JPH0719788A - Fin-tube type heat exchanger - Google Patents

Fin-tube type heat exchanger

Info

Publication number
JPH0719788A
JPH0719788A JP16487893A JP16487893A JPH0719788A JP H0719788 A JPH0719788 A JP H0719788A JP 16487893 A JP16487893 A JP 16487893A JP 16487893 A JP16487893 A JP 16487893A JP H0719788 A JPH0719788 A JP H0719788A
Authority
JP
Japan
Prior art keywords
tube
fin
heat exchanger
grooves
type heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16487893A
Other languages
Japanese (ja)
Other versions
JP3046471B2 (en
Inventor
Akinori Tsuchiya
昭則 土屋
Ryoichi Ozaki
良一 尾崎
Kenki Minamoto
堅樹 源
Motohisa Miyato
元久 宮藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP5164878A priority Critical patent/JP3046471B2/en
Priority to MYPI94001335A priority patent/MY115423A/en
Priority to US08/250,607 priority patent/US6202703B1/en
Priority to DE69429303T priority patent/DE69429303T2/en
Priority to EP94303866A priority patent/EP0626459B1/en
Priority to SG1996003329A priority patent/SG48880A1/en
Publication of JPH0719788A publication Critical patent/JPH0719788A/en
Application granted granted Critical
Publication of JP3046471B2 publication Critical patent/JP3046471B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To obtain a fin-tube type heat exchanger which can prevent a lubricat ing oil remaining inevitably in an assembling process of the heat exchanger from corroding by undergoing a sticking of moisture, a change in temperature and a change in an airing condition, increase the reliability and lifetime and is excellent in corrosion resistance. CONSTITUTION:In a fin-tube type heat exchanger comprising a plurality of plate-shaped fins 1 made of aluminum or an aluminum alloy and disposed in parallel and a tube 2 made of a copper alloy and brought into contact with and joined to each fin, the material of this tube 2 is the alloy which contains at least one kind of constituent selected from a group of Zn of 0.05 to 10wt.%, Mn of 0.05 to 51wt.% and Mg of 0.05 to 5wt.%, by 0.05 to 10wt.% in the total amount, and the residual part of which is constituted of Cu and unavoidable impurities. Moreover, the tube is an internally grooved tube which has a plurality of parallel grooves in the inner surface thereof and an outside diameter of 4 to 25.4 mm and of which the ratio between the depth of the grooves and the inside diameter determined by a crest part formed between the grooves and also the helix angle of the grooves to the direction of the tube axis are in prescribed ranges.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は空調機器に使用されるフ
ィンチューブ型熱交換器に関し、特に蟻の巣状腐食に対
する耐食性が優れたフィンチューブ型熱交換器に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fin-tube type heat exchanger used in an air conditioner, and more particularly to a fin-tube type heat exchanger having excellent corrosion resistance against ant nest corrosion.

【0002】[0002]

【従来の技術】一般に、空調機器に使用されるフィンチ
ューブ型熱交換器は、アルミニウム又はアルミニウム合
金製のプレート状のフィンに、チューブ挿通孔を設ける
と共に、この挿通孔内に筒状のフィンカラーを設け、前
記フィンを多数平行に配置した状態で、前記フィンカラ
ー内に銅製チューブを各フィンを連結するように挿入
し、次いでこのチューブを拡管してフィンに固定するこ
とにより、フィン及びチューブが組み立てられている。
そして、前記チューブ内に熱媒体を流し、その熱を前記
フィンに伝達して放熱させている。
2. Description of the Related Art Generally, a fin tube type heat exchanger used in an air conditioner has a plate-shaped fin made of aluminum or an aluminum alloy provided with a tube insertion hole and a cylindrical fin collar inside the insertion hole. In the state where a large number of fins are arranged in parallel, a copper tube is inserted into the fin collar so as to connect the fins, and then the tube is expanded and fixed to the fins, thereby It is assembled.
Then, a heat medium is caused to flow in the tube, and the heat is transmitted to the fins for heat dissipation.

【0003】このフィンチューブ型熱交換器は、前記プ
レート状フィンが熱伝導性とコストの点からアルミニウ
ム又はアルミニウム合金によりつくられており、前記チ
ューブとしては、熱伝導性と耐食性の点から銅製のチュ
ーブが広く使用されている。なお、この銅製チューブ
は、主としてりん脱酸銅といわれる純銅のチューブであ
る。
In this fin-tube type heat exchanger, the plate-shaped fins are made of aluminum or an aluminum alloy from the viewpoint of heat conductivity and cost, and the tube is made of copper from the viewpoint of heat conductivity and corrosion resistance. Tubes are widely used. The copper tube is a pure copper tube mainly called phosphorus deoxidized copper.

【0004】[0004]

【発明が解決しようとする課題】しかし、これらの従来
のフィンチューブ型熱交換器においては、フィンの打抜
加工の工程及びチューブの拡管工程で潤滑油及び有機溶
剤等の有機物が不可避的に残留し、この有機物がフィン
及びチューブの保管中又は熱交換器としての使用中に、
水分の付着と蒸発を繰り返し受ける。また、熱交換器と
しての使用中に、特異な温湿度と通気の環境等に曝され
る。このような条件下で、有機物が分解してカルボン酸
を含むようになり、局部的に蟻の巣状を呈する特異な腐
食が発生し、しばしばチューブがリークすることがあ
る。
However, in these conventional fin-tube type heat exchangers, lubricating oil and organic substances such as organic solvents inevitably remain in the fin punching process and the tube expanding process. However, during storage of fins and tubes or use of this organic matter as a heat exchanger,
Repeatedly adheres and evaporates water. Further, during use as a heat exchanger, it is exposed to a peculiar temperature and humidity and a ventilation environment. Under such conditions, organic substances are decomposed to contain carboxylic acid, and peculiar corrosion which takes the form of a nest of ants locally occurs, and the tube often leaks.

