JP3046471B2 - Fin tube type heat exchanger with excellent ant-nest corrosion resistance - Google Patents

Fin tube type heat exchanger with excellent ant-nest corrosion resistance

Info

Publication number
JP3046471B2
JP3046471B2 JP5164878A JP16487893A JP3046471B2 JP 3046471 B2 JP3046471 B2 JP 3046471B2 JP 5164878 A JP5164878 A JP 5164878A JP 16487893 A JP16487893 A JP 16487893A JP 3046471 B2 JP3046471 B2 JP 3046471B2
Authority
JP
Japan
Prior art keywords
tube
heat exchanger
weight
fin
type heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5164878A
Other languages
Japanese (ja)
Other versions
JPH0719788A (en
Inventor
昭則 土屋
良一 尾崎
堅樹 源
元久 宮藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP5164878A priority Critical patent/JP3046471B2/en
Priority to MYPI94001335A priority patent/MY115423A/en
Priority to EP94303866A priority patent/EP0626459B1/en
Priority to SG1996003329A priority patent/SG48880A1/en
Priority to DE69429303T priority patent/DE69429303T2/en
Priority to US08/250,607 priority patent/US6202703B1/en
Publication of JPH0719788A publication Critical patent/JPH0719788A/en
Application granted granted Critical
Publication of JP3046471B2 publication Critical patent/JP3046471B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は空調機器に使用されるフ
ィンチューブ型熱交換器に関し、特に蟻の巣状腐食に対
する耐食性、即ち、耐蟻の巣状腐食性が優れたフィンチ
ューブ型熱交換器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fin tube type heat exchanger used for an air conditioner, and more particularly to a fin tube type heat exchanger having excellent corrosion resistance against ant nest corrosion, that is, excellent ant nest corrosion resistance . About the vessel.

【0002】[0002]

【従来の技術】一般に、空調機器に使用されるフィンチ
ューブ型熱交換器は、アルミニウム又はアルミニウム合
金製のプレート状のフィンに、チューブ挿通孔を設ける
と共に、この挿通孔内に筒状のフィンカラーを設け、前
記フィンを多数平行に配置した状態で、前記フィンカラ
ー内に銅製チューブを各フィンを連結するように挿入
し、次いでこのチューブを拡管してフィンに固定するこ
とにより、フィン及びチューブが組み立てられている。
そして、前記チューブ内に熱媒体を流し、その熱を前記
フィンに伝達して放熱させている。
2. Description of the Related Art Generally, a fin tube type heat exchanger used for an air conditioner is provided with a tube insertion hole in a plate-like fin made of aluminum or aluminum alloy, and a cylindrical fin collar in the insertion hole. The copper tubing is inserted into the fin collar so as to connect the fins, and the tubes are expanded and fixed to the fins. Assembled.
Then, a heat medium is caused to flow in the tube, and the heat is transmitted to the fins to radiate the heat.

【0003】このフィンチューブ型熱交換器は、前記プ
レート状フィンが熱伝導性とコストの点からアルミニウ
ム又はアルミニウム合金によりつくられており、前記チ
ューブとしては、熱伝導性と耐食性の点から銅製のチュ
ーブが広く使用されている。なお、この銅製チューブ
は、主としてりん脱酸銅といわれる純銅のチューブであ
る。
In this fin tube type heat exchanger, the plate-shaped fin is made of aluminum or an aluminum alloy in terms of heat conductivity and cost, and the tube is made of copper in terms of heat conductivity and corrosion resistance. Tubes are widely used. In addition, this copper tube is a tube of pure copper mainly called phosphorus deoxidized copper.

【0004】[0004]

【発明が解決しようとする課題】しかし、これらの従来
のフィンチューブ型熱交換器においては、フィンの打抜
加工の工程及びチューブの拡管工程で潤滑油及び有機溶
剤等の有機物が不可避的に残留し、この有機物がフィン
及びチューブの保管中又は熱交換器としての使用中に、
水分の付着と蒸発を繰り返し受ける。また、熱交換器と
しての使用中に、特異な温湿度と通気の環境等に曝され
る。このような条件下で、有機物が分解してカルボン酸
を含むようになり、局部的に蟻の巣状を呈する特異な腐
食が発生し、しばしばチューブがリークすることがあ
る。
However, in these conventional fin tube type heat exchangers, organic substances such as lubricating oil and organic solvents remain inevitably remaining in the fin punching process and the tube expanding process. However, during storage of the fins and tubes or during use as a heat exchanger,
Repeated adhesion and evaporation of water. In addition, during use as a heat exchanger, it is exposed to a peculiar temperature and humidity, a ventilation environment, and the like. Under such conditions, the organic matter is decomposed to contain carboxylic acid, peculiar ant-like corrosion locally occurs, and the tube often leaks.

