrystalline film is formed on the main surface of the substrate by plasma discharge, by reducing the distance between the two electrodes, Due to the decrease, both the light emitting portion generated near the high-frequency electrode and the light emitting portion generated near the ground electrode opposite to the light emitting portion form a microcrystalline film under adjacent or overlapping film forming conditions.
[0005]
[Patent Document 1]
JP-A-2002-64066 (page 1-5, FIG. 1-5)
[0006]
[Problems to be solved by the invention]
However, as a result of subsequent studies, it has been found that the method for manufacturing a microcrystalline film disclosed in Patent Document 1 has the following problems.
[0007]
First, it is clear from subsequent research that if the distance between the electrodes is too short, electron and ion losses in the electrode part increase and the film deposition rate decreases, and further damage tends to increase and the film quality tends to decrease. became.
[0008]
Further, when a method of manufacturing a microcrystalline film as disclosed in Patent Document 1 is applied to a photoactive layer of a microcrystalline thin film solar cell, as described in Patent Document 1, the crystal volume of the microcrystalline film is reduced. The higher the percentage, the better it is, the better it is. As will be described in detail later, there is an appropriate range for improving the characteristics of the solar cell, and this volume fraction has a close relationship with the hydrogen dilution rate. Is known.
[0009]
Furthermore, in a microcrystalline thin film solar cell, an amorphous layer is easily formed in the initial stage of film formation of the microcrystalline thin film, but the conductive layer needs to be thinned so as not to deteriorate the characteristics of the solar cell. For this reason, particularly for forming the conductive layer on the substrate side, a condition with a high hydrogen dilution rate is applied, and a microcrystalline thin film having less amorphous components in the film has been used. On the other hand, if the hydrogen dilution ratio is too high, there is a problem that the electrode and the film are strongly damaged during the film formation, leading to deterioration of the characteristics. Therefore, it is necessary to form the conductive layer while simultaneously suppressing the damage and the formation of the amorphous layer.
[0010]
Furthermore, since the photoelectric conversion layer needs to have a large film thickness of about several μm, it is necessary to increase the film forming rate in order to reduce the manufacturing cost. Further, as in the case of the conductive layer, if the film is strongly damaged, the characteristics are deteriorated. Therefore, it is necessary to increase the film forming speed while suppressing the damage.
[0011]
The present invention has been made in view of the above points, and an object of the present invention is to improve the film quality of a microcrystalline film and increase the film formation rate, and further to provide a thin film semiconductor device using a microcrystalline film, It is an object of the present invention to provide a microcrystalline film and a method of manufacturing a microcrystalline thin film solar cell which improve the performance of the crystalline thin film solar cell and reduce the manufacturing cost.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a flat ground electrode provided on one side of a microcrystalline film forming substrate, a flat high frequency electrode provided in parallel with the other side, and a raw material In a method for producing a microcrystalline film, in which a source gas for film formation is introduced into a film forming chamber having a gas supply port and a microcrystalline film is formed on the main surface of the substrate by plasma discharge, the gas is generated in the vicinity of the high-frequency electrode. A microcrystalline film is formed under a film forming condition in which the light emitting portion and the light emitting portion generated near the ground electrode facing the light emitting portion overlap, and the overlapping film forming condition satisfies the following conditional expression. (Invention of claim 1).
[0013]
s1 + p1 + s2 + p2>d> s1 + s2 + (p1 + p2) / 2
In the above conditional expression, d is the spatial distance between the high-frequency electrode and the ground electrode, s1 is the thickness of the dark portion near the high-frequency electrode, p1 is the thickness of the light-emitting portion, s2 is the thickness of the dark portion near the substrate-side electrode, p2 Indicates the thickness of the light emitting portion.
[0014]
In the first aspect of the present invention, s1 + p1 + s2 + p2> d on the left side of the conditional expression indicates a film forming condition in which a light emitting portion generated near the high-frequency electrode and a light emitting portion generated near the ground electrode opposite to the light emitting portion overlap. However, by further satisfying the condition d> s1 + s2 + (p1 + p2) / 2 on the right side, the conventional problem described above, that is, the problem that the electron and ion losses in the electrode portion increase and the film forming speed decreases, The problem that the damage is increased and the film quality is reduced can be solved.
[0015]
Specifically, the composition of the source gas, the frequency, the pressure at the time of film formation, the power density, and the like are set in advance in accordance with the specifications of the target microcrystalline film, and the dark portion and the light emitting portion can be completely formed. S1, p1, s2, and p2 are measured below the electrode gap, and then the electrode gap d is narrowed to form a film so as to satisfy the above conditional expression.