【0005】また、前述の如く、フィンチューブ型熱交
換器の組立工程では多くの潤滑油を使用するが、近年の
環境問題から、有機溶剤による脱脂洗浄を避ける傾向に
あり、代わって揮発性を有する潤滑油が使用される傾向
にある。この揮発性を有する潤滑油の中には、ベースオ
イルは揮発性であるものの、油性添加剤が素材表面に残
留するものがある。従って、有機溶剤で脱脂洗浄を行っ
ていた場合に比して、素材表面における有機物の残留は
増加する傾向が認められ、蟻の巣状腐食が生ずる危険性
は以前にもまして高まっている。
Further, as described above, a lot of lubricating oil is used in the process of assembling the fin-tube heat exchanger, but due to recent environmental problems, there is a tendency to avoid degreasing cleaning with an organic solvent, and instead, volatility is reduced. The lubricating oils that they have tend to be used. Among the volatile lubricating oils, there are oils in which the base oil is volatile but the oily additive remains on the surface of the material. Therefore, as compared with the case where degreasing cleaning is performed with an organic solvent, there is a tendency that the amount of organic substances remaining on the surface of the material increases, and the risk of ant nest corrosion is higher than before.

【0006】このような背景の下で、近時、フィンチュ
ーブ型熱交換器の蟻の巣状腐食の対策が大きな問題とし
て注目されており、蟻の巣状腐食に対する耐食性が優れ
たフィンチューブ型熱交換器の開発が望まれている。
Against this background, countermeasures against ant nest corrosion of fin-tube type heat exchangers have recently attracted attention as a major problem, and a fin tube type having excellent corrosion resistance against ant nest corrosion. Development of a heat exchanger is desired.

【0007】本発明はかかる問題点に鑑みてなされたも
のであって、フィンチューブ型熱交換器に特有な現象、
即ち、熱交換器の組立工程で不可避的に残留した潤滑油
が水分の付着と蒸発の繰り返しを受け、更に特異な温湿
度条件と通気条件の環境下に曝され、カルボン酸を含む
ようになっても、蟻の巣状腐食に対して優れた耐食性を
有し、その信頼性と寿命を増大することができる耐食性
が優れたフィンチューブ型熱交換器を提供することを目
的とする。
The present invention has been made in view of the above problems, and is a phenomenon peculiar to a fin-tube heat exchanger,
That is, the lubricating oil unavoidably left in the assembly process of the heat exchanger is repeatedly exposed to moisture and evaporated, and is exposed to an environment of unique temperature and humidity conditions and aeration conditions to contain carboxylic acid. Even so, it is an object of the present invention to provide a fin-tube heat exchanger having excellent corrosion resistance against ant nest corrosion, which can increase its reliability and life.

【0008】[0008]

【課題を解決するための手段】本発明に係るフィンチュ
ーブ型熱交換器は、アルミニウム又はアルミニウム合金
製のプレート状フィンが複数個平行に配置され、各フィ
ンに接触してこれを連結する銅合金製チューブが配置さ
れたフィンチューブ型熱交換器において、前記銅合金製
チューブは、0.05乃至10重量%のZn、0.05
乃至5重量%のMn及び0.05乃至5重量%のMgか
らなる群から選択された少なくとも1種の成分を、総量
で0.05乃至10重量%含有し、残部がCu及び不可
避的不純物からなる銅合金管であることを特徴とする。
A fin-tube heat exchanger according to the present invention is a copper alloy in which a plurality of plate-shaped fins made of aluminum or aluminum alloy are arranged in parallel and contact each fin to connect them. In the fin-tube heat exchanger in which tubes made of copper are arranged, the tubes made of copper alloy are made of 0.05 to 10 wt% Zn, 0.05
To 5% by weight of Mn and 0.05 to 5% by weight of Mg, and at least one component selected from the group of 0.05 to 10% by weight, with the balance being Cu and inevitable impurities. It is a copper alloy tube.

【0009】また、熱交換器としての伝熱性能を向上さ
せるために、前記銅合金製チューブは、管内面に平行な
複数の溝を有し、その外径が4〜25.4mm、溝深さ
hと溝間の山頂部により規定される管内径Diとの比h
/Diが0.01≦h/Di≦0.05、管軸方向に対す
る溝のねじれ角γが0°≦γ≦30°である内面溝付管
であることが好ましい。
In order to improve the heat transfer performance as a heat exchanger, the copper alloy tube has a plurality of grooves parallel to the inner surface of the tube, the outer diameter of which is 4 to 25.4 mm and the groove depth. Ratio h to the pipe inner diameter Di defined by the crest of the groove
It is preferable that the inner grooved tube has a / Di of 0.01≤h / Di≤0.05 and a twist angle γ of the groove with respect to the tube axis direction of 0 ° ≤γ≤30 °.