【0005】また、前述の如く、フィンチューブ型熱交
換器の組立工程では多くの潤滑油を使用するが、近年の
環境問題から、有機溶剤による脱脂洗浄を避ける傾向に
あり、代わって揮発性を有する潤滑油が使用される傾向
にある。この揮発性を有する潤滑油の中には、ベースオ
イルは揮発性であるものの、油性添加剤が素材表面に残
留するものがある。従って、有機溶剤で脱脂洗浄を行っ
ていた場合に比して、素材表面における有機物の残留は
増加する傾向が認められ、蟻の巣状腐食が生ずる危険性
は以前にもまして高まっている。
As described above, many lubricating oils are used in the assembly process of the fin tube type heat exchanger. However, due to recent environmental problems, degreasing and washing with an organic solvent tends to be avoided. Lubricating oils tend to be used. Among these volatile lubricating oils, there are those in which the base oil is volatile but the oily additive remains on the material surface. Therefore, as compared with the case where degreasing and washing have been performed with an organic solvent, the residual amount of organic substances on the surface of the material tends to increase, and the danger of ant-nest corrosion has increased more than before.

【0006】このような背景の下で、近時、フィンチュ
ーブ型熱交換器の蟻の巣状腐食の対策が大きな問題とし
て注目されており、蟻の巣状腐食に対する耐食性が優れ
たフィンチューブ型熱交換器の開発が望まれている。
Against this background, fin tube type heat exchangers have recently attracted attention as a major problem in terms of ant nest corrosion, and fin tube type heat exchangers have excellent fin nest corrosion resistance. The development of a heat exchanger is desired.

【0007】本発明はかかる問題点に鑑みてなされたも
のであって、フィンチューブ型熱交換器に特有な現象、
即ち、熱交換器の組立工程で不可避的に残留した潤滑油
が水分の付着と蒸発の繰り返しを受け、更に特異な温湿
度条件と通気条件の環境下に曝され、カルボン酸を含む
ようになっても、蟻の巣状腐食に対して優れた耐食性を
有し、その信頼性と寿命を増大することができる耐蟻の
巣状腐食性が優れたフィンチューブ型熱交換器を提供す
ることを目的とする。
[0007] The present invention has been made in view of such a problem, and is a phenomenon peculiar to a fin tube type heat exchanger.
That is, the lubricating oil inevitably remaining in the heat exchanger assembling process is repeatedly subjected to adhesion and evaporation of moisture, and is further exposed to an environment of unusual temperature and humidity conditions and ventilation conditions, and contains carboxylic acid. However, it has excellent corrosion resistance to ant-nest corrosion, and its reliability and life can be increased .
And to provide a finned tube heat exchanger focal corrosion resistance was excellent.

【0008】[0008]

【課題を解決するための手段】本発明に係る耐蟻の巣状
腐食性が優れたフィンチューブ型熱交換器は、アルミニ
ウム又はアルミニウム合金製のプレート状フィンが複数
個平行に配置され、各フィンに接触してこれを連結する
銅合金製チューブが配置されたフィンチューブ型熱交換
器において、前記銅合金製チューブは、下記成分を単独
で又は複合添加で下記含有量だけ含有し、残部がCu及
び不可避的不純物からなる銅合金管であることを特徴と
する。この銅合金製チューブの組成は、以下のとおりで
ある。0.05乃至5重量%のMn0.05乃至5
重量%のMg0.05乃至5重量%のMn及び0.0
5乃至5重量%のMg0.05乃至5重量%のMn及
び0.05乃至10重量%のZn0.05乃至5重量
%のMg及び0.05乃至10重量%のZn、又は
0.05乃至5重量%のMn、0.05乃至5重量%の
Mg及び0.05乃至10重量%のZnそして、乃至
の複合添加の場合はこれらの成分の含有量を総量で
0.05乃至10重量%とする。 なお、以下の説明で、
Znに関するものは、複合添加のみであり、単独で添加
するものではない。
According to the present invention, there is provided a fin tube type heat exchanger excellent in termite nest-like corrosion resistance, in which a plurality of plate-like fins made of aluminum or aluminum alloy are arranged in parallel. In a fin tube type heat exchanger in which a copper alloy tube for contacting and connecting the copper alloy tube is arranged, the copper alloy tube contains only the following components:
Or a copper alloy tube containing the following content by combined addition, with the balance being Cu and unavoidable impurities. The composition of this copper alloy tube is as follows:
is there. 0.05 to 5% by weight of Mn 0.05 to 5
0.05 to 5 wt% Mn and 0.0 wt% Mg
5 to 5% by weight of Mg 0.05 to 5% by weight of Mn and
0.05 to 5 wt% Zn 0.05 to 5 wt%
% Mg and 0.05 to 10% by weight Zn, or
0.05 to 5 wt% Mn, 0.05 to 5 wt%
Mg and 0.05-10% by weight Zn and
In the case of complex addition of, the content of these components in total
0.05 to 10% by weight. In the following description,
Regarding Zn, only compound addition, added alone
It does not do.

【0009】また、熱交換器としての伝熱性能を向上さ
せるために、前記銅合金製チューブは、管内面に平行な
複数の溝を有し、その外径が4〜25.4mm、溝深さ
hと溝間の山頂部により規定される管内径Diとの比h
/Diが0.01≦h/Di≦0.05、管軸方向に対す
る溝のねじれ角γが0°≦γ≦30°である内面溝付管
であることが好ましい。
In order to improve the heat transfer performance as a heat exchanger, the copper alloy tube has a plurality of grooves parallel to the inner surface of the tube, the outer diameter of which is 4 to 25.4 mm, and the groove depth. H, the ratio h of the pipe diameter Di defined by the peak between the grooves.
Preferably, the inner grooved pipe has a / Di of 0.01 ≦ h / Di ≦ 0.05 and a torsion angle γ of the groove with respect to the pipe axis direction of 0 ° ≦ γ ≦ 30 °.

