JPH07198674A - Gas sensor - Google Patents

Gas sensor

Info

Publication number
JPH07198674A
JPH07198674A JP5350475A JP35047593A JPH07198674A JP H07198674 A JPH07198674 A JP H07198674A JP 5350475 A JP5350475 A JP 5350475A JP 35047593 A JP35047593 A JP 35047593A JP H07198674 A JPH07198674 A JP H07198674A
Authority
JP
Japan
Prior art keywords
solid electrolyte
gas sensor
zirconia solid
sensor
peak intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5350475A
Other languages
Japanese (ja)
Other versions
JP3444640B2 (en
Inventor
Hideaki Yagi
秀明 八木
Takehiko Saiki
猛彦 齋木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP35047593A priority Critical patent/JP3444640B2/en
Publication of JPH07198674A publication Critical patent/JPH07198674A/en
Application granted granted Critical
Publication of JP3444640B2 publication Critical patent/JP3444640B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a gas sensor with little change with the lapse of hours in zirconia solid electrolyte even if it is used for long hours and excellent in durability. CONSTITUTION:A gas sensor uses zirconia solid electrolyte containing Y2O3 as stabilizer. The molar ratio Y2O3/ZrO2 of ZrO2 and Y2O3 which constitute the zirconia solid electrolyte is within the range of 7/93 to 12/88, and the zirconia solid electrolyte has a crystal particle structure of less than 0.05 in peak strength ratio T (200)/[C (200)+T (200)] when the X-ray diffraction ray peak strength of cubic system (200) phase is C (200) and the X-ray diffraction ray peak strength of tetragonal system (200) phase is T (200). The zirconia solid electrolyte may contain at least one of Y2O3 and CaO and MgO as stabilizer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ジルコニア固体電解質
を用いたガスセンサに関し、更に詳しく言えば、長時間
使用してもジルコニア固体電解質の経時的変化が少な
く、耐久性に優れるガスセンサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas sensor using a zirconia solid electrolyte, and more particularly to a gas sensor having little change over time in the zirconia solid electrolyte even after long-term use and having excellent durability. .

【0002】[0002]

【従来の技術】従来より、ジルコニア固体電解質を用い
たガスセンサは、種々のガス濃度(例えば、O2 濃度、
水蒸気量等)の測定に用いられている。そして、ガスセ
ンサの機械的強度に重点をおいた場合には、立方晶、正
方晶、単斜晶等の2種以上の結晶粒子により構成される
部分安定化ジルコニア固体電解質を用いることが広く行
われている。
2. Description of the Related Art Conventionally, a gas sensor using a zirconia solid electrolyte has various gas concentrations (for example, O 2 concentration,
It is used to measure the amount of water vapor). When the mechanical strength of the gas sensor is emphasized, it is widely practiced to use a partially stabilized zirconia solid electrolyte composed of two or more kinds of crystal particles such as cubic crystal, tetragonal crystal and monoclinic crystal. ing.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記部
分安定化ジルコニア固体電解質を種々のガスセンサに用
い、300℃〜700℃の温度域で長時間に渡って使用
すると固体電解質に経時的変化が徐々に生じ始め、セン
サの特性、精度等が低下するという問題を抱えてる。
However, when the above partially stabilized zirconia solid electrolyte is used for various gas sensors and is used in a temperature range of 300 ° C. to 700 ° C. for a long time, the solid electrolyte gradually changes with time. However, there is a problem in that the characteristics, accuracy, etc. of the sensor start to deteriorate.

【0004】本発明は、上記問題点を解決するものであ
り、長時間使用してもジルコニア固体電解質の経時的変
化が少なく、耐久性に優れるガスセンサを提供すること
を目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a gas sensor which has little change over time in a zirconia solid electrolyte even when it is used for a long time and which is excellent in durability.

【0005】[0005]

【課題を解決するための手段】本第1発明のガスセンサ
は、Y2 3 を安定化剤として含有するジルコニア固体
電解質(以下、「固体電解質」という。)を用いたガス
センサであって、該ジルコニア固体電解質を構成するZ
rO2 とY2 3 のモル比Y2 3 /ZrO2が7/9
3〜12/88の範囲であり、且つ該ジルコニア固体電
解質は、立方晶の(200)面のX線回折線ピーク強度
をC(200)、正方晶の(200)面のX線回折線ピ
ーク強度をT(200)とした場合のピーク強度比T
(200)/〔C(200)+T(200)〕が0.0
5未満となる結晶粒子組成を有することを特徴とする。
The gas sensor according to the first aspect of the present invention is a gas sensor using a zirconia solid electrolyte containing Y 2 O 3 as a stabilizer (hereinafter referred to as “solid electrolyte”). Z that constitutes the zirconia solid electrolyte
The molar ratio of rO 2 and Y 2 O 3 Y 2 O 3 / ZrO 2 is 7/9.
3 to 12/88, and the zirconia solid electrolyte has a C (200) X-ray diffraction line peak intensity of the cubic (200) plane, and a tetragonal (200) plane X-ray diffraction line peak. Peak intensity ratio T when intensity is T (200)
(200) / [C (200) + T (200)] is 0.0
It is characterized by having a crystal grain composition of less than 5.