【0010】[0010]

【作用】本願発明者は蟻の巣状腐食に対する耐食性が優
れたフィンチューブ型熱交換器を得るべく、種々研究を
行った結果、以下の事実を見い出した。
The present inventor has conducted various studies to obtain a fin-tube type heat exchanger having excellent corrosion resistance against ant nest corrosion, and has found the following facts.

【0011】即ち、蟻の巣状の腐食は、熱交換器の組立
工程で不可避的に残留する潤滑油及び有機溶剤等の有機
物が分解して生成するカルボン酸によって、保管中及び
使用中にチューブの内外面を問わず局部的に発生し、し
ばしばチューブをリークに至らしめるものである。
That is, the ant nest-like corrosion is caused by the carboxylic acid produced by the decomposition of organic substances such as lubricating oil and organic solvent which are inevitably left in the assembly process of the heat exchanger. It occurs locally on both the inner and outer surfaces of the tube and often leads to leaks in the tube.

【0012】そこで、本願発明者らは、チューブの構成
材料自体の耐食性を改善する必要があるとの観点に立ち
種々実験研究を繰り返した結果、銅に、Zn、Mn及び
Mgのうち少なくとも1成分を所定量含有した銅合金か
らなる管をチューブとして使用することにより、フィン
チューブ型熱交換器の耐食性が著しく改善されることを
見出した。即ち、従来のりん脱酸銅管を使用したフィン
チューブ型熱交換器に蟻の巣状腐食が発生するような腐
食環境においても、Zn、Mn及びMgのうち少なくと
も1成分を含有する銅合金管を使用したフィンチューブ
型熱交換器では、局部的な腐食は進行せず、全面腐食の
形態を示す。
Then, the inventors of the present invention repeated various experimental studies from the viewpoint that it is necessary to improve the corrosion resistance of the material constituting the tube itself, and as a result, copper was found to contain at least one of Zn, Mn and Mg. It was found that the corrosion resistance of the fin-tube heat exchanger is remarkably improved by using a tube made of a copper alloy containing a predetermined amount of as a tube. That is, even in a corrosive environment where ant nest corrosion occurs in a fin tube type heat exchanger using a conventional phosphorous deoxidized copper tube, a copper alloy tube containing at least one of Zn, Mn and Mg. In the fin-tube type heat exchanger using, the local corrosion does not proceed and the general corrosion form is exhibited.

【0013】このように、Zn、Mn及びMgを所定量
添加することにより、銅合金管の耐食性を向上させるこ
とができるのは、Zn、Mn及びMgは電位的にCuよ
り卑であり、更にCuに固溶して均一に分布するため、
素材表面が均一に腐食し、腐食生成物も均一に溶解して
いくためであると考えられる。
As described above, by adding a predetermined amount of Zn, Mn and Mg, it is possible to improve the corrosion resistance of the copper alloy tube because Zn, Mn and Mg are lower in potential than Cu, and Since it forms a solid solution in Cu and is uniformly distributed,
It is considered that this is because the surface of the material is uniformly corroded and the corrosion products are also uniformly dissolved.

【0014】銅合金管の組成 Zn、Mn及びMgの含有量が0.05重量%未満では
耐食性の改善効果が十分でない。一方、これらの成分の
含有量が増加するほど、銅合金管の耐食性の改善効果は
向上する。しかし、フィンチューブ型熱交換器の製造過
程においては、チューブの加工性及びろう付け性が要求
され、これらの加工性及びろう付け性はZn、Mn及び
Mgの量が多くなると劣化する。そこで、製造工程にお
けるチューブの加工性及びろう付け性を確保するため
に、Znの含有量は10重量%以下、Mn及びMgの含
有量は5重量%以下にし、更に総量でも10重量%以下
とすることが必要である。また、これらの添加成分はい
ずれも同様の作用効果があるので、これらの成分の中の
少なくとも1種を添加すればよい。従って、チューブの
構成材料である銅合金は、Zn:0.05乃至10重量
%、Mn:0.05乃至5重量%及びMg:0.05乃
至5重量%の少なくとも1種の成分を総量で0.05乃
至10重量%含有するものとする。
If the content of Zn, Mn and Mg in the copper alloy tube is less than 0.05% by weight, the effect of improving the corrosion resistance is not sufficient. On the other hand, as the contents of these components increase, the effect of improving the corrosion resistance of the copper alloy tube increases. However, in the manufacturing process of the fin-tube heat exchanger, workability and brazing property of the tube are required, and these workability and brazing property deteriorate when the amounts of Zn, Mn and Mg increase. Therefore, in order to secure the workability and brazing property of the tube in the manufacturing process, the content of Zn is 10% by weight or less, the content of Mn and Mg is 5% by weight or less, and the total amount is 10% by weight or less. It is necessary to. Further, since all of these additive components have the same action and effect, at least one of these components may be added. Therefore, the copper alloy as the constituent material of the tube contains Zn: 0.05 to 10% by weight, Mn: 0.05 to 5% by weight and Mg: 0.05 to 5% by weight in total. The content is 0.05 to 10% by weight.