[0016]
As an embodiment of the invention of claim 1, the following inventions of claims 2 and 3 are preferable. That is, in the method of manufacturing a microcrystalline film according to claim 1, the microcrystal of the microcrystalline film to be formed is any one of microcrystalline silicon, microcrystalline germanium, microcrystalline silicon alloy, and microcrystalline germanium alloy. (The invention of claim 2). In the method of manufacturing a microcrystalline film according to claim 2, the microcrystalline silicon alloy is any one of microcrystalline silicon germanium, microcrystalline silicon carbide, microcrystalline silicon oxide, and microcrystalline silicon nitride. Item 3 invention).
[0017]
Further, as the invention of the method of manufacturing a microcrystalline thin film solar cell, the following inventions 4 and 5 are preferable. That is, a first electrode layer, a first conductive layer, an effective intrinsic photoactive layer, a second conductive layer, and a second electrode layer are laminated on a substrate, and at least the photoactive layer is a microcrystal made of a microcrystalline film. In the method for manufacturing a thin-film solar cell, the microcrystalline film is formed by the method according to any one of claims 1 to 3 (invention of claim 4).
[0018]
Further, in the method for manufacturing a microcrystalline thin film solar cell according to claim 4, the photoactive layer is formed such that the crystal volume fraction of the microcrystalline film is in a range of 30 to 70% (claim). 5 invention). The method for producing a microcrystalline film is applied to the formation of a photoelectric conversion layer of a microcrystalline thin film solar cell as described in the invention of claim 5, and the hydrogen dilution rate during the film formation is controlled as described later. By controlling the crystal volume fraction to be 30 to 70%, it is possible to improve the film forming rate and the characteristics of the solar cell. Furthermore, when the method for producing a microcrystalline film is applied to the formation of a conductive layer of a microcrystalline thin film solar cell, a thin film having a small thickness, an amorphous layer, and a film having a high conductivity suppresses damage to electrodes and films. To form a microcrystalline solar cell with good characteristics. That is, according to the fourth and fifth aspects of the present invention, it is possible to improve the performance of the microcrystalline thin-film solar cell and reduce the manufacturing cost by increasing the film forming rate. This will be described later in detail together with the experimental results.
[0019]
The significance of setting the crystal volume fraction of the microcrystalline film in the range of 30 to 70%, the reason thereof, and the relationship with the hydrogen dilution rate according to the invention of claim 5 are described below.
[0020]
Crystals are characterized by higher mobility and longer mean free path than amorphous. Therefore, charge can be collected even when the film thickness is large. In addition, defects (crystal grain boundaries) contained in the crystal serve as traps for electric charges, causing deterioration in characteristics.
[0021]
In the case of microcrystals (a mixed state of crystal and amorphous), if amorphous exists at the grain boundaries of crystal grains, the effect of trapping charges is reduced, and the electrical characteristics are improved. However, when the amount of the amorphous component is too large and the crystal grains are not connected to each other, the flow of the electric charge is hindered by the amorphous, so that the electric characteristics are deteriorated. The crystal volume fraction of about 30% is the lower limit at which the crystal grains are connected to each other to allow a current path.
[0022]
In addition, since the crystal has a smaller band gap than an amorphous state, the charge density is high. The lower the charge density in the power generation layer of the solar cell, the better the characteristics. Therefore, from this point, the more the amorphous component, the better the characteristics. In view of the above, there is an appropriate crystal volume fraction, and a preferable range thereof is 30 to 70%.
[0023]
Further, the crystal volume fraction can be controlled mainly by the hydrogen dilution rate during film formation when the electrode gap, frequency, pressure during film formation, and power density are fixed. A gas obtained by diluting silane gas with hydrogen is used as a source gas, and the hydrogen dilution ratio is determined by the flow rate ratio. The characteristics of the amorphous silicon thin film formed by plasma CVD are improved when radicals are sufficiently diffused on the film surface during film formation, and can be promoted by the hydrogen dilution rate. When the hydrogen dilution rate is increased to some extent, the structure of the film changes, and a crystal component is formed. When the dilution ratio is further increased, the crystal component increases, and is substantially saturated at about 80 to 90%.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below. First, a discharge mode of high-frequency plasma CVD related to the film forming conditions of the method for manufacturing a microcrystalline film will be described.