【0010】[0010]

【作用】本願発明者は蟻の巣状腐食に対する耐蟻の巣状
腐食性が優れたフィンチューブ型熱交換器を得るべく、
種々研究を行った結果、以下の事実を見い出した。
The inventor of the present application has proposed a nest resistant to ant nest corrosion.
In order to obtain a fin tube type heat exchanger with excellent corrosivity ,
As a result of various studies, the following facts were found.

【0011】即ち、蟻の巣状の腐食は、熱交換器の組立
工程で不可避的に残留する潤滑油及び有機溶剤等の有機
物が分解して生成するカルボン酸によって、保管中及び
使用中にチューブの内外面を問わず局部的に発生し、し
ばしばチューブをリークに至らしめるものである。
That is, ant-nest-like corrosion is caused by the carboxylic acid generated by the decomposition of organic substances such as lubricating oils and organic solvents, which are inevitably left in the assembly process of the heat exchanger, during storage and during use. It occurs locally, regardless of the inner and outer surfaces of the tube, and often causes the tube to leak.

【0012】そこで、本願発明者らは、チューブの構成
材料自体の耐食性を改善する必要があるとの観点に立ち
種々実験研究を繰り返した結果、銅に、Zn、Mn及び
Mgのうち少なくとも1成分を所定量含有した銅合金か
らなる管をチューブとして使用することにより、フィン
チューブ型熱交換器の耐食性が著しく改善されることを
見出した。即ち、従来のりん脱酸銅管を使用したフィン
チューブ型熱交換器に蟻の巣状腐食が発生するような腐
食環境においても、Zn、Mn及びMgのうち少なくと
も1成分を含有する銅合金管を使用したフィンチューブ
型熱交換器では、局部的な腐食は進行せず、全面腐食の
形態を示す。
The inventors of the present invention have conducted various experimental studies from the viewpoint that it is necessary to improve the corrosion resistance of the tube material itself. As a result, copper contained at least one of Zn, Mn and Mg. It has been found that the use of a tube made of a copper alloy containing a predetermined amount of as a tube significantly improves the corrosion resistance of the fin tube type heat exchanger. That is, a copper alloy tube containing at least one of Zn, Mn and Mg even in a corrosive environment in which ant-nest corrosion occurs in a fin tube type heat exchanger using a conventional phosphorus deoxidized copper tube. In the fin tube type heat exchanger using, the local corrosion does not progress, but shows a form of general corrosion.

【0013】このように、Zn、Mn及びMgを所定量
添加することにより、銅合金管の耐食性を向上させるこ
とができるのは、Zn、Mn及びMgは電位的にCuよ
り卑であり、更にCuに固溶して均一に分布するため、
素材表面が均一に腐食し、腐食生成物も均一に溶解して
いくためであると考えられる。
As described above, the corrosion resistance of the copper alloy tube can be improved by adding a predetermined amount of Zn, Mn and Mg, because Zn, Mn and Mg are lower in potential than Cu. Because it is dissolved in Cu and is uniformly distributed,
This is considered to be because the material surface is uniformly corroded, and the corrosion products are also uniformly dissolved.

【0014】銅合金管の組成 Zn、Mn及びMgの含有量が0.05重量%未満では
耐食性の改善効果が十分でない。一方、これらの成分の
含有量が増加するほど、銅合金管の耐食性の改善効果は
向上する。しかし、フィンチューブ型熱交換器の製造過
程においては、チューブの加工性及びろう付け性が要求
され、これらの加工性及びろう付け性はZn、Mn及び
Mgの量が多くなると劣化する。そこで、製造工程にお
けるチューブの加工性及びろう付け性を確保するため
に、Znの含有量は10重量%以下、Mn及びMgの含
有量は5重量%以下にし、更に総量でも10重量%以下
とすることが必要である。また、これらの添加成分はい
ずれも同様の作用効果があるので、これらの成分の中の
少なくとも1種を添加すればよい。従って、チューブの
構成材料である銅合金は、Zn:0.05乃至10重量
%、Mn:0.05乃至5重量%及びMg:0.05乃
至5重量%の少なくとも1種の成分を総量で0.05乃
至10重量%含有するものとする。
If the composition of the copper alloy tube contains less than 0.05% by weight of Zn, Mn and Mg, the effect of improving the corrosion resistance is not sufficient. On the other hand, as the content of these components increases, the effect of improving the corrosion resistance of the copper alloy tube increases. However, in the manufacturing process of the fin tube type heat exchanger, workability and brazing property of the tube are required, and these workability and brazing property are deteriorated as the amount of Zn, Mn and Mg increases. Therefore, in order to ensure the workability and brazing properties of the tube in the manufacturing process, the content of Zn is 10% by weight or less, the content of Mn and Mg is 5% by weight or less, and the total amount is 10% by weight or less. It is necessary to. In addition, since all of these additional components have the same function and effect, at least one of these components may be added. Therefore, the copper alloy which is a constituent material of the tube contains at least one component of 0.05 to 10% by weight of Zn, 0.05 to 5% by weight of Mn, and 0.05 to 5% by weight of Mg in total amount. The content is 0.05 to 10% by weight.