【0006】上記「固体電解質」は、本第2発明に示す
様に、上記Y2 3 と、CaO及びMgOの少なくとも
1種と、を安定剤として含有するものであってもよい。
上記の如く、Y2 3 とZrO2 のモル比(Y2 3
ZrO2 )及びピーク強度比を定めるのは、固体電解質
を全安定化若しくは略全安定化したものとすることによ
り、長時間に渡る固体電解質の安定性の向上を図るため
である。即ち、上記モル比Y2 3 /ZrO2 が7/9
3未満の場合(固体電解質が部分安定化領域にある場
合)には、固体電解質の経時的変化が大きい。一方、1
2/88を越える場合には、上記部分安定化領域にある
場合に比べれば耐久性が向上するものの、十分であると
はいえない。また、上記ピーク強度比が0.05以上と
なると固体電解質を構成する結晶粒子中の正方晶の割合
が増加し、固体電解質の経時的変化が大きくなるからで
ある。尚、本発明において、上記各ピーク強度の測定は
立方晶等の(200)面によった場合の値であり、他面
を用いた場合はこのピーク強度は、異なった値となる場
合がある。本発明で、この(200)面としたのは、立
方晶と正方晶のX線回折ピークをはっきり分離して判別
できるためである。
As shown in the second aspect of the present invention, the "solid electrolyte" may contain Y 2 O 3 and at least one of CaO and MgO as a stabilizer.
As described above, the molar ratio of Y 2 O 3 and ZrO 2 (Y 2 O 3 /
The ZrO 2 ) and the peak intensity ratio are determined in order to improve the stability of the solid electrolyte over a long period of time by making the solid electrolyte fully stabilized or substantially fully stabilized. That is, the above molar ratio Y 2 O 3 / ZrO 2 is 7/9.
When it is less than 3 (when the solid electrolyte is in the partially stabilized region), the change with time of the solid electrolyte is large. On the other hand, 1
When it exceeds 2/88, the durability is improved as compared with the case where it is in the above-mentioned partially stabilized region, but it cannot be said to be sufficient. Further, when the above peak intensity ratio is 0.05 or more, the proportion of tetragonal crystals in the crystal particles constituting the solid electrolyte increases, and the change with time of the solid electrolyte increases. In addition, in the present invention, the measurement of each peak intensity is a value when the (200) plane such as a cubic crystal is used, and when the other plane is used, the peak intensity may have different values. . In the present invention, the (200) plane is used because the X-ray diffraction peaks of cubic crystal and tetragonal crystal can be clearly separated and distinguished.

【0007】[0007]

【作用】本発明のガスセンサでは、ZrO2 とY2 3
のモル比及びX線回折線ピーク強度比を規制して全安定
化若しくは略全安定化した固体電解質を用いる。この結
果、固体電解質を構成する結晶粒子の殆どが立方晶によ
り構成され、異種の結晶構造(正方晶)を有する粒子が
存在しなくなるか、極めて少なくなるため結晶粒子界面
での安定性が向上し、固体電解質の経時的安定性の向上
につながる。また、上記組成の固体電解質を用いること
により、第2限界電流の開始電圧(水蒸気分解開始電圧
等)が下がり、水蒸気等のガスを測定する場合、印加電
圧を減少させることができ、その結果、センサに加わる
負荷も減り、耐久性が向上する。
In the gas sensor of the present invention, ZrO 2 and Y 2 O 3 are used.
A solid electrolyte is used which is completely stabilized or substantially completely stabilized by controlling the molar ratio of X and the peak intensity ratio of X-ray diffraction lines. As a result, most of the crystal particles that make up the solid electrolyte are composed of cubic crystals, and there are no particles that have a different crystal structure (tetragonal crystal), or there are very few particles, so stability at the crystal particle interface is improved. , Leading to improvement in stability of the solid electrolyte over time. Further, by using the solid electrolyte of the above composition, the starting voltage of the second limiting current (steam decomposition starting voltage, etc.) is lowered, and when measuring gas such as steam, the applied voltage can be reduced, and as a result, The load on the sensor is also reduced and the durability is improved.

【0008】[0008]

【実施例】以下、実施例により本発明を具体的に説明す
る。 (1)ガスセンサの概要 ガスセンサ(センサ本体)の構成と製造方法 本実施例で用いた限界電流式ガスセンサのセンサ本体A
を図1〜3に示す。このセンサ本体Aは、同図に示す様
に、センサチップ部1とセラミックヒータ部2とを備え
る。上記センサチップ部1は、ZrO2 に安定化剤とし
て所定量のY2 3 を添加固溶させた酸素イオン良導電
性の固体電解質からなる安定化ジルコニア板(5mm×
7mm×0.3mm)11と、その表面上に密着して並
設されている陰電極(厚み;20μm)12及び陽電極
(厚み;20μm)13と、該陰電極12の大部分を覆
うガス供給制限手段14により構成されている。
EXAMPLES The present invention will be specifically described below with reference to examples. (1) Overview of gas sensor Configuration and manufacturing method of gas sensor (sensor body) Sensor body A of limiting current type gas sensor used in this example
Are shown in FIGS. The sensor body A includes a sensor chip portion 1 and a ceramic heater portion 2 as shown in FIG. The sensor chip portion 1 is a stabilized zirconia plate (5 mm × 5 mm) made of a solid electrolyte with good oxygen ion conductivity in which a predetermined amount of Y 2 O 3 as a stabilizer is added to ZrO 2 to form a solid solution.
7 mm × 0.3 mm) 11, a negative electrode (thickness: 20 μm) 12 and a positive electrode (thickness: 20 μm) 13 that are closely arranged on the surface thereof, and a gas that covers most of the negative electrode 12. It is configured by the supply limiting means 14.