[0025]
FIG. 1 schematically shows a discharge structure of high-frequency plasma CVD. FIG. 1A is a schematic diagram according to an embodiment of the present invention, and FIG. 1B is a conventional general structure in which light emitting portions are not overlapped. FIG. 1C is a schematic diagram according to the manufacturing method, and is a schematic diagram in a case where the light emitting units overlap excessively. First, FIG. 1B, which is an exploded view of each part of the plasma, will be described. The plasma shown in FIG. 1B is a system including a high-frequency electrode 1 for applying a high frequency, a ground electrode 2 on the substrate side, a substrate 3 for forming a film, and a high-frequency power supply 4. It is generated by application. This plasma is composed of light emitting portions 5 and 6 on the high frequency electrode side and the ground electrode side, dark portions 7 and 8 near each electrode, and dark portion 9 between the light emitting portions. In this range, radicals generated in the light emitting portion on the high-frequency electrode side are damaged by recombination while diffusing to the substrate side.
[0026]
As shown in FIG. 1B, the gap distance between the two electrodes is d, the thickness of the dark part near the high-frequency electrode and the thickness of the light emitting part are s1 and p1, respectively, the thickness of the dark part near the ground electrode, and the light emitting part. Are s2 and p2, respectively, in FIG. 1B, d> s1 + p1 + s2 + p2, and a dark portion 9 is present in the middle. Note that s1, s2, p1, and p2 hardly change even if the inter-electrode distance d is changed, as long as the light emitting portions of the respective electrodes do not overlap.
[0027]
On the other hand, in the range of s1 + s2 + (p1 + p2) / 2 <d <s1 + p1 + s2 + p2 according to the present invention, as shown in FIG. 1A, there is no dark portion in the light emitting portion, and the light emitting portions of both electrodes overlap. Absent. In this region, by reducing the distance between the electrodes, the rate at which radicals formed in the light emitting portion reach the substrate increases.
[0028]
Furthermore, if the distance between the electrodes is reduced and d <s1 + s2 + (p1 + p2) / 2, the plasma finally becomes a state where the light emitting portions of both electrodes are completely overlapped as shown in FIG. 1 (c). By setting d <s1 + s2 + (p1 + p2) / 2, there was a tendency that the film-forming speed was reduced with a decrease in the electrode interval. This is considered to be due to an increase in loss of electrons and ions at the electrodes.
[0029]
Next, specific film forming conditions other than the discharge mode of the microcrystalline film according to the embodiment of the present invention will be described below. The electrode diameter of the apparatus used for film formation is 16 mm. Although the frequency of the applied high-frequency power is 100 MHz here, the film can be formed in a range of 10 MHz to 200 MHz. Although the power is set to 20 W, the film can be formed in a range of 2 W to 200 W.
[0030]
As a raw material gas, a silane gas was supplied in a range of 3 to 20 sccm, and a hydrogen gas flow rate was controlled in a range of 150 to 500 sccm by a mass flow controller. Then, the film was evacuated by a turbo pump through a pressure control valve, and the film was formed while maintaining the pressure at 200 Pa (1.5 torr). The unit of flow rate sccm indicates standard cc / min (flow rate cm 3 / min in standard condition conversion). As a source gas, a silane gas was used to form a microcrystalline silicon thin film. In addition, a hydride of silane such as SiH 4 or Si 2 H 6, a hydride of higher order silane, or hydrogen Gases replaced with hydrogen, fluorine, and chlorine are suitable. Further, when a film of microcrystalline germanium or an alloy thereof is formed, GeH 4 or a gas obtained by replacing hydrogen thereof with deuterium, fluorine, or chlorine is suitable as a raw material of germanium. Although H 2 was used as the diluent gas, Ar, He, etc. are also suitable. The pressure may be set in a range of about 13.3 Pa (0.1 torr) to about 2660 Pa (20 torr).
[0031]
Although a 50 mm square glass substrate was used as the substrate, a ceramic substrate, a stainless steel substrate, or a resin substrate such as polyester, polyethylene, polyamide, polyimide, polypropylene, polyvinyl chloride, polycarbonate, or polystyrene may also be used. it can. The substrate temperature was controlled by setting the heater temperature of the ground electrode on the substrate side to 300 ° C. The substrate temperature can be in the range of 50 ° C. to 600 ° C. within the range of the heat resistant temperature of the substrate, but is preferably in the range of 100 ° C. to 400 ° C.