【0015】更に、本発明に係るフィンチューブ型熱交
換器の銅合金製チューブとして、内面溝付管を使用する
ことが好ましい。この内面溝付管は、外径が4〜25.
4mmであり、管内面に互いに平行な複数の溝を有し、
溝深さhと最小内径Di(山頂部により規定される内
径)が0.01≦h/Di≦0.05であり、管軸方向
へのねじれ角γが0°≦γ≦30°の関係を満たすもの
である。これにより、伝熱性能を著しく向上させること
ができる。
Further, it is preferable to use an inner grooved tube as the copper alloy tube of the fin tube type heat exchanger according to the present invention. This inner grooved tube has an outer diameter of 4 to 25 mm.
4 mm, having a plurality of grooves parallel to each other on the inner surface of the tube,
Relationship between the groove depth h and the minimum inner diameter Di (inner diameter defined by the peak) is 0.01 ≦ h / Di ≦ 0.05, and the torsion angle γ in the tube axis direction is 0 ° ≦ γ ≦ 30 °. It satisfies. Thereby, the heat transfer performance can be significantly improved.

【0016】内面溝付管の外径が4mm未満の場合は、
熱媒体の圧力損失が増大して、伝熱性能が十分に得られ
ない。一方、外径が25.4mmを超える場合は、熱交
換器が大型化し、フィンチューブ型熱交換器としては非
経済的である。従って、管外径は4乃至25.4mmと
する必要がある。
When the outer diameter of the inner grooved tube is less than 4 mm,
The pressure loss of the heat medium increases, and sufficient heat transfer performance cannot be obtained. On the other hand, when the outer diameter exceeds 25.4 mm, the heat exchanger becomes large, which is uneconomical as a fin tube type heat exchanger. Therefore, the tube outer diameter needs to be 4 to 25.4 mm.

【0017】また、溝深さhと最小内径Diとの比h/
Diが0.01未満では、伝熱性能の向上が十分ではな
く、逆に0.05を超えると、圧力損失が増加するた
め、伝熱性能は低下する傾向となる。更に、管軸方向へ
のねじれ角γが30°を超えると、圧力損失が増大する
ため、伝熱性能が十分に得られない。従って、比h/D
iが0.01≦h/Di≦0.05であって、ねじれ角γ
は0°≦γ≦30°とすることが好ましい。
Further, the ratio h / to the groove depth h and the minimum inner diameter Di is defined as h /
If Di is less than 0.01, the heat transfer performance is not sufficiently improved. Conversely, if it exceeds 0.05, the pressure loss increases and the heat transfer performance tends to decrease. Further, when the torsion angle γ in the tube axis direction exceeds 30 °, the pressure loss increases, so that sufficient heat transfer performance cannot be obtained. Therefore, the ratio h / D
i is 0.01 ≦ h / Di ≦ 0.05 and the torsion angle γ
Is preferably 0 ° ≦ γ ≦ 30 °.

【0018】このような構造の溝を内面に形成した内面
溝付管をチューブとして使用すると、前述の如く、蟻の
巣状腐食に対する耐食性が優れていると共に、更に、熱
交換器としての伝熱性能が優れた高性能のフィンチュー
ブ型熱交換器を得ることができる。
The use of a tube having an inner groove having such a groove formed on the inner surface as a tube provides excellent corrosion resistance against ant nest corrosion as described above, and furthermore, heat transfer as a heat exchanger. A high-performance fin tube type heat exchanger having excellent performance can be obtained.

【0019】また、本チューブを構成する銅合金管とし
ては、Zn、Mn及びMg以外に、不可避的不純物とし
て、脱酸剤として通常使用されるP及びB等を含有する
ことがあるが、これらの不純物を含有していても、耐食
性の向上に関して、何等支障はない。
The copper alloy tube constituting this tube may contain P and B, which are usually used as a deoxidizing agent, as unavoidable impurities, in addition to Zn, Mn, and Mg. Even if it contains the impurities described above, there is no problem in improving the corrosion resistance.

【0020】[0020]