【0015】更に、本発明に係るフィンチューブ型熱交
換器の銅合金製チューブとして、内面溝付管を使用する
ことが好ましい。この内面溝付管は、外径が4〜25.
4mmであり、管内面に互いに平行な複数の溝を有し、
溝深さhと最小内径Di(山頂部により規定される内
径)が0.01≦h/Di≦0.05であり、管軸方向
へのねじれ角γが0°≦γ≦30°の関係を満たすもの
である。これにより、伝熱性能を著しく向上させること
ができる。
Furthermore, it is preferable to use an inner grooved tube as the copper alloy tube of the finned tube heat exchanger according to the present invention. This inner grooved tube has an outer diameter of 4-25.
4 mm, having a plurality of parallel grooves on the inner surface of the tube,
The relationship between the groove depth h and the minimum inner diameter Di (inner diameter defined by the crest) is 0.01 ≦ h / Di ≦ 0.05, and the twist angle γ in the pipe axis direction is 0 ° ≦ γ ≦ 30 °. To meet. Thereby, the heat transfer performance can be significantly improved.

【0016】内面溝付管の外径が4mm未満の場合は、
熱媒体の圧力損失が増大して、伝熱性能が十分に得られ
ない。一方、外径が25.4mmを超える場合は、熱交
換器が大型化し、フィンチューブ型熱交換器としては非
経済的である。従って、管外径は4乃至25.4mmと
する必要がある。
When the outer diameter of the inner grooved tube is less than 4 mm,
The pressure loss of the heat medium increases, and heat transfer performance cannot be sufficiently obtained. On the other hand, when the outer diameter exceeds 25.4 mm, the heat exchanger becomes large, which is uneconomical as a fin-tube heat exchanger. Therefore, the outer diameter of the pipe needs to be 4 to 25.4 mm.

【0017】また、溝深さhと最小内径Diとの比h/
Diが0.01未満では、伝熱性能の向上が十分ではな
く、逆に0.05を超えると、圧力損失が増加するた
め、伝熱性能は低下する傾向となる。更に、管軸方向へ
のねじれ角γが30°を超えると、圧力損失が増大する
ため、伝熱性能が十分に得られない。従って、比h/D
iが0.01≦h/Di≦0.05であって、ねじれ角γ
は0°≦γ≦30°とすることが好ましい。
The ratio of the groove depth h to the minimum inner diameter Di, h /
When Di is less than 0.01, the heat transfer performance is not sufficiently improved, while when it exceeds 0.05, the pressure loss increases, and the heat transfer performance tends to decrease. Furthermore, if the twist angle γ in the tube axis direction exceeds 30 °, the pressure loss increases, and heat transfer performance cannot be sufficiently obtained. Therefore, the ratio h / D
i is 0.01 ≦ h / Di ≦ 0.05, and the twist angle γ
Is preferably 0 ° ≦ γ ≦ 30 °.

【0018】このような構造の溝を内面に形成した内面
溝付管をチューブとして使用すると、前述の如く、蟻の
巣状腐食に対する耐食性が優れていると共に、更に、熱
交換器としての伝熱性能が優れた高性能のフィンチュー
ブ型熱交換器を得ることができる。
When the inner grooved tube having the groove of such a structure formed on the inner surface is used as a tube, as described above, the corrosion resistance against ant nest corrosion is excellent, and further, the heat transfer as a heat exchanger is performed. It is possible to obtain a high-performance fin-tube heat exchanger with excellent performance.

【0019】また、本チューブを構成する銅合金管とし
ては、Zn、Mn及びMg以外に、不可避的不純物とし
て、脱酸剤として通常使用されるP及びB等を含有する
ことがあるが、これらの不純物を含有していても、耐食
性の向上に関して、何等支障はない。
In addition to Zn, Mn and Mg, the copper alloy tube constituting this tube may contain P and B, which are usually used as deoxidizers, as unavoidable impurities. Even if it contains the above impurities, there is no problem in improving the corrosion resistance.

【0020】[0020]

【実施例】次に、本発明の実施例についてその比較例と
比較して説明する。下記表1に示す組成のチューブ(焼
鈍材)を使用して図1の平面図に示すようなフィンチュ
ーブ型熱交換器を作製し、蟻の巣状腐食に対する耐食性
と、伝熱性能と、製造上必要な特性である加工性及びろ
う付け性とを評価した。図2はこのフィンチューブ型熱
交換器のチューブ管軸方向の断面図であり、図3はチュ
ーブの横断面図、図4は同じくその一部拡大図である。
各プレート状フィン1は実質的に板状をなしているが、
その高さ方向の中央に複数個のチューブ挿通孔が形成さ
れており、この挿通孔の周縁に筒状のフィンカラー5が
その軸方向をフィン1に直交する方向にして設けられて
いる。そして、各プレート状フィン1を相互に平行にな
るように配置し、各フィン1のフィンカラー5にチュー
ブ2を挿入する。このチューブ2はヘアピン曲げ部3を
有するU字形をなし、フィンカラー5に挿入し、拡管し
てチューブ2をフィン1に固定した後、チューブ2の両
先端部と、隣接するチューブ2の先端部とを半円形状の
チューブ4にろう付けすることにより、各チューブ2が
一本のチューブになるように連結する。
EXAMPLES Next, examples of the present invention will be described in comparison with comparative examples. Using a tube (annealing material) having the composition shown in Table 1 below, a fin-tube heat exchanger as shown in the plan view of FIG. 1 was produced, and the corrosion resistance against ant nest corrosion, heat transfer performance, and manufacturing The workability and brazing properties, which are the properties required above, were evaluated. 2 is a sectional view of the fin-tube heat exchanger in the tube tube axial direction, FIG. 3 is a lateral sectional view of the tube, and FIG. 4 is a partially enlarged view of the same.
Each plate-shaped fin 1 is substantially plate-shaped,
A plurality of tube insertion holes are formed at the center in the height direction, and a cylindrical fin collar 5 is provided on the peripheral edge of the insertion hole with its axial direction orthogonal to the fins 1. Then, the plate-shaped fins 1 are arranged so as to be parallel to each other, and the tube 2 is inserted into the fin collar 5 of each fin 1. This tube 2 has a U-shape having a hairpin bent portion 3, is inserted into a fin collar 5 and expanded to fix the tube 2 to the fin 1, and then both ends of the tube 2 and the ends of the adjacent tubes 2 By brazing and to the semicircular tubes 4, the tubes 2 are connected so as to form one tube.