【0009】これらの電極12、13は、いずれも多孔
質の白金電極であり、検出部(2.5mm×2.5m
m)121、131と接続部(幅;1mm、長さ;2m
m)122、132により構成されている。また、上記
ガス供給制限手段14は、上記陰電極12の検出部12
1及び接続部122の該検出部121寄りの部分(以
下、「根本部」という。)122aを覆うアルミナ多孔
質層141と、被測定ガスが検出部121に直接侵入し
ない様に、該アルミナ多孔質層141を覆うグレーズ層
142と、該グレース層142に覆われない接続部12
2の上記根本部122a以外の部分(以下、「露出部」
という。)122bと、により構成される。
These electrodes 12 and 13 are both porous platinum electrodes, and have a detecting portion (2.5 mm × 2.5 m).
m) 121, 131 and connecting part (width: 1 mm, length: 2 m
m) 122 and 132. In addition, the gas supply limiting means 14 includes the detection unit 12 of the negative electrode 12.
1 and the alumina porous layer 141 that covers the portion of the connecting portion 122 near the detection portion 121 (hereinafter referred to as the “root portion”) 122a, and the alumina porous layer 141 so that the measured gas does not directly enter the detection portion 121. The glaze layer 142 covering the quality layer 141 and the connecting portion 12 not covered with the glaze layer 142.
2 other than the root portion 122a (hereinafter, "exposed portion")
Say. ) 122b and.

【0010】一方、上記セラミックヒータ部2は、アル
ミナを主体とするセラミック中にタングステンを主体と
するヒータパターン21を埋没したものであり、またセ
ラミックヒータ部2の表面上の一方の隅部(上記センサ
チップ部の配置されない隅部)には、一対の通電用露出
部231、232が設けられている。そして、これらの
通電用露出部231、232により通電し、上記検出部
121、131を300〜700℃に局所加熱する構造
となっている。また、セラミックヒータ部2の略中央部
には、上記安定化ジルコニア板11の加熱効率を上げる
ための通気口22が設けられている。
On the other hand, the ceramic heater portion 2 is formed by burying a heater pattern 21 mainly made of tungsten in a ceramic mainly made of alumina, and one corner portion (above-mentioned above) on the surface of the ceramic heater portion 2 is formed. A pair of exposed portions 231 and 232 for energization are provided in a corner portion where the sensor chip portion is not arranged). Then, a structure is adopted in which the exposed parts 231 and 232 for energization are energized to locally heat the detection parts 121 and 131 to 300 to 700 ° C. Further, a ventilation hole 22 for increasing the heating efficiency of the stabilized zirconia plate 11 is provided in the substantially central portion of the ceramic heater portion 2.

【0011】本実施例では、以上のセンサ本体Aを以下
の様に作製した。先ず、上記安定化ジルコニア板11を
形成するためのZrO2 −Y2 3 グリーンシートの表
面上に、上記陰電極12及び陽電極13を形成するため
の白金ペーストをそれぞれ印刷法により塗布し、陰極用
塗膜と陽極用塗膜を形成した後に、これらの塗膜と、上
記ZrO2 −Y2 3 グリーンシートとを1450℃〜
1500℃の温度の下で同時に焼成した。次いで、上記
焼成品の該陰電極12の上記検出部121と上記根本部
122aに相当する部分に、上記アルミナ多孔質層14
1を形成するために、アルミナ粉末にガラス粉末を混ぜ
たペーストを塗布し多孔質層用塗膜を形成した。更に、
この多孔質層用塗膜上に、上記グレーズ層142を形成
するためのガラス粉末を塗布し、上記グレース層用の塗
膜を形成した後、850〜900℃の温度で焼成を行い
上記センサチップ部1を作製した。
In the present embodiment, the above sensor body A was manufactured as follows. First, a platinum paste for forming the negative electrode 12 and the positive electrode 13 is applied on the surface of a ZrO 2 —Y 2 O 3 green sheet for forming the stabilized zirconia plate 11 by a printing method, After forming the coating film for the cathode and the coating film for the anode, the coating film and the above ZrO 2 —Y 2 O 3 green sheet are formed at 1450 ° C.
Simultaneous firing was performed at a temperature of 1500 ° C. Next, the alumina porous layer 14 is formed on the portion corresponding to the detection portion 121 and the root portion 122a of the negative electrode 12 of the fired product.
In order to form No. 1, a paste prepared by mixing alumina powder with glass powder was applied to form a porous layer coating film. Furthermore,
The glass powder for forming the glaze layer 142 is applied onto the porous layer coating film to form the glaze layer coating film, followed by firing at a temperature of 850 to 900 ° C. to obtain the sensor chip. Part 1 was prepared.