[0032]
Next, with respect to an example of the results of various experiments in which the distance between the electrodes is changed, the relationship between the crystal volume fraction (hereinafter, also simply referred to as the crystal fraction) related to the microcrystalline thin-film solar cell described later, the film formation rate, and the like. Is described.
[0033]
FIG. 2 shows an example of an experimental result of a correlation between a distance between electrodes and a crystal fraction. The experimental conditions in FIG. 2 are a film forming pressure of 200 Pa (1.5 torr), a hydrogen dilution ratio of 20 times, a frequency of 100 MHz, and a power density of 75 mW / cm 2 . When the distance between the electrodes (gap distance) is reduced from 14 mm under these conditions, as shown in FIG. 2, the flux of hydrogen radicals reaching the substrate side increases, so that the crystal fraction (%) gradually increases. Increase. Here, the flux of the radical derived from the silane gas hardly changes, and thus the film forming speed does not change. Further, when the distance between the electrodes (gap distance) is reduced to 4 mm, the loss in the electrodes increases, and the crystal fraction decreases.
[0034]
FIG. 3 shows that the photoactive layer of the microcrystalline thin-film solar cell desirably has a crystal fraction in the range of 30 to 70%. Therefore, the hydrogen dilution rate is reduced and the crystal fraction is constant (for example, 60%). 4) shows an example of an experimental result of an experiment performed under the condition that satisfies the following condition, and an example of an experimental result of a correlation between a distance between electrodes and a deposition rate. As shown in FIG. 3, when an experiment is performed so that the crystal fraction does not change, the necessary dilution ratio decreases and the film forming speed increases when the electrode interval is reduced. The film formation speed is almost inversely proportional to the dilution ratio. Further, when the electrode interval is set to 4 mm, the loss at the electrodes increases, so that the dilution ratio increases and the film formation speed decreases.
[0035]
The above experimental results are, as described above, an example of the back data indicating that the range of s1 + s2 + (p1 + p2) / 2 <d <s1 + p1 + s2 + p2 is preferable, and is preferable when applied to a microcrystalline thin film solar cell.
[0036]
Next, the embodiment of the method for manufacturing a microcrystalline thin-film solar cell according to the present invention will be described. First, the structure of the microcrystalline thin-film solar cell will be described. FIG. 4 shows a structural example of a microcrystalline thin-film solar cell according to the present invention. The structure of this solar cell is a substrate-type single structure, in which a conductive metal electrode 11, a reflection increasing layer 12, an n-type semiconductor layer 13, a photoactive layer 14, and a p-type semiconductor layer 15 are formed on a substrate 10. , And a transparent electrode 16. The solar cell is irradiated with light from the transparent electrode 16 side.
[0037]
In this embodiment, a glass substrate is used as the substrate 10, but a ceramic substrate, a stainless steel substrate, and a resin substrate such as polyester, polyethylene, polyamide, polyimide, polypropylene, polyvinyl chloride, polycarbonate, and polystyrene are used. You can also. The metal electrode 11 is made of a metal such as Ni, Cr, Al, Ag, Pb, Zn, Ni, Au, Cr, Mo, Ir, Nb, Ta, V, Ti, Pt, or a thin film made of an alloy or a multilayer film thereof. Can be provided on the substrate surface by vacuum evaporation, electron beam evaporation, sputtering, a printing method, or the like.
[0038]
Suitable examples of the reflection increasing layer 12 include ITO, ZnO, SnO 2 , In 2 O 3 , and TiO 2 . Suitable methods for depositing the reflection increasing layer 12 include a vacuum deposition method, a sputtering method, a CVD method, and a spray method.
[0039]
For the n-type layer of the microcrystalline thin-film solar cell of this example, a microcrystalline material, particularly μc-Si, was used, but in addition, μc-Si: H, μc-SiC: H, μc-SiN: H, μc- Using a material in which an n-type valence electron controlling agent (Group V atom, P, As, Sb, Bi) is added in high concentration to SiO: H, μc-SiN: H, μc-SiGe: H, etc. Can be. The thickness of the n-type layer is preferably from 50 to 500 °.
[0040]
For the photoactive layer, μc-Si and μc-SiGe, which are effectively intrinsic, can be used. It is suitable that μc-Si has a thickness of 5000 to 40000 °, and μc-SiGe has a thickness of 3000 to 30000 °. As a source gas, a hydride of silane such as SiH 4 or Si 2 H 6 or a gas obtained by replacing hydrogen thereof with deuterium, fluorine, or chlorine is suitable for supplying silicon. Similarly, as a raw material of germanium, GeH 4 or a gas obtained by replacing hydrogen thereof with deuterium, fluorine, or chlorine is suitable. H 2 is suitable as the diluent gas.