【0021】チューブ2はその内面に複数個の溝7が設
けられており、これらの溝7は管内面を螺旋状に延びて
いる。管内径Diは溝7間の山頂部6により規定される
ものであり、最小内径である。
The tube 2 is provided with a plurality of grooves 7 on its inner surface, and these grooves 7 extend spirally on the inner surface of the tube. The pipe inner diameter Di is defined by the crests 6 between the grooves 7, and is the minimum inner diameter.

【0022】本実施例のフィンチューブ型熱交換器にお
いて使用した内面溝付管の外径は7mm、内径Diは
6.14mm、溝数は管軸に直交する断面において50
個、溝深さhは0.18mm、底肉厚tは0.25m
m、溝底幅Wは0.23mm、溝の管軸方向に対するね
じれ角γは18°である。
The inner grooved tube used in the fin-tube type heat exchanger of this embodiment has an outer diameter of 7 mm, an inner diameter Di of 6.14 mm, and the number of grooves is 50 in a cross section orthogonal to the tube axis.
Individual, groove depth h is 0.18 mm, bottom wall thickness t is 0.25 m
m, the groove bottom width W is 0.23 mm, and the twist angle γ of the groove with respect to the tube axis direction is 18 °.

【0023】また、チューブ2の銅合金の組成を下記表
1に示す。
The composition of the copper alloy of the tube 2 is shown in Table 1 below.

【0024】[0024]

【表1】 [Table 1]

【0025】また、フィンチューブ型熱交換器の製造に
際して、フィンの打抜き時とチューブのヘアピン曲げ及
び拡管時において、揮発性潤滑油を使用し、その後の溶
剤脱脂工程は省略した。また、チューブのろう付けはり
ん銅ろう(BCuP−2;JIS−Z3264に規定さ
れるりん銅ろうの品種であり、Pを6.8〜7.5%含
有し、残部が主としてCuであり、その他の元素が0.
2%以下)によるバーナーろう付けで行った。各種特性
の評価結果を下記表2に示す。但し、表2における伝熱
量は、風速が1.0m/秒であるときの伝熱量である。
Further, in manufacturing the fin-tube heat exchanger, volatile lubricating oil was used at the time of punching the fins and bending and expanding the hairpin of the tube, and the subsequent solvent degreasing step was omitted. The tube is brazed with phosphorus copper braze (BCuP-2; a type of phosphorus copper braze specified in JIS-Z3264, containing 6.8 to 7.5% P, and the balance being mainly Cu, Other elements are 0.
2% or less). The evaluation results of various characteristics are shown in Table 2 below. However, the heat transfer amount in Table 2 is the heat transfer amount when the wind speed is 1.0 m / sec.

【0026】[0026]

【表2】 [Table 2]

【0027】なお、この表2に記載した特性の評価方法
は以下の通りである。蟻の巣状腐食に対する耐食性 表1に示す組成のチューブを使用したフィンチューブ型
熱交換器を室内機として下記条件で運転し、蟻の巣状腐
食による最大腐食深さを測定した。 運転環境:30℃、相対湿度80% 運転条件:冷房運転5分と、送風運転10分とを、6ヶ
月間繰り返した。
The evaluation methods for the properties shown in Table 2 are as follows. Corrosion resistance to ant nest corrosion A fin tube type heat exchanger using tubes having the composition shown in Table 1 was operated as an indoor unit under the following conditions, and the maximum corrosion depth due to ant nest corrosion was measured. Operating environment: 30 ° C., relative humidity 80% Operating conditions: cooling operation for 5 minutes and blowing operation for 10 minutes were repeated for 6 months.