【0012】一方、図3に示す様なグリートシート(固
形分全体を100重量部とした場合に、96重量部のA
2 3 粉末と他部のSiO2 、CaO、MgO等の焼
結助剤粉末から調整されたもので、以下これを「下層側
グリートシート」という。)g1 の略中央に、焼成後に
上記通気口22となる空洞部h1 を穿設した後、その周
囲にタングステンペーストを印刷法により適宜塗布し
て、上記ヒータパターン21となるヒータパターン用塗
膜を形成した。また、このヒータパターン21(ヒータ
パターン用塗膜)の両端部211、212は、上記グリ
ーンシートg1 表面の一端側(上記センサチップ部の配
置されない側)で対向している。更に、これらの端部2
11、212は、上記一対の通電用露出部231、23
2に、それぞれ接続されている。
On the other hand, a grate sheet as shown in FIG. 3 (96 parts by weight of A when the total solid content is 100 parts by weight)
It is prepared from 1 2 O 3 powder and other parts of a sintering aid powder such as SiO 2 , CaO, MgO and the like, which is hereinafter referred to as a “lower layer side gleat sheet”. ) After forming a hollow portion h 1 to be the ventilation hole 22 after firing in the approximate center of g 1 , a tungsten paste is appropriately applied to the periphery thereof by a printing method to form a heater pattern coating for the heater pattern 21. A film was formed. Both ends 211 and 212 of the heater pattern 21 (coating for heater pattern) are opposed to each other on one end side (the side where the sensor chip portion is not arranged) of the surface of the green sheet g 1 . Furthermore, these ends 2
Reference numerals 11 and 212 denote the pair of exposed portions 231, 23 for energization.
2 are respectively connected.

【0013】更に、この下層側グリーンシートg1 と同
様に調整され、同様な空洞部h2 を有するグリートシー
ト(以下、「上層側グリートシート」という。)g2
上記下層側グリーンシートg1 の上から積層、焼成し、
両者を一体化して図3に示す様なセラミックヒータ部2
を作成した。次いで、このセラミックヒータ部2の略中
央部に設けられている通気孔22を挟み対向し、且つ、
セラミックヒータ部2の長手方に向う1組のセンサ電極
24、25を形成するために、酸化ルテニウム製ペース
トを印刷法により塗布し、電極形成用塗膜を形成した。
尚、これらのセンサ電極24、25も、上記ヒータパタ
ーンと同様に相対向する端部241、251を有する。
Further, a grate sheet (hereinafter, referred to as "upper layer side glee sheet") g 2 which is prepared in the same manner as the lower layer side green sheet g 1 and has a similar hollow portion h 2 is used as the lower layer side green sheet g 1. Laminate and fire from above
A ceramic heater unit 2 as shown in FIG.
It was created. Next, the ceramic heater portion 2 is opposed to the air vent 22 provided in the substantially central portion, and
In order to form a pair of sensor electrodes 24 and 25 extending in the longitudinal direction of the ceramic heater portion 2, a ruthenium oxide paste was applied by a printing method to form an electrode forming coating film.
Incidentally, these sensor electrodes 24 and 25 also have end portions 241 and 251 facing each other similarly to the heater pattern.

【0014】更に、このセラミックヒータ部2表面の他
端側(上記通電用露出部231等の配置されない側)上
に、上記センサチップ部1を封着ガラス3を用いて、約
850℃温度にて接合を行うと同時に、上記センサ電極
24、25の焼成を行って本実施例に係わるセンサ本体
Aを作製した。
Further, on the other end side (on the side where the energizing exposed portion 231 and the like are not arranged) of the surface of the ceramic heater portion 2, the sensor chip portion 1 is heated to a temperature of about 850 ° C. by using a sealing glass 3. At the same time as the bonding, the sensor electrodes 24 and 25 are fired to manufacture the sensor body A according to this embodiment.

【0015】作動原理 次に、本実施例に係わるセンサ本体A(限界電流式ガス
センサ)の作動原理を説明する。先ず、この限界電流式
ガスセンサを被測定ガス中に配置し、上記セラミックヒ
ータ部2を通電し、更に上記陰電極12及び陽電極13
間に電圧を印加する。この結果、上記陰電極12の検出
部121内部の酸素は、イオン化されて酸素イオンとな
り、被測定ガス中の酸素は印加電圧Vに応じて陰電極1
2から陽電極13にポンピングされる。このとき、検出
部121下部の安定化ジルコニア板11のみが局所加熱
されるが、接続部122下部の安定化ジルコニア板11
は酸素イオン導電性を示す程には十分に加熱されない
為、酸素はグレーズ層142に覆われない接続部122
の露出部122bからグレーズ層142に覆われた検出
部121内に拡散する。
Operating Principle Next, the operating principle of the sensor body A (limit current type gas sensor) according to this embodiment will be described. First, the limiting current type gas sensor is placed in the gas to be measured, the ceramic heater portion 2 is energized, and the negative electrode 12 and the positive electrode 13 are further provided.
Apply voltage between them. As a result, the oxygen inside the detection part 121 of the negative electrode 12 is ionized into oxygen ions, and the oxygen in the gas to be measured changes according to the applied voltage V.
2 is pumped to the positive electrode 13. At this time, only the stabilized zirconia plate 11 under the detection part 121 is locally heated, but the stabilized zirconia plate 11 under the connection part 122 is heated.
Is not sufficiently heated to exhibit oxygen ion conductivity, so oxygen is not covered by the glaze layer 142.
From the exposed portion 122b of the above to the inside of the detection portion 121 covered with the glaze layer 142.