【実施例】次に、本発明の実施例についてその比較例と
比較して説明する。下記表1に示す組成のチューブ(焼
鈍材)を使用して図1の平面図に示すようなフィンチュ
ーブ型熱交換器を作製し、蟻の巣状腐食に対する耐食性
と、伝熱性能と、製造上必要な特性である加工性及びろ
う付け性とを評価した。図2はこのフィンチューブ型熱
交換器のチューブ管軸方向の断面図であり、図3はチュ
ーブの横断面図、図4は同じくその一部拡大図である。
各プレート状フィン1は実質的に板状をなしているが、
その高さ方向の中央に複数個のチューブ挿通孔が形成さ
れており、この挿通孔の周縁に筒状のフィンカラー5が
その軸方向をフィン1に直交する方向にして設けられて
いる。そして、各プレート状フィン1を相互に平行にな
るように配置し、各フィン1のフィンカラー5にチュー
ブ2を挿入する。このチューブ2はヘアピン曲げ部3を
有するU字形をなし、フィンカラー5に挿入し、拡管し
てチューブ2をフィン1に固定した後、チューブ2の両
先端部と、隣接するチューブ2の先端部とを半円形状の
チューブ4にろう付けすることにより、各チューブ2が
一本のチューブになるように連結する。
Next, examples of the present invention will be described in comparison with comparative examples. Using a tube (annealed material) having the composition shown in Table 1 below, a fin tube type heat exchanger as shown in the plan view of FIG. 1 was prepared, and the corrosion resistance against ant nest corrosion, the heat transfer performance, and the production were made. Workability and brazing properties, which are required properties, were evaluated. FIG. 2 is a sectional view of the fin tube type heat exchanger in the axial direction of the tube, FIG. 3 is a transverse sectional view of the tube, and FIG. 4 is a partially enlarged view thereof.
Each plate-like fin 1 is substantially plate-shaped,
A plurality of tube insertion holes are formed at the center in the height direction, and a cylindrical fin collar 5 is provided on a peripheral edge of the insertion hole with its axial direction perpendicular to the fin 1. Then, the plate-shaped fins 1 are arranged so as to be parallel to each other, and the tube 2 is inserted into the fin collar 5 of each fin 1. This tube 2 has a U-shape having a hairpin bent portion 3, is inserted into a fin collar 5, expanded and fixed to the fin 1, and then both end portions of the tube 2 and the end portion of the adjacent tube 2. Are brazed to a semicircular tube 4 so that each tube 2 is connected to one tube.

【0021】チューブ2はその内面に複数個の溝7が設
けられており、これらの溝7は管内面を螺旋状に延びて
いる。管内径Diは溝7間の山頂部6により規定される
ものであり、最小内径である。
The tube 2 is provided with a plurality of grooves 7 on its inner surface, and these grooves 7 extend spirally on the inner surface of the tube. The pipe inner diameter Di is defined by the crests 6 between the grooves 7, and is the minimum inner diameter.

【0022】本実施例のフィンチューブ型熱交換器にお
いて使用した内面溝付管の外径は7mm、内径Diは
6.14mm、溝数は管軸に直交する断面において50
個、溝深さhは0.18mm、底肉厚tは0.25m
m、溝底幅Wは0.23mm、溝の管軸方向に対するね
じれ角γは18°である。
The outer diameter of the inner grooved tube used in the fin tube type heat exchanger of this embodiment is 7 mm, the inner diameter Di is 6.14 mm, and the number of grooves is 50 in a cross section orthogonal to the tube axis.
Individual, groove depth h is 0.18 mm, bottom thickness t is 0.25 m
m, the groove bottom width W is 0.23 mm, and the torsion angle γ of the groove with respect to the tube axis direction is 18 °.

【0023】また、チューブ2の銅合金の組成を下記表
1に示す。但し、実施例1及び2はZnを単独添加した
場合のものであるから、本発明の範囲に入るものではな
く、単なる参考例である。
The composition of the copper alloy of the tube 2 is shown in Table 1 below. However, in Examples 1 and 2, Zn was solely added.
It is not in the scope of the present invention because it is a case.
It is just a reference example.

【0024】[0024]

【表1】 [Table 1]

【0025】また、フィンチューブ型熱交換器の製造に
際して、フィンの打抜き時とチューブのヘアピン曲げ及
び拡管時において、揮発性潤滑油を使用し、その後の溶
剤脱脂工程は省略した。また、チューブのろう付けはり
ん銅ろう(BCuP−2;JIS−Z3264に規定さ
れるりん銅ろうの品種であり、Pを6.8〜7.5%含
有し、残部が主としてCuであり、その他の元素が0.
2%以下)によるバーナーろう付けで行った。各種特性
の評価結果を下記表2に示す。但し、表2における伝熱
量は、風速が1.0m/秒であるときの伝熱量である。
In the manufacture of the fin tube type heat exchanger, a volatile lubricating oil was used at the time of punching the fins and at the time of bending the tubes and expanding the tubes, and the subsequent solvent degreasing step was omitted. In addition, the brazing of the tube is a type of phosphor copper brazing (BCuP-2; a type of phosphor copper brazing specified in JIS-Z3264, containing 6.8 to 7.5% of P, the balance being mainly Cu, Other elements are 0.
(Less than 2%). Table 2 below shows the evaluation results of the various characteristics. However, the heat transfer amount in Table 2 is the heat transfer amount when the wind speed is 1.0 m / sec.

【0026】[0026]

【表2】 [Table 2]

【0027】なお、この表2に記載した特性の評価方法
は以下の通りである。蟻の巣状腐食に対する耐食性 表1に示す組成のチューブを使用したフィンチューブ型
熱交換器を室内機として下記条件で運転し、蟻の巣状腐
食による最大腐食深さを測定した。 運転環境:30℃、相対湿度80% 運転条件:冷房運転5分と、送風運転10分とを、6ヶ
月間繰り返した。
The methods for evaluating the characteristics described in Table 2 are as follows. Corrosion resistance to ant nest corrosion A fin tube type heat exchanger using tubes having the composition shown in Table 1 was operated as an indoor unit under the following conditions, and the maximum corrosion depth due to ant nest corrosion was measured. Operating environment: 30 ° C., relative humidity 80% Operating condition: Cooling operation 5 minutes and blowing operation 10 minutes were repeated for 6 months.