【0028】伝熱性能 風洞試験装置において、熱交換器としての伝熱量(蒸発
・凝縮)を測定した。冷媒はR−22(フロンHCFC
−22:分子式はCHClF2)であり、測定条件は以
下の通りである。 ・蒸発試験 空気側:乾球温度/湿球温度 27.0℃
/19.0℃ 冷媒側:熱交換器出口圧力 5.4kgf/cm2 過熱度 5.0deg ・凝縮試験 空気側:乾球温度/湿球温度 20.0℃
/15.0℃ 冷媒側:熱交換器入口圧力 18.8kgf/cm2 過冷度 5.0deg
Heat Transfer Performance In a wind tunnel tester, the amount of heat transfer (evaporation / condensation) as a heat exchanger was measured. Refrigerant is R-22 (Freon HCFC
-22: The molecular formula is CHClF 2 ) and the measurement conditions are as follows.・ Evaporation test Air side: Dry bulb temperature / wet bulb temperature 27.0 ° C
/19.0°C Refrigerant side: Heat exchanger outlet pressure 5.4 kgf / cm 2 Superheat degree 5.0 deg Condensation test Air side: Dry bulb temperature / wet bulb temperature 20.0 ° C
/15.0°C Refrigerant side: Heat exchanger inlet pressure 18.8 kgf / cm 2 Supercooling degree 5.0 deg

【0029】生産上の必要特性 ・加工性(ヘアピン曲げ:半径10.5mm):曲げ部
内側のしわの発生状況を観察した。 ・ろう付け性:熱交換器のチューブに内圧をかけて破壊
試験を行い、破断部位を観察した。
Required characteristics and workability in production (hairpin bending: radius 10.5 mm): The generation of wrinkles inside the bent portion was observed. -Brazability: An internal pressure was applied to the tube of the heat exchanger to carry out a fracture test, and the fractured portion was observed.

【0030】表2から明かなように、本発明の実施例1
〜7はいずれも従来のりん脱酸洞を使用した場合(比較
例8)に比して蟻の巣状腐食に対する耐食性が極めて優
れており、熱交換器としての必要特性である伝熱性能
と、製造時に必要な特性である加工性及びろう付け性に
おいても、従来のりん脱酸銅を使用した場合(比較例
8)に比して遜色なく、良好である。
As is apparent from Table 2, Example 1 of the present invention
7 to 7 have extremely excellent corrosion resistance to ant nest corrosion as compared with the case of using the conventional phosphorus deoxidizing sinus (Comparative Example 8), and the heat transfer performance which is a necessary characteristic as a heat exchanger. Also, the workability and the brazing property, which are the properties required at the time of production, are not inferior to those in the case of using the conventional phosphorous deoxidized copper (Comparative Example 8).

【0031】一方、比較例9〜11は、Zn、Mn、M
gの含有量が多いチューブを使用したため、伝熱性能並
びに加工性及びろう付け性が低下しており、実用に適さ
ない。また、比較例11において耐食性が低下している
のは、Mgの含有量が多すぎてCuに対する固溶量を超
えており、Mgが析出したためと考えられる。
On the other hand, in Comparative Examples 9 to 11, Zn, Mn and M were used.
Since a tube containing a large amount of g was used, heat transfer performance, workability, and brazing property were deteriorated, which is not suitable for practical use. Further, it is considered that the reason why the corrosion resistance is lowered in Comparative Example 11 is that the Mg content is too large and exceeds the solid solution amount with respect to Cu, and Mg precipitates.

【0032】[0032]

【発明の効果】以上説明したように、本発明に係るフィ
ンチューブ型熱交換器は、従来のりん脱酸銅のチューブ
を使用した熱交換器に比して、組立工程で不可避的に残
留する潤滑油及び有機溶剤等の有機物に起因して、水分
の付着及び蒸発の繰り返しを受けたり、特異な温湿度及
び通気条件の環境下に曝されたときに発生しやすい蟻の
巣状腐食に対する耐食性が極めて優れており、この種の
環境下で使用される熱交換器として極めて有益である。
As described above, the fin-tube heat exchanger according to the present invention inevitably remains in the assembly process as compared with the conventional heat exchanger using the phosphorus-deoxidized copper tube. Corrosion resistance to ant nest corrosion that is likely to occur due to repeated adhesion and evaporation of water due to organic substances such as lubricating oil and organic solvents, and exposure to environments with unique temperature and humidity and aeration conditions Is extremely excellent and is extremely useful as a heat exchanger used in this type of environment.

【0033】また、本発明に係るフィンチューブ型熱交
換器は、従来のりん脱酸銅のチューブを使用した熱交換
器と異なり、Cuより電位的に卑な元素を含有したチュ
ーブを使用しているため、チューブとフィン(アルミニ
ウム又はアルミニウム合金)との電位差が低減し、フィ
ンの電食が抑制されるため、使用中における伝熱性能の
低下が少なく、長期に亘って初期の伝熱性能を維持でき
る。
The fin-tube type heat exchanger according to the present invention uses a tube containing an element which is baser than Cu, unlike the conventional heat exchanger using a phosphorus-deoxidized copper tube. Therefore, the potential difference between the tube and fins (aluminum or aluminum alloy) is reduced, and electrolytic corrosion of the fins is suppressed, so there is little deterioration in heat transfer performance during use, and the initial heat transfer performance is maintained over a long period of time. Can be maintained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係るフィンチューブ型熱交換
器を示す平面図である。
FIG. 1 is a plan view showing a fin-tube heat exchanger according to an embodiment of the present invention.

【図2】同じくそのチューブの管軸方向の断面図であ
る。
FIG. 2 is a sectional view of the tube in the tube axis direction.

【図3】同じくそのチューブの横断面図である。FIG. 3 is a cross sectional view of the tube.

【図4】同じくそのチューブの横断面の一部拡大図であ
る。
FIG. 4 is a partially enlarged view of a cross section of the tube.