【0016】このとき、陰電極12、陽電極13間に流
れる出力電流Iは、図4に示す様に変化する。即ち、印
加電圧Vが電圧値V1 〜V2 の場合には、検出部121
内への酸素拡散量は、ガス供給制限手段14で制御さ
れ、被測定ガス中の酸素濃度に応じて制限されるため、
それに伴い電流値も制限されて拡散制限電流値IL1とな
り、第1の平担部F1 に至る。印加電圧が上記拡散制限
電流値IL1が得られる電圧値V2 より更に高くなると被
測定ガス中の水蒸気(水分)が分解され、その分解で生
じた酸素イオンが陽電極13にポンピングされる為、水
蒸気は露出部122bからグレーズ層142に覆われた
検出部121内に拡散し、その拡散量に応じて電流値が
増大する。
At this time, the output current I flowing between the negative electrode 12 and the positive electrode 13 changes as shown in FIG. That is, when the applied voltage V is the voltage value V 1 to V 2 , the detection unit 121
The amount of oxygen diffused into the inside is controlled by the gas supply limiting means 14 and is limited according to the oxygen concentration in the gas to be measured.
Along with this, the current value is also limited to the diffusion limited current value I L1 and reaches the first flat portion F 1 . When the applied voltage becomes higher than the voltage value V 2 at which the diffusion limiting current value I L1 is obtained, the water vapor (moisture) in the gas to be measured is decomposed and the oxygen ions generated by the decomposition are pumped to the positive electrode 13. The water vapor diffuses from the exposed portion 122b into the detection portion 121 covered with the glaze layer 142, and the current value increases according to the amount of diffusion.

【0017】更に、印加電圧Vを高くして、電圧値をV
3 〜V4 にすると出力電流値Iは水蒸気濃度に応じて更
に増大するが、ガス供給制限手段14で水蒸気の拡散量
が制限され、それに伴い電流値も制限され、水蒸気濃度
に応じた拡散制限電流値IL2となり、第2の平坦部F2
に至る。この場合、陰電極12、陽電極13間にV1
2 の電圧を印加して、拡散制限電流値IL1を測定すれ
ば、その大きさから酸素濃度が検出でき、また、V3
4 の電圧を印加して拡散制限電流値IL2を測定すば、
その大きさから、水蒸気量(水分)が検出できる。
Further, the applied voltage V is increased to set the voltage value to V
3 output current value to the ~V 4 I is further increased depending on the water vapor concentration, but limits the amount of diffusion of water vapor in the gas supply controlling unit 14, a current value along with it also limits the diffusion restriction in accordance with the water vapor concentration The current value becomes IL2 , and the second flat portion F2
Leading to. In this case, V 1 ~ between the negative electrode 12 and the positive electrode 13
By applying the voltage of V 2 and measuring the diffusion limiting current value I L1 , the oxygen concentration can be detected from its magnitude, and V 3-
By applying the voltage of V 4 and measuring the diffusion limiting current value I L2 ,
From the size, the amount of water vapor (water content) can be detected.

【0018】(2)性能試験とその評価 性能試験1 本性能試験は、固体電解質を構成するZrO2 とY2
3 のモル比と結晶粒子組成がガスセンサの性能に与える
影響を経時的に調べるためのものである。上記製造方
法、作動原理による限界電流式ガスセンサを表1に示す
組成(及び結晶粒子組成)の安定化ジルコニア固体電解
質を用いて作製した。
(2) Performance test and its evaluation Performance test 1 This performance test was conducted with ZrO 2 and Y 2 O constituting the solid electrolyte.
The purpose of this study is to investigate the influence of the molar ratio of 3 and the composition of crystalline particles on the performance of the gas sensor over time. A limiting current type gas sensor based on the above manufacturing method and operating principle was manufactured using a stabilized zirconia solid electrolyte having the composition (and crystal particle composition) shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】尚、同表中の「ZrO2 の量」及び「Y2
3 の量」の単位は、いずれも「モル」であり、上記グ
リーンシートを調整する段階で、同表に示す様に、それ
ぞれの添加量の調節が行われた。また、同表中のモル比
は、ZrO2 とY2 3 のモル比(Y2 3 /Zr
2 )を示す。更に、同表中の「X線回折強度比」は、
立方晶の(200)面のX線回折線ピーク強度をC(2
00)、正方晶の(200)面のX線回折線ピーク強度
をT(200)とした場合に次の式で表されるものであ
る。 ピーク強度比=T(200)/〔C(200)+T(2
00)〕 また、同表の「結晶粒子構造」の欄における「C」は立
方晶を、「T」は正方晶を、「C+T」は立方晶と正方
晶が混在することを示す。更に、同表中の「※」は、本
発明の範囲外の数値であることを示す。
In the table, "amount of ZrO 2 " and "Y 2
Unit of amount "of O 3 are both" moles ", at the stage of adjusting the green sheet, as shown in the Table, the adjustment of the respective amount has been performed. The molar ratio in the table is the molar ratio of ZrO 2 and Y 2 O 3 (Y 2 O 3 / Zr
O 2 ) is shown. Furthermore, the "X-ray diffraction intensity ratio" in the table is
The X-ray diffraction line peak intensity of the cubic (200) plane is C (2
00), and the X-ray diffraction line peak intensity of the tetragonal (200) plane is represented by the following formula. Peak intensity ratio = T (200) / [C (200) + T (2
00)] In the column of "Crystal grain structure" in the table, "C" indicates cubic crystal, "T" indicates tetragonal crystal, and "C + T" indicates that cubic crystal and tetragonal crystal are mixed. Furthermore, "*" in the table indicates that the value is out of the range of the present invention.