[0041]
For the p-type layer of the embodiment, a microcrystalline material, particularly μc-Si, was used, but a-Si may be used. In addition, μc-SiC: H, μc-SiN: H, μc-SiO: H, μc-Si Examples of such materials include SiN: H, μc-SiGe: H, and the like, in which B, which is a p-type valence electron controlling agent, is added at a high concentration. The thickness is preferably 20 to 200 °.
[0042]
As the p-type material for controlling valence electrons, B 2 H 6 was used, but other borohydrides such as B 4 H 10 and boron halides such as BF 3 and BCl 3 can be used.
[0043]
As the transparent conductive film of the present invention, ZnO, SnO 2 , In 2 O 3 , ITO and the like are suitable. Further, the film thickness is preferably about 500 to 20000 °. As a film forming method, a vacuum evaporation method, magnetron sputtering, reactive sputtering, plasma CVD, or the like is suitable.
[0044]
Further, a grid electrode made of a metal such as Ag, Au, Cu, or Al may be used as the current collecting electrode.
[0045]
In the above description, the single structure of the substrate is described as the structure of the solar cell. However, the present invention can also be applied to a superstrate type shown in FIG. 5 or a tandem or triple structure in which a plurality of single cells are stacked. In FIG. 5, the same reference numerals are given to the same functional members as those shown in FIG. 4, and the detailed description is omitted. In FIG. 5, the transparent electrode 17 is placed directly above the substrate 10 made of, for example, glass. The light is provided from the substrate 10 side.
[0046]
Subsequently, the details of the example of the method for manufacturing the microcrystalline thin film solar cell shown in FIG. 4 will be described below together with a comparative example.
[0047]
(Example: Manufacturing method of microcrystalline thin film solar cell)
A 50 mm square glass substrate was used as the substrate 10, and Ag and ZnO metal electrodes 11 were stacked thereon by magnetron sputtering. Ag has a substrate temperature of 250 ° C. during film formation, and its film thickness is approximately 2000 °. ZnO was doped with Ga. The substrate temperature during film formation was 250 ° C., and the film thickness was about 500 °.
[0048]
A semiconductor layer made of silicon and its alloy was formed on the metal electrode 11 by plasma CVD. The plasma CVD apparatus is a capacitively-coupled plasma CVD apparatus having an electrode diameter of 160 mm, and each of the n-layer, the photoactive layer, and the p-layer can be manufactured in a different film-forming chamber.
[0049]
The film formation of the n-layer was performed in the following procedure. The temperature of the heater for heating the substrate was set to 250 ° C., and the tray on which the substrate was placed was placed on the heater and heated. Then, SiH 4 gas, H 2 gas, and PH 3 gas (hydrogen balance 1000 ppm) were introduced into the respective gas introduction pipes. From 3,300, and 20 sccm, and the pressure was adjusted to 266 Pa (2 torr) by a conductance valve. Subsequently, a high frequency of 13.56 MHz and 20 W was applied to the electrode. The glow discharge was stopped when the thickness of the microcrystalline n layer reached 300 °.
[0050]
Subsequently, a film was formed in a growth region of the photoactive layer. The distance between the electrodes was set to 6 mm so that the light emitting portions of both electrodes overlapped half. The temperature of the heater for heating the substrate was set to 200 ° C., the substrate was set and heated, and then SiH 4 gas and H 2 gas were introduced at 15, 200 sccm, respectively. The pressure was adjusted by a conductance valve so that the pressure became 200 Pa (1.5 torr). Subsequently, a high frequency of 100 MHz and 20 W was applied to generate glow discharge. When the film thickness reached 2.5 μm, the application of power was stopped, and the film formation in the growth region of the photoactive layer was completed. The film formation rate was 5 ° / s, and the crystal fraction was 60%.
[0051]
Subsequently, a p-layer was formed. SiH 4 , H 2 , and B 2 H 6 gases were introduced at 3,500 and 15 sccm, respectively, and the pressure was controlled at 266 Pa (2 torr). Then, a high frequency of 13.56 MHz and 10 W was applied, and the film thickness became 70 °. Then, the discharge was stopped. The distance between the electrodes was 10 mm. In this discharge, the light emitting portions of both electrodes were half overlapped. Further, a transparent conductive film made of ITO was formed on the p layer by sputtering at 800 °, and a grid electrode made of Ag was formed by vapor deposition.