【符号の説明】[Explanation of symbols]

1;プレート状フィン 2;チューブ 3;ヘアピン曲げ部 4;半円形状チューブ 5;フィンカラー 6;山頂部 7;溝 Di;最小内径 h;溝深さ W;溝底幅 t;底肉厚 1; plate fin 2; tube 3; hairpin bent part 4; semi-circular tube 5; fin collar 6; mountain top 7; groove Di; minimum inner diameter h; groove depth W; groove bottom width t; bottom wall thickness

【手続補正書】[Procedure amendment]

【提出日】平成6年8月19日[Submission date] August 19, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0030[Name of item to be corrected] 0030

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0030】表2から明かなように、本発明の実施例1
〜7はいずれも従来のりん脱酸を使用した場合(比較
例8)に比して蟻の巣状腐食に対する耐食性が極めて優
れており、熱交換器としての必要特性である伝熱性能
と、製造時に必要な特性である加工性及びろう付け性に
おいても、従来のりん脱酸銅を使用した場合(比較例
8)に比して遜色なく、良好である。
As is apparent from Table 2, Example 1 of the present invention
7 to 7 have extremely excellent corrosion resistance against ant nest corrosion as compared with the case of using the conventional phosphorous deoxidized copper (Comparative Example 8), and the heat transfer performance which is a necessary characteristic as a heat exchanger. Also, the workability and the brazing property, which are the properties required at the time of production, are not inferior to those in the case of using the conventional phosphorous deoxidized copper (Comparative Example 8).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮藤 元久 山口県下関市長府港町14番1号 株式会社 神戸製鋼所長府製造所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Motohisa Miyato 14-1 Nagafu Minatomachi, Shimonoseki City, Yamaguchi Prefecture Kobe Steel Works, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウム又はアルミニウム合金製の
プレート状フィンが複数個平行に配置され、各フィンに
接触してこれを連結する銅合金製チューブが配置された
フィンチューブ型熱交換器において、前記銅合金製チュ
ーブは、0.05乃至10重量%のZn、0.05乃至
5重量%のMn及び0.05乃至5重量%のMgからな
る群から選択された少なくとも1種の成分を、総量で
0.05乃至10重量%含有し、残部がCu及び不可避
的不純物からなる銅合金管であることを特徴とするフィ
ンチューブ型熱交換器。
1. A fin-tube heat exchanger in which a plurality of plate-shaped fins made of aluminum or aluminum alloy are arranged in parallel, and a copper alloy tube for contacting and connecting the fins is arranged. The alloy tube has a total amount of at least one component selected from the group consisting of 0.05 to 10 wt% Zn, 0.05 to 5 wt% Mn and 0.05 to 5 wt% Mg. A fin-tube type heat exchanger, characterized in that it is a copper alloy tube containing 0.05 to 10% by weight, and the balance being Cu and inevitable impurities.
【請求項2】 前記銅合金製チューブは、管内面に平行
な複数の溝を有し、その外径が4〜25.4mm、溝深
さhと溝間の山頂部により規定される管内径Diとの比
h/Diが0.01≦h/Di≦0.05、管軸方向に対
する溝のねじれ角γが0°≦γ≦30°である内面溝付
管であることを特徴とする請求項1に記載のフィンチュ
ーブ型熱交換器。
2. The copper alloy tube has a plurality of grooves parallel to the inner surface of the tube, the outer diameter of which is 4 to 25.4 mm, and the inner diameter of the tube defined by the groove depth h and the crest between the grooves. It is characterized in that the inner grooved pipe has a ratio h / Di with Di of 0.01 ≦ h / Di ≦ 0.05 and a twist angle γ of the groove with respect to the pipe axis direction of 0 ° ≦ γ ≦ 30 °. The fin-tube heat exchanger according to claim 1.
JP5164878A 1993-05-27 1993-07-02 Fin tube type heat exchanger with excellent ant-nest corrosion resistance Expired - Lifetime JP3046471B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP5164878A JP3046471B2 (en) 1993-07-02 1993-07-02 Fin tube type heat exchanger with excellent ant-nest corrosion resistance
MYPI94001335A MY115423A (en) 1993-05-27 1994-05-26 Corrosion resistant copper alloy tube and fin- tube heat exchanger
US08/250,607 US6202703B1 (en) 1993-05-27 1994-05-27 Corrosion resistant copper alloy tube and fin-tube heat exchanger
DE69429303T DE69429303T2 (en) 1993-05-27 1994-05-27 Corrosion-resistant copper alloy tube and finned tube heat exchanger
EP94303866A EP0626459B1 (en) 1993-05-27 1994-05-27 Corrosion resistant copper alloy tube and fin-tube heat exchanger
SG1996003329A SG48880A1 (en) 1993-05-27 1994-05-27 Corrosion resistant copper alloy tube and fin-tube heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5164878A JP3046471B2 (en) 1993-07-02 1993-07-02 Fin tube type heat exchanger with excellent ant-nest corrosion resistance

Publications (2)

Publication Number Publication Date
JPH0719788A true JPH0719788A (en) 1995-01-20
JP3046471B2 JP3046471B2 (en) 2000-05-29

Family

ID=15801631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5164878A Expired - Lifetime JP3046471B2 (en) 1993-05-27 1993-07-02 Fin tube type heat exchanger with excellent ant-nest corrosion resistance

Country Status (1)