【0021】そして、上記各ガスセンサ(試験例1〜
5)を、上記セラミックヒータ部2により素子(上記検
出部121、131)温度を500℃に保った時の電圧
−電流特性を図5に示す。これによれば、Y2 3 の添
加量が増加し、正方晶の結晶相が減少しても第1平坦部
であるO2 、H2 Oに対する限界電流値及び水蒸気の電
気分解開始電圧値(理論値;近い約1.1V)は変化し
ないが、第2平坦部への立ち上がりはY23 の添加量
が約8〜11モル付近(試験例2〜4)で一番速くな
る。そして、Y2 3 の添加量を更に増し、12モル以
上(試験例5)となると逆に第2平坦部への立ち上がり
が遅れ始める。
Then, the above-mentioned gas sensors (Test Examples 1 to 1)
FIG. 5 shows the voltage-current characteristics of 5) when the temperature of the elements (detection sections 121 and 131) is kept at 500 ° C. by the ceramic heater section 2. According to this, even when the amount of Y 2 O 3 added increases and the tetragonal crystal phase decreases, the limiting current value and the electrolysis start voltage value of steam for O 2 and H 2 O in the first flat portion are reduced. (Theoretical value; close to about 1.1 V) does not change, but the rise to the second flat portion becomes fastest when the amount of Y 2 O 3 added is about 8 to 11 mol (Test Examples 2 to 4). When the amount of Y 2 O 3 added is further increased to 12 mol or more (Test Example 5), on the contrary, the rise to the second flat portion begins to be delayed.

【0022】この様に、Y2 3 の添加量を変化させる
と水蒸気の電気分解開始電圧は変化しないが、電子伝導
開始電圧は約2.5Vで一定である為、第2平坦部が速
く現れ、H2 Oに対する限界電流値の平坦部分の電圧範
囲が広くなる。従って、これらの試験例においては、同
じ水蒸気圧下において上記電圧範囲が広範囲となるた
め、測定できる水蒸気圧範囲が広くなり、更にガスセン
サの駆動電圧を下げることも可能となり、センサに対す
る負荷が減少するため、センサの耐久性の向上を図るこ
とができる。
As described above, when the addition amount of Y 2 O 3 is changed, the electrolysis start voltage of water vapor does not change, but the electron conduction start voltage is constant at about 2.5 V, so that the second flat portion is fast. Appearing, the voltage range of the flat part of the limiting current value with respect to H 2 O is widened. Therefore, in these test examples, since the voltage range becomes wide under the same water vapor pressure, the measurable water vapor pressure range becomes wider, and it becomes possible to further reduce the driving voltage of the gas sensor, and the load on the sensor decreases. Therefore, the durability of the sensor can be improved.

【0023】性能試験2 次に、上記試験例1〜5と同様なセンサを用い、素子温
度を500℃に保ち、それぞれの雰囲気(O2 ;21
%、H2 O;100mmHg)の下で長期間稼働させた
ときの経時変化を調べた。この結果を図6に示す。これ
によれば、Y2 3 の添加量が5モル前後(試験例1)
においては、100時間を経過した後より、O2 又はH
2 Oに対する限界電流値が減少を始める。また、15モ
ルを添加したもの(試験例5)については、試験例1よ
りは多少耐久性が向上するが、それでも約2000時間
後より、同様な限界電流値の減少傾向が現れる。これら
に対して、Y2 3 の添加量が7〜12モルのセンサ
(試験例2〜4)については、10000時間後におい
ても、O2 又はH2 Oに対する限界電流値に殆ど変化が
見られず良好な特性を示した。
Performance Test 2 Next, the same sensor as in Test Examples 1 to 5 was used, the element temperature was kept at 500 ° C., and each atmosphere (O 2 ; 21
%, H 2 O; 100 mmHg), and the change with time was investigated when it was operated for a long time. The result is shown in FIG. According to this, the amount of Y 2 O 3 added is about 5 mol (Test Example 1).
In the above, after 100 hours, O 2 or H
The limiting current value for 2 O begins to decrease. Further, in the case of adding 15 moles (Test Example 5), the durability is slightly improved as compared with Test Example 1, but even after about 2000 hours, a similar tendency of decreasing the limiting current value appears. On the other hand, with respect to the sensors (Test Examples 2 to 4) in which the amount of Y 2 O 3 added was 7 to 12 mol, there was almost no change in the limiting current value with respect to O 2 or H 2 O even after 10,000 hours. However, good characteristics were exhibited.

【0024】性能試験3 次に、上記性能試験2の場合よりも、更にセンサ負荷が
大きくなる高水蒸気圧(760mmHg)下で長時間稼
働させた時の経時変化を調べた。この結果を図7に示
す。これによれば、Y2 3 の添加量が5モル前後(試
験例1)で正方晶が多く存在しているものは、数時間後
にはH2 Oに対する限界電流値が減少し始める。また、
15モルを添加したもの(試験例5)についても、数1
0時間後から同様な傾向が現れる。 これらに対して、
2 3 の添加量が7〜12モルのセンサ(試験例2〜
4)については、1000時間後にH2 Oに対する限界
電流値の多少の減少は見られるもののかなり良好な特性
を示し、高水蒸気圧下においても安定で経時変化が小さ
い。
Performance Test 3 Next, a change over time was investigated when the device was operated for a long time under a high water vapor pressure (760 mmHg) at which the sensor load was larger than in the case of the performance test 2 described above. The result is shown in FIG. 7. According to this, when the amount of Y 2 O 3 added is about 5 mol (Test Example 1) and a large amount of tetragonal crystals are present, the limiting current value for H 2 O begins to decrease after several hours. Also,
Also for the one to which 15 mol was added (Test Example 5),
A similar tendency appears after 0 hours. Against these,
A sensor in which the amount of Y 2 O 3 added is 7 to 12 mol (Test Examples 2 to 2)
Regarding 4), although a slight decrease in the limiting current value with respect to H 2 O was observed after 1000 hours, it exhibited fairly good characteristics, and was stable even under a high water vapor pressure and its change with time was small.