[0052]
(Comparative Example 1)
A solar cell was prototyped under the same conditions as in the above example except that the distance between the electrodes at the time of forming the p-layer was 20 mm. Under this condition, when forming the p-layer, the thickness of the dark portion between the light-emitting portions of both electrodes was 7 mm.
[0053]
(Comparative Example 2)
It was prepared under substantially the same conditions as in the above example. However, the distance between the electrodes during the formation of the photoactive layer was set to 10 mm, and the source gas was introduced as SiH 4 gas and H 2 gas at 10, 200 sccm, respectively. The deposition rate was 3 ° / s and the crystal fraction was 60%. The thickness of the dark part between both electrodes was 3 mm.
[0054]
(Comparative Example 3)
It was prepared under substantially the same conditions as in the above example. However, the distance between the electrodes at the time of forming the photoactive layer was set to 4 mm, and the source gas was introduced as SiH 4 gas and H 2 gas at 15, 180 sccm, respectively. The film formation rate was 3 ° / s, and the crystal fraction was 60%.
[0055]
Table 1 shows comparison results of various characteristics (Voc, FF, Jsc, Eff) of the microcrystalline thin-film solar cells of the above-mentioned Example and Comparative Examples 1, 2, and 3. In Table 1, Voc indicates the open-end voltage, FF indicates the fill factor, Jsc indicates the short-circuit current, and Eff indicates the conversion efficiency. Table 1 confirms the superiority of the example to each comparative example.
[0056]
[Table 1]
Figure 2004266111
[0057]
【The invention's effect】
As described above, according to the present invention, a flat ground electrode provided on one side of a microcrystalline film forming substrate, a flat high-frequency electrode provided in parallel on the other side, and a raw material gas supply port In a method for manufacturing a microcrystalline film, a source gas for forming a film is introduced into a film forming chamber provided with, and a microcrystalline film is formed on the main surface of the substrate by plasma discharge.
The microcrystalline film is formed under a film forming condition in which the light emitting portion generated near the high-frequency electrode and the light emitting portion generated near the ground electrode facing the light emitting portion overlap, and the overlapping film forming condition is defined by the following conditional expression. To be satisfied.
[0058]
s1 + p1 + s2 + p2>d> s1 + s2 + (p1 + p2) / 2
In the above conditional expression, d is the spatial distance between the high-frequency electrode and the ground electrode, s1 is the thickness of the dark portion near the high-frequency electrode, p1 is the thickness of the light-emitting portion, s2 is the thickness of the dark portion near the substrate-side electrode, p2 Indicates the thickness of the light emitting portion.
[0059]
Further, as an invention of a method for manufacturing a microcrystalline thin film solar cell, a first electrode layer, a first conductive layer, an effective intrinsic photoactive layer, a second conductive layer, and a second electrode layer are laminated on a substrate, and at least In the method for manufacturing a microcrystalline thin film solar cell in which the photoactive layer is formed of a microcrystalline film, the microcrystalline film is formed by the above-described manufacturing method, and the photoactive layer is formed of a crystal of the microcrystalline film. Since the volume fraction was determined to be in the range of 30 to 70%,
It is possible to improve the film quality of the microcrystalline film and increase the film formation rate, and further to improve the performance and reduce the manufacturing cost of a thin film semiconductor device using the microcrystalline film, particularly a microcrystalline thin film solar cell.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a discharge structure of a high-frequency plasma CVD according to the present invention; FIG. 2 is a diagram showing an example of an experimental result of a correlation between a distance between electrodes and a crystal fraction according to the present invention; FIG. 4 is a view showing an example of an experimental result of a correlation between a distance between electrodes and a deposition rate according to the present invention. FIG. 4 is a view showing an example of a structure of a microcrystalline thin film solar cell according to the present invention. FIG. Diagram showing a structural example of a crystalline thin film solar cell different from that of FIG.
1: High frequency electrode, 2: Ground electrode, 3: Substrate, 4: High frequency power supply, 5: High frequency electrode side light emitting part, 6: Ground electrode side light emitting part, 7: High frequency electrode side dark part, 8: Ground electrode side Dark part, 9: dark part between light emitting parts, 10: substrate (glass substrate), 11: metal electrode, 12: reflection enhancement layer, 13: n layer, 14: photoactive layer, 15: p layer, 16, 17: transparent Electrode layer.