【0028】伝熱性能 風洞試験装置において、熱交換器としての伝熱量(蒸発
・凝縮)を測定した。冷媒はR−22(フロンHCFC
−22:分子式はCHClF2)であり、測定条件は以
下の通りである。 ・蒸発試験 空気側:乾球温度/湿球温度 27.0℃
/19.0℃ 冷媒側:熱交換器出口圧力 5.4kgf/cm2 過熱度 5.0deg ・凝縮試験 空気側:乾球温度/湿球温度 20.0℃
/15.0℃ 冷媒側:熱交換器入口圧力 18.8kgf/cm2 過冷度 5.0deg
Heat transfer performance In a wind tunnel test apparatus, the amount of heat transfer (evaporation / condensation) as a heat exchanger was measured. The refrigerant is R-22 (CFC HCFC)
-22: The molecular formula is CHClF 2 ), and the measurement conditions are as follows.・ Evaporation test Air side: Dry bulb temperature / wet bulb temperature 27.0 ° C
/19.0°C Refrigerant side: Heat exchanger outlet pressure 5.4kgf / cm 2 Superheat degree 5.0deg ・ Condensation test Air side: Dry bulb temperature / wet bulb temperature 20.0 ° C
/15.0°C Refrigerant side: Heat exchanger inlet pressure 18.8kgf / cm 2 Supercooling degree 5.0deg

【0029】生産上の必要特性 ・加工性(ヘアピン曲げ:半径10.5mm):曲げ部
内側のしわの発生状況を観察した。 ・ろう付け性:熱交換器のチューブに内圧をかけて破壊
試験を行い、破断部位を観察した。
Required properties and workability in production (hairpin bending: radius 10.5 mm): The occurrence of wrinkles inside the bent portion was observed. -Brazing property: A breaking test was performed by applying an internal pressure to the tube of the heat exchanger, and the fracture site was observed.

【0030】表2から明らかなように、本発明の実施例
3〜7はいずれも従来のりん脱酸銅を使用した場合(比
較例8)に比して蟻の巣状腐食に対する耐食性が極めて
優れており、熱交換器としての必要特性である伝熱性能
と、製造時に必要な特性である加工性及びろう付け性に
おいても、従来のりん脱酸銅を使用した場合(比較例
8)に比して遜色なく、良好である。
As is apparent from Table 2, examples of the present invention are shown.
Each of Nos. 3 to 7 has extremely excellent corrosion resistance against ant nest corrosion as compared with the case where conventional phosphorus deoxidized copper is used (Comparative Example 8), and the heat transfer performance which is a necessary property as a heat exchanger. Also, the workability and the brazing properties required during the production are as good as those in the case where the conventional phosphor deoxidized copper is used (Comparative Example 8).

【0031】一方、比較例9〜11は、Zn、Mn、M
gの含有量が多いチューブを使用したため、伝熱性能並
びに加工性及びろう付け性が低下しており、実用に適さ
ない。また、比較例11において耐食性が低下している
のは、Mgの含有量が多すぎてCuに対する固溶量を超
えており、Mgが析出したためと考えられる。
On the other hand, in Comparative Examples 9 to 11, Zn, Mn, M
Since a tube containing a large amount of g was used, the heat transfer performance, workability, and brazing properties were reduced, and the tube was not suitable for practical use. Further, the reason why the corrosion resistance was reduced in Comparative Example 11 is considered to be that the Mg content was too large and exceeded the solid solution amount to Cu, and that Mg was precipitated.

【0032】[0032]

【発明の効果】以上説明したように、本発明に係る耐蟻
の巣状腐食性が優れたフィンチューブ型熱交換器は、従
来のりん脱酸銅のチューブを使用した熱交換器に比し
て、組立工程で不可避的に残留する潤滑油及び有機溶剤
等の有機物に起因して、水分の付着及び蒸発の繰り返し
を受けたり、特異な温湿度及び通気条件の環境下に曝さ
れたときに発生しやすい蟻の巣状腐食に対する耐食性が
極めて優れており、この種の環境下で使用される熱交換
器として極めて有益である。
As described above, the termite proof according to the present invention is provided.
The fin tube type heat exchanger, which has excellent nest-like corrosiveness, has less lubricating oil and organic solvent remaining in the assembling process than the heat exchanger using conventional phosphor deoxidized copper tubes. Due to organic matter, it has extremely excellent corrosion resistance against ant-nest corrosion, which is apt to occur when repeatedly exposed to moisture and evaporation or exposed to an environment with unique temperature, humidity and ventilation conditions. It is extremely useful as a heat exchanger used in some kinds of environments.

【0033】また、本発明に係る耐蟻の巣状腐食性が優
れたフィンチューブ型熱交換器は、従来のりん脱酸銅の
チューブを使用した熱交換器と異なり、Cuより電位的
に卑な元素を含有したチューブを使用しているため、チ
ューブとフィン(アルミニウム又はアルミニウム合金)
との電位差が低減し、フィンの電食が抑制されるため、
使用中における伝熱性能の低下が少なく、長期に亘って
初期の伝熱性能を維持できる。
Further, the nest-like corrosion resistance of termites according to the present invention is excellent.
The fin tube type heat exchanger uses a tube containing an element which is more potential than Cu, unlike a heat exchanger using a conventional phosphor deoxidized copper tube. Aluminum or aluminum alloy)
And the electric erosion of the fin is suppressed,
The heat transfer performance during use is not significantly reduced, and the initial heat transfer performance can be maintained for a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係るフィンチューブ型熱交換
器を示す平面図である。
FIG. 1 is a plan view showing a fin tube type heat exchanger according to an embodiment of the present invention.