【0025】尚、本発明においては、前記具体的実施例
に示すものに限られず、目的、用途に応じて本発明の範
囲内で種々変更した実施例とすることができる。即ち、
本発明においては、Y2 3 を含有するZrO2 固体電
解質を用いたが、Y2 3 の代わりに、又はY2 3
共にCaO、MgOを含有するZrO2 固体電解質を用
いても良い。また、本実施例では、安定化ジルコニア板
11の一方の面に陰電極12と陽電極13を並設させた
構造としたが、図8及び9に示す様に、安定化ジルコニ
ア板11a、11bを陰電極12a、12bと陽電極1
3a、13bにより挟み込んだものであってもよい。更
に、上記ガス供給制限手段14の代わりに、図8及び9
に示す様な箱体51a、51bを配置しても良く、この
場合には、図8に示す様に同箱体51aの一部に被測定
ガスを導入するための微小孔6aを設けても、同箱体5
1b自体を多孔質体により構成して良い。
The present invention is not limited to the specific examples described above, and various modifications may be made within the scope of the present invention depending on the purpose and application. That is,
In the present invention, was used ZrO 2 solid electrolyte containing Y 2 O 3, instead of Y 2 O 3, or CaO with Y 2 O 3, it may be used ZrO 2 solid electrolyte containing MgO . Further, in the present embodiment, the negative electrode 12 and the positive electrode 13 are arranged in parallel on one surface of the stabilized zirconia plate 11, but as shown in FIGS. 8 and 9, the stabilized zirconia plates 11a and 11b are provided. The negative electrodes 12a and 12b and the positive electrode 1
It may be sandwiched between 3a and 13b. Furthermore, instead of the gas supply limiting means 14 shown in FIGS.
The box bodies 51a and 51b as shown in FIG. 8 may be arranged. In this case, as shown in FIG. 8, a minute hole 6a for introducing the gas to be measured may be provided in a part of the box body 51a. , Same box 5
1b itself may be composed of a porous body.

【0026】[0026]

【発明の効果】以上の様に、本発明によれば、長時間に
渡り、300〜700℃という高い温度にセンサ素子を
加熱し、使用してもセンサ特性に殆ど変化がない。従っ
て、本発明のガスセンサは、長時間に渡り品質、精度を
高く保つことができるため、信頼性が極めて高い。
As described above, according to the present invention, even if the sensor element is heated to a high temperature of 300 to 700 ° C. for a long time and used, the sensor characteristics hardly change. Therefore, the gas sensor of the present invention can maintain high quality and accuracy for a long time, and thus has extremely high reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例のセンサ本体を示す斜視図である。FIG. 1 is a perspective view showing a sensor body of an embodiment.

【図2】実施例のセンサ本体の一部縦断面図である。FIG. 2 is a partial vertical cross-sectional view of the sensor body of the embodiment.

【図3】実施例のセラミックヒータ部の製造過程を示す
説明図である。
FIG. 3 is an explanatory view showing a manufacturing process of the ceramic heater part of the embodiment.

【図4】実施例のガスセンサの動作を説明するグラフで
ある。
FIG. 4 is a graph illustrating the operation of the gas sensor of the example.

【図5】実施例のガスセンサの電圧−電流特性を示すグ
ラフである。
FIG. 5 is a graph showing voltage-current characteristics of the gas sensor of the example.

【図6】実施例のガスセンサの経時変化を示すグラフで
ある。
FIG. 6 is a graph showing changes with time of the gas sensor of the example.

【図7】実施例のガスセンサの高水蒸気圧下での経時変
化を示すグラフである。
FIG. 7 is a graph showing changes with time of a gas sensor of an example under a high water vapor pressure.

【図8】本実施例の変形例にかかわるセンサ本体の縦断
面図である。
FIG. 8 is a vertical cross-sectional view of a sensor body according to a modified example of this embodiment.

【図9】本実施例の変形例にかかわるセンサ本体の縦断
面図である。
FIG. 9 is a vertical sectional view of a sensor body according to a modified example of this embodiment.

【符合の説明】[Explanation of sign]