Claims (5)

微結晶膜形成用基板の一側に配設した平板状の接地電極と、他側に平行して配設した平板状の高周波電極と、原料ガス供給口とを備えた成膜室に、膜形成用の原料ガスを導入し、プラズマ放電によって前記基板主面に微結晶膜を形成する微結晶膜の製造方法において、
前記高周波電極近傍に生ずる発光部とこの発光部に対向して接地電極近傍に生ずる発光部とが重なる成膜条件で微結晶膜を形成し、かつ、前記重なる成膜条件は、下記の条件式を満足することを特徴とする微結晶膜の製造方法。
s1+p1+s2+p2 > d > s1+s2+(p1+p2)/2
前記条件式において、d は高周波電極と接地電極との空隙距離、s1は高周波電極近傍の暗部の厚さ、p1は同発光部の厚さ、s2は基板側電極近傍の暗部の厚さ、p2は同発光部の厚さを示す。
The film is formed in a film forming chamber having a flat ground electrode provided on one side of the substrate for forming a microcrystalline film, a high-frequency flat electrode provided in parallel with the other side, and a material gas supply port. A method for producing a microcrystalline film, comprising introducing a source gas for formation and forming a microcrystalline film on the main surface of the substrate by plasma discharge,
The microcrystalline film is formed under a film forming condition in which the light emitting portion generated near the high-frequency electrode and the light emitting portion generated near the ground electrode facing the light emitting portion overlap, and the overlapping film forming condition is defined by the following conditional expression. A method for producing a microcrystalline film, characterized by satisfying the following.
s1 + p1 + s2 + p2>d> s1 + s2 + (p1 + p2) / 2
In the above conditional expression, d is the gap distance between the high frequency electrode and the ground electrode, s1 is the thickness of the dark portion near the high frequency electrode, p1 is the thickness of the light emitting portion, s2 is the thickness of the dark portion near the substrate side electrode, p2 Indicates the thickness of the light emitting portion.
請求項1に記載の微結晶膜の製造方法において、形成する前記微結晶膜の微結晶は、微結晶シリコン,微結晶ゲルマニウム,微結晶シリコン合金,微結晶ゲルマニウム合金の内のいずれかとすることを特徴とする微結晶膜の製造方法。2. The method for manufacturing a microcrystalline film according to claim 1, wherein the microcrystal of the microcrystalline film to be formed is any one of microcrystalline silicon, microcrystalline germanium, microcrystalline silicon alloy, and microcrystalline germanium alloy. A method for producing a microcrystalline film. 請求項2記載の微結晶膜の製造方法において、微結晶シリコン合金は、微結晶シリコンゲルマニウム,微結晶シリコンカーバイド,微結晶シリコンオキサイド,微結晶シリコンナイトライドの内のいずれかとすることを特徴とする微結晶膜の製造方法。3. The method of manufacturing a microcrystalline film according to claim 2, wherein the microcrystalline silicon alloy is any one of microcrystalline silicon germanium, microcrystalline silicon carbide, microcrystalline silicon oxide, and microcrystalline silicon nitride. A method for manufacturing a microcrystalline film. 基板上に第1電極層、第1導電層、実効的に真性な光活性層、第2導電層、第2電極層が積層され、少なくとも前記光活性層が微結晶膜からなる微結晶薄膜太陽電池の製造方法において、前記微結晶膜は、請求項1ないし3のいずれか1項に記載の製造方法によって形成することを特徴とする微結晶薄膜太陽電池の製造方法。A first electrode layer, a first conductive layer, an effective intrinsic photoactive layer, a second conductive layer, and a second electrode layer laminated on a substrate, and at least the photoactive layer is formed of a microcrystalline film; A method for manufacturing a microcrystalline thin-film solar cell, wherein the microcrystalline film is formed by the manufacturing method according to any one of claims 1 to 3. 請求項4に記載の微結晶薄膜太陽電池の製造方法において、前記光活性層は、その微結晶膜の結晶体積分率が30〜70%の範囲となるように形成することを特徴とする微結晶薄膜太陽電池の製造方法。5. The method for manufacturing a microcrystalline thin film solar cell according to claim 4, wherein the photoactive layer is formed such that the crystal volume fraction of the microcrystalline film is in the range of 30 to 70%. Manufacturing method of crystalline thin film solar cell.