【図2】同じくそのチューブの管軸方向の断面図であ
る。
FIG. 2 is a sectional view of the tube in the tube axis direction.

【図3】同じくそのチューブの横断面図である。FIG. 3 is a cross-sectional view of the tube.

【図4】同じくそのチューブの横断面の一部拡大図であ
る。
FIG. 4 is a partially enlarged view of a cross section of the tube.

【符号の説明】[Explanation of symbols]

1;プレート状フィン 2;チューブ 3;ヘアピン曲げ部 4;半円形状チューブ 5;フィンカラー 6;山頂部 7;溝 Di;最小内径 h;溝深さ W;溝底幅 t;底肉厚 DESCRIPTION OF SYMBOLS 1; Plate-like fin 2; Tube 3; Hairpin bending part 4; Semicircular tube 5; Fin collar 6; Peak 7; Groove Di;

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮藤 元久 山口県下関市長府港町14番1号 株式会 社神戸製鋼所長府製造所内 (56)参考文献 特開 平4−190096(JP,A) 特開 平3−291345(JP,A) 特開 昭62−142995(JP,A) (58)調査した分野(Int.Cl.7,DB名) F28F 19/00 F28F 21/08 F28F 19/06 F28F 1/40 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Motohisa Miyafuji 14-1, Chofu Minatomachi, Shimonoseki City, Yamaguchi Prefecture Inside Kobe Steel, Ltd. Chofu Works (56) References JP-A-4-190096 (JP, A) JP-A-3-291345 (JP, A) JP-A-62-142995 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F28F 19/00 F28F 21/08 F28F 19/06 F28F 1/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アルミニウム又はアルミニウム合金製の
プレート状フィンが複数個平行に配置され、各フィンに
接触してこれを連結する銅合金製チューブが配置された
フィンチューブ型熱交換器において、前記銅合金製チュ
ーブは、0.05乃至5重量%のMn、0.05乃至5
重量%のMg、0.05乃至5重量%のMn及び0.0
5乃至5重量%のMg、0.05乃至5重量%のMn及
び0.05乃至10重量%のZn、0.05乃至5重量
%のMg及び0.05乃至10重量%のZn、又は0.
05乃至5重量%のMn、0.05乃至5重量%のMg
及び0.05乃至10重量%のZnを含有し、複合添加
の場合はこれらの成分の含有量を総量で0.05乃至1
0重量%とし、残部がCu及び不可避的不純物からなる
銅合金管であることを特徴とする耐蟻の巣状腐食性が優
れたフィンチューブ型熱交換器。
1. A fin tube type heat exchanger in which a plurality of plate fins made of aluminum or an aluminum alloy are arranged in parallel, and a copper alloy tube that contacts and connects each fin is arranged. The alloy tube is 0.05 to 5 wt% Mn, 0.05 to 5 wt%
Wt% Mg, 0.05-5 wt% Mn and 0.0
5 to 5% by weight of Mg, 0.05 to 5% by weight of Mn and
0.05 to 10% by weight Zn, 0.05 to 5% by weight
% Mg and 0.05 to 10% by weight Zn, or 0.1% by weight.
05 to 5% by weight of Mn, 0.05 to 5% by weight of Mg
And 0.05 to 10% by weight of Zn, combined addition
In the case of, the content of these components is 0.05 to 1 in total.
A fin tube type heat exchanger excellent in termite nest-like corrosion resistance, characterized by being a copper alloy tube containing 0% by weight and the balance being Cu and inevitable impurities.
【請求項2】 前記銅合金製チューブは、管内面に平行
な複数の溝を有し、その外径が4〜25.4mm、溝深
さhと溝間の山頂部により規定される管内径Diとの比
h/Diが0.01≦h/Di≦0.05、管軸方向に
対する溝のねじれ角γが0°≦γ≦30°である内面溝
付管であることを特徴とする請求項1に記載の耐蟻の巣
状腐食性が優れたフィンチューブ型熱交換器。
2. The copper alloy tube has a plurality of grooves parallel to the inner surface of the tube, the outer diameter of which is 4 to 25.4 mm, and the inner diameter of the tube defined by the groove depth h and the crest between the grooves. It is characterized in that it is an internally grooved tube having a ratio h / Di to Di of 0.01 ≦ h / Di ≦ 0.05 and a torsion angle γ of the groove with respect to the tube axis direction of 0 ° ≦ γ ≦ 30 °. The fin tube type heat exchanger according to claim 1, which is excellent in termite nest-like corrosion resistance.
JP5164878A 1993-05-27 1993-07-02 Fin tube type heat exchanger with excellent ant-nest corrosion resistance Expired - Lifetime JP3046471B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP5164878A JP3046471B2 (en) 1993-07-02 1993-07-02 Fin tube type heat exchanger with excellent ant-nest corrosion resistance
MYPI94001335A MY115423A (en) 1993-05-27 1994-05-26 Corrosion resistant copper alloy tube and fin- tube heat exchanger
EP94303866A EP0626459B1 (en) 1993-05-27 1994-05-27 Corrosion resistant copper alloy tube and fin-tube heat exchanger
SG1996003329A SG48880A1 (en) 1993-05-27 1994-05-27 Corrosion resistant copper alloy tube and fin-tube heat exchanger
DE69429303T DE69429303T2 (en) 1993-05-27 1994-05-27 Corrosion-resistant copper alloy tube and finned tube heat exchanger
US08/250,607 US6202703B1 (en) 1993-05-27 1994-05-27 Corrosion resistant copper alloy tube and fin-tube heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5164878A JP3046471B2 (en) 1993-07-02 1993-07-02 Fin tube type heat exchanger with excellent ant-nest corrosion resistance