A;センサ本体、1;サンサチップ部、11;安定化ジ
ルコニア板、12;陰電極、13;陽電極、121、1
31;検出部、122、132;接続部、122a;根
本部、122b;露出部、14;ガス供給制限手段、1
41;アルミナ多孔質層、142;グレーズ層、2;セ
ラミックヒータ部、21;ヒータパターン、211、2
12;端部、22;通気口、231、232;通電用露
出部、24、25;センサ電極、3;;封着ガラス、g
1 ;下層側グリートシート、g2;上層側グリートシー
ト、h1 、h2 ;空洞部、51a、51b;箱体、6
a;微小孔。
A: Sensor body, 1; Sansa tip part, 11; Stabilized zirconia plate, 12; Cathode electrode, 13; Positive electrode, 121, 1
31; detection part, 122, 132; connection part, 122a; root part, 122b; exposed part, 14; gas supply limiting means, 1
41; Alumina porous layer, 142; Glaze layer, 2; Ceramic heater part, 21; Heater pattern, 211, 2
12; end part, 22; vent hole, 231, 232; exposed part for energization, 24, 25; sensor electrode, 3; sealing glass, g
1 ; lower layer side gree sheet, g 2 ; upper layer side gree sheet, h 1 , h 2 ; cavity, 51a, 51b; box, 6
a: Micropores.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Y2 3 を安定化剤として含有するジル
コニア固体電解質を用いたガスセンサであって、 該ジルコニア固体電解質を構成するZrO2 とY2 3
のモル比Y2 3 /ZrO2 が7/93〜12/88の
範囲であり、且つ該ジルコニア固体電解質は、立方晶の
(200)面のX線回折線ピーク強度をC(200)、
正方晶の(200)面のX線回折線ピーク強度をT(2
00)とした場合のピーク強度比T(200)/〔C
(200)+T(200)〕が0.05未満となる結晶
粒子組成を有することを特徴とするガスセンサ。
1. A gas sensor using a zirconia solid electrolyte containing Y 2 O 3 as a stabilizer, which comprises ZrO 2 and Y 2 O 3 constituting the zirconia solid electrolyte.
Has a molar ratio Y 2 O 3 / ZrO 2 in the range of 7/93 to 12/88, and the zirconia solid electrolyte has an X-ray diffraction peak intensity of a cubic (200) plane of C (200),
The X-ray diffraction peak intensity of the tetragonal (200) plane is T (2
00), the peak intensity ratio T (200) / [C
A gas sensor having a crystal grain composition in which (200) + T (200)] is less than 0.05.
【請求項2】 Y2 3 と、CaO及びMgOの少なく
とも1種と、を安定化剤として含有するジルコニア固体
電解質を用いたガスセンサであって、 該ジルコニア固体電解質を構成するZrO2 とY2 3
のモル比Y2 3 /ZrO2 が7/93〜12/88の
範囲であり、且つ該ジルコニア固体電解質は、立方晶の
(200)面のX線回折線ピーク強度をC(200)、
正方晶の(200)面のX線回折線ピーク強度をT(2
00)とした場合のピーク強度比T(200)/〔C
(200)+T(200)〕が0.05未満となる結晶
粒子組成を有することを特徴とするガスセンサ。
2. A gas sensor using a zirconia solid electrolyte containing Y 2 O 3 and at least one of CaO and MgO as a stabilizer, which comprises ZrO 2 and Y 2 constituting the zirconia solid electrolyte. O 3
Has a molar ratio Y 2 O 3 / ZrO 2 in the range of 7/93 to 12/88, and the zirconia solid electrolyte has an X-ray diffraction peak intensity of a cubic (200) plane of C (200),
The X-ray diffraction peak intensity of the tetragonal (200) plane is T (2
00), the peak intensity ratio T (200) / [C
A gas sensor having a crystal grain composition in which (200) + T (200)] is less than 0.05.
JP35047593A 1993-12-29 1993-12-29 Gas sensor for water vapor and gas sensor for both oxygen and water vapor Expired - Lifetime JP3444640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35047593A JP3444640B2 (en) 1993-12-29 1993-12-29 Gas sensor for water vapor and gas sensor for both oxygen and water vapor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35047593A JP3444640B2 (en) 1993-12-29 1993-12-29 Gas sensor for water vapor and gas sensor for both oxygen and water vapor

Publications (2)

Publication Number Publication Date
JPH07198674A true JPH07198674A (en) 1995-08-01
JP3444640B2 JP3444640B2 (en) 2003-09-08

Family

ID=18410750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35047593A Expired - Lifetime JP3444640B2 (en) 1993-12-29 1993-12-29 Gas sensor for water vapor and gas sensor for both oxygen and water vapor

Country Status (1)

Country Link
JP (1) JP3444640B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10801989B2 (en) 2015-08-27 2020-10-13 Denso Corporation A/F sensor and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10801989B2 (en) 2015-08-27 2020-10-13 Denso Corporation A/F sensor and method of manufacturing the same

Also Published As

Publication number Publication date
JP3444640B2 (en) 2003-09-08

Similar Documents

Publication Publication Date Title
JPH09257746A (en) Method for cleaning limit current type gas sensor and gas concentration detector utilizing the same
US20120073970A1 (en) Amperometric Oxygen Sensor
Yagi et al. Humidity sensing characteristics of a limiting current type planar oxygen sensor for high temperatures
JP3444640B2 (en) Gas sensor for water vapor and gas sensor for both oxygen and water vapor
JPH0467912B2 (en)
JP2947929B2 (en) Sensor element for limiting current sensor for measuring lambda values of gas mixtures
KR102567567B1 (en) Limiting current type oxygen sensor
KR102568419B1 (en) Limiting current type oxygen sensor and method of manufacturing the same
JP2805811B2 (en) Combustion control sensor
KR100347580B1 (en) Manufacturing method of oxygen sensor element
JP3678747B2 (en) Insulating layer system for electrical isolation of current circuits.
JPH11174023A (en) Solid electrolyte type carbon dioxide gas sensor element
JPH0618292Y2 (en) Oxygen sensor with heater
KR100234021B1 (en) Heater integrated oxygen sensor using porous ceramic diffusion barrier composition and preparation method thereof
JPH0510918A (en) Oxygen-concentration detecting element and manufacture thereof
JPH03120456A (en) Oxygen sensor
KR100486695B1 (en) Air/fuel ratio sensor
JPH05312768A (en) Oxigen sensor
JPH0234605Y2 (en)
JP2000221158A (en) Ceramic heater and oxygen sensor using the same
JP2003121411A (en) Solid electrolyte type carbon dioxide sensor element
JP4179488B2 (en) Solid electrolyte carbon dioxide sensor element
JPH04223260A (en) Oxygen sensor element
JPH05240835A (en) Oxygen-concentration detecting element
KR950008861B1 (en) Ceramic semiconductor control sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term