JP2003055280A 2003-03-03 2003-03-03 Method for manufacturing microcrystal film and microcrystal film solar cell Pending JP2004266111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003055280A JP2004266111A (en) 2003-03-03 2003-03-03 Method for manufacturing microcrystal film and microcrystal film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003055280A JP2004266111A (en) 2003-03-03 2003-03-03 Method for manufacturing microcrystal film and microcrystal film solar cell

Publications (1)

Publication Number Publication Date
JP2004266111A true JP2004266111A (en) 2004-09-24

Family

ID=33119333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003055280A Pending JP2004266111A (en) 2003-03-03 2003-03-03 Method for manufacturing microcrystal film and microcrystal film solar cell

Country Status (1)

Country Link
JP (1) JP2004266111A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216624A (en) * 2005-02-01 2006-08-17 Mitsubishi Heavy Ind Ltd Solar cell and its production process
WO2008102622A1 (en) * 2007-02-23 2008-08-28 Mitsubishi Heavy Industries, Ltd. Vacuum processing method and vacuum processing apparatus
WO2009081855A1 (en) * 2007-12-21 2009-07-02 Mitsubishi Heavy Industries, Ltd. Method for manufacturing photoelectric conversion device, and photoelectric conversion device
WO2010024211A1 (en) * 2008-08-29 2010-03-04 株式会社カネカ Thin-film photoelectric converter and fabrication method therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216624A (en) * 2005-02-01 2006-08-17 Mitsubishi Heavy Ind Ltd Solar cell and its production process
WO2008102622A1 (en) * 2007-02-23 2008-08-28 Mitsubishi Heavy Industries, Ltd. Vacuum processing method and vacuum processing apparatus
JP2008210826A (en) * 2007-02-23 2008-09-11 Mitsubishi Heavy Ind Ltd Vacuum processing method and apparatus
US8263193B2 (en) 2007-02-23 2012-09-11 Mitsubishi Heavy Industries, Ltd. Vacuum treatment method
WO2009081855A1 (en) * 2007-12-21 2009-07-02 Mitsubishi Heavy Industries, Ltd. Method for manufacturing photoelectric conversion device, and photoelectric conversion device
JP2009152441A (en) * 2007-12-21 2009-07-09 Mitsubishi Heavy Ind Ltd Method of manufacturing photoelectric converter, and photoelectric converter
WO2010024211A1 (en) * 2008-08-29 2010-03-04 株式会社カネカ Thin-film photoelectric converter and fabrication method therefor
JP5379801B2 (en) * 2008-08-29 2013-12-25 株式会社カネカ Thin film photoelectric conversion device and manufacturing method thereof
US8933327B2 (en) 2008-08-29 2015-01-13 Kaneka Corporation Thin-film photoelectric converter and fabrication method therefor

Similar Documents

Publication Publication Date Title
JP4560245B2 (en) Photovoltaic element
US6100466A (en) Method of forming microcrystalline silicon film, photovoltaic element, and method of producing same
KR100895977B1 (en) Amorphous silicon thin-film soar cells and fabrication method for thereof
JP3073327B2 (en) Deposition film formation method
US20070023081A1 (en) Compositionally-graded photovoltaic device and fabrication method, and related articles
US20110088762A1 (en) Barrier layer disposed between a substrate and a transparent conductive oxide layer for thin film silicon solar cells
JPH0677510A (en) Photovolatic element
JP2004014812A (en) Photovoltaic device
JPH1084124A (en) Photovolatic power element, manufacture thereof and device
JP2004266111A (en) Method for manufacturing microcrystal film and microcrystal film solar cell
JP4215697B2 (en) Photoelectric conversion device and manufacturing method thereof
JP3027670B2 (en) Photovoltaic element
JP4416569B2 (en) Deposited film forming method and deposited film forming apparatus
TW201201396A (en) Method for manufacturing a solar panel
JP2003258286A (en) Thin film solar battery and manufacturing method thereof
WO2008010205A2 (en) Thin-film photovoltaic conversion device and method of manufacturing the same
JP3542480B2 (en) Non-single-crystal semiconductor thin film forming apparatus, non-single-crystal semiconductor thin film forming method, and photovoltaic element manufacturing method
JP2002222969A (en) Laminated solar battery
JPH11233443A (en) Forming method of microcrystal silicon film, photovoltaic element and forming equipment of semiconductor film
JP2788798B2 (en) Photovoltaic element
JP2757896B2 (en) Photovoltaic device
JP4012106B2 (en) Method for forming photovoltaic element
JP2004031518A (en) Thin film solar cell
JP2004253417A (en) Method of manufacturing thin film solar cell
JP2915628B2 (en) Photovoltaic element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070111