Country Link
JP (1) JP3046471B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001063196A1 (en) * 2000-02-25 2001-08-30 The Furukawa Electric Co., Ltd. Tube with inner surface grooves and method of manufacturing the tube
JP2008255380A (en) * 2007-03-30 2008-10-23 Kobelco & Materials Copper Tube Inc Corrosion-resistant copper alloy tube
EP2570506A1 (en) * 2010-05-14 2013-03-20 Mitsubishi Materials Corporation Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
US9587299B2 (en) 2011-10-28 2017-03-07 Mitsubishi Materials Corporation Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, rolled copper alloy material for electronic equipment, and part for electronic equipment
US10153063B2 (en) 2011-11-07 2018-12-11 Mitsubishi Materials Corporation Copper alloy for electronic devices, method of manufacturing copper alloy for electronic devices, copper alloy plastic working material for electronic devices, and component for electronic devices
JP2019184221A (en) * 2018-03-30 2019-10-24 株式会社コベルコ マテリアル銅管 Corrosion progress control method of air conditioner, air conditioner and refrigerant pipe
US10458003B2 (en) 2011-11-14 2019-10-29 Mitsubishi Materials Corporation Copper alloy and copper alloy forming material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189803A1 (en) * 2018-03-30 2019-10-03 株式会社コベルコ マテリアル銅管 Method for suppressing progress of corrosion in air conditioner, air conditioner, and refrigerant pipe

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001063196A1 (en) * 2000-02-25 2001-08-30 The Furukawa Electric Co., Ltd. Tube with inner surface grooves and method of manufacturing the tube
JP2008255380A (en) * 2007-03-30 2008-10-23 Kobelco & Materials Copper Tube Inc Corrosion-resistant copper alloy tube
EP2570506A1 (en) * 2010-05-14 2013-03-20 Mitsubishi Materials Corporation Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
EP2570506A4 (en) * 2010-05-14 2014-07-09 Mitsubishi Materials Corp Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
EP3020836A3 (en) * 2010-05-14 2016-06-08 Mitsubishi Materials Corporation Copper alloy for electronic device, method for producing it, and rolled copper alloy for electronic device
US10032536B2 (en) 2010-05-14 2018-07-24 Mitsubishi Materials Corporation Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
US10056165B2 (en) 2010-05-14 2018-08-21 Mitsubishi Materials Corporation Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
US9587299B2 (en) 2011-10-28 2017-03-07 Mitsubishi Materials Corporation Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, rolled copper alloy material for electronic equipment, and part for electronic equipment
US10153063B2 (en) 2011-11-07 2018-12-11 Mitsubishi Materials Corporation Copper alloy for electronic devices, method of manufacturing copper alloy for electronic devices, copper alloy plastic working material for electronic devices, and component for electronic devices
US10458003B2 (en) 2011-11-14 2019-10-29 Mitsubishi Materials Corporation Copper alloy and copper alloy forming material
JP2019184221A (en) * 2018-03-30 2019-10-24 株式会社コベルコ マテリアル銅管 Corrosion progress control method of air conditioner, air conditioner and refrigerant pipe

Also Published As

Publication number Publication date
JP3046471B2 (en) 2000-05-29

Similar Documents

Publication Publication Date Title
EP0626459B1 (en) Corrosion resistant copper alloy tube and fin-tube heat exchanger
JPH0719788A (en) Fin-tube type heat exchanger
JP2004170061A (en) Heat exchanger, pipe material and fin material of heat exchanger and manufacturing method of heat exchanger
JP2006194476A (en) Outdoor heat exchanger
JP2011257084A (en) All-aluminum heat exchanger
US20060234082A1 (en) Aluminum alloy brazing material, brazing member, brazed article and brazing method therefor using said material, brazing heat exchanginh tube, heat exchanger and manufacturing method thereof using said brazing heat exchanging tube
JP5963112B2 (en) Aluminum heat exchanger for room air conditioner
JP4484510B2 (en) Aluminum tube manufacturing method
JPH093580A (en) Heat exchanger made of aluminum alloy, excellent in corrosion resistance
JP3650371B2 (en) Ammonia refrigerant refrigeration equipment
JP2014001869A (en) Heat exchanger and refrigeration cycle device
JP2004108741A (en) Heat exchanger and its manufacturing method
JP4119765B2 (en) Internal grooved heat transfer tube
JPH0454880B2 (en)
JP2004176178A (en) Aluminum pipe and method for manufacturing the same
KR20050074989A (en) Aluminum pipe and process for producing same
JPH08136178A (en) Heat transfer tube for heat exchanger and manufacture thereof
US20060243360A1 (en) Aluminum pipe and process for producing same
JPH06337197A (en) Corrosion resistant copper alloy tube for heat exchanger
JPS5856016B2 (en) Method for manufacturing aluminum alloy extruded shapes for fluid passage materials in heat exchangers
JPH08145583A (en) Grooved tube for heat exchanger in air conditioner and refrigerator and corresponding exchanger
Hagiwara et al. Development of corrosion resistant aluminum heat exchanger, Part 1: Development of new aluminum alloy sheets for sacrificial anode
CN1726298A (en) Aluminum pipe and process for producing same
JPH0788682A (en) Manufacture of aluminum alloy brazing filler metal and heat exchanger made of aluminum alloy
JPS6233512B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080317

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090317

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100317

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110317

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110317

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20130317

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20140317

EXPY Cancellation because of completion of term