Publications (2)

Publication Number Publication Date
JPH0719788A JPH0719788A (en) 1995-01-20
JP3046471B2 true JP3046471B2 (en) 2000-05-29

Family

ID=15801631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5164878A Expired - Lifetime JP3046471B2 (en) 1993-05-27 1993-07-02 Fin tube type heat exchanger with excellent ant-nest corrosion resistance

Country Status (1)

Country Link
JP (1) JP3046471B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189803A1 (en) * 2018-03-30 2019-10-03 株式会社コベルコ マテリアル銅管 Method for suppressing progress of corrosion in air conditioner, air conditioner, and refrigerant pipe

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001241877A (en) * 2000-02-25 2001-09-07 Furukawa Electric Co Ltd:The Inner helically grooved tube and method of manufacture
JP4963078B2 (en) * 2007-03-30 2012-06-27 株式会社コベルコ マテリアル銅管 Corrosion resistant copper alloy tube
CN102822363B (en) 2010-05-14 2014-09-17 三菱综合材料株式会社 Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
JP5903832B2 (en) 2011-10-28 2016-04-13 三菱マテリアル株式会社 Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, rolled copper alloy material for electronic equipment, and electronic equipment parts
JP5903838B2 (en) 2011-11-07 2016-04-13 三菱マテリアル株式会社 Copper alloy for electronic equipment, copper material for electronic equipment, copper alloy manufacturing method for electronic equipment, copper alloy plastic working material for electronic equipment, and electronic equipment parts
JP5903842B2 (en) 2011-11-14 2016-04-13 三菱マテリアル株式会社 Copper alloy, copper alloy plastic working material, and method for producing copper alloy plastic working material
JP6962874B2 (en) * 2018-03-30 2021-11-05 株式会社コベルコ マテリアル銅管 How to control the progress of corrosion of air conditioners, air conditioners and refrigerant pipes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189803A1 (en) * 2018-03-30 2019-10-03 株式会社コベルコ マテリアル銅管 Method for suppressing progress of corrosion in air conditioner, air conditioner, and refrigerant pipe

Also Published As

Publication number Publication date
JPH0719788A (en) 1995-01-20

Similar Documents

Publication Publication Date Title
EP0626459B1 (en) Corrosion resistant copper alloy tube and fin-tube heat exchanger
JP3046471B2 (en) Fin tube type heat exchanger with excellent ant-nest corrosion resistance
US20170089649A1 (en) Heat transfer tube constructed of tin brass alloy
EP3305945B1 (en) Method for producing evaporator for refrigeration device
US20020078566A1 (en) Heat exchanger made of aluminum alloy
JP5963112B2 (en) Aluminum heat exchanger for room air conditioner
JPH093580A (en) Heat exchanger made of aluminum alloy, excellent in corrosion resistance
JP2942096B2 (en) Corrosion-resistant copper alloy tube for heat exchanger
JP2912826B2 (en) Heat transfer tube with internal groove
JP4484510B2 (en) Aluminum tube manufacturing method
JPH0240422B2 (en) NETSUKOKANKINOSEIZOHOHO
JP2004360069A (en) Corrosion inhibitor for heat exchanging equipment
JP2997189B2 (en) Condensation promoting type heat transfer tube with internal groove
JPH08136178A (en) Heat transfer tube for heat exchanger and manufacture thereof
JP2000304491A (en) Heat exchanger member
JPH0454880B2 (en)
WO2001092806A1 (en) Heating tube with internal grooves and heat exchanger
KR20050074989A (en) Aluminum pipe and process for producing same
Hagiwara et al. Development of corrosion resistant aluminum heat exchanger, Part 1: Development of new aluminum alloy sheets for sacrificial anode
US20210302112A1 (en) Heat exchanger with sacrificial turbulator
EP4004476A1 (en) Long-life aluminum alloy with a high corrosion resistance and helically grooved tube produced from the alloy
Tait et al. Corrosion resistance of the as brazed PF® heat exchanger as achieved by alloy selection
JP2004176178A (en) Aluminum pipe and method for manufacturing the same
JPS5856016B2 (en) Method for manufacturing aluminum alloy extruded shapes for fluid passage materials in heat exchangers
JPS6233512B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080317

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 14

EXPY Cancellation because of completion of term