JPH07195154A - Method for continuously casting extra-low carbon steel - Google Patents

Method for continuously casting extra-low carbon steel

Info

Publication number
JPH07195154A
JPH07195154A JP9894A JP9894A JPH07195154A JP H07195154 A JPH07195154 A JP H07195154A JP 9894 A JP9894 A JP 9894A JP 9894 A JP9894 A JP 9894A JP H07195154 A JPH07195154 A JP H07195154A
Authority
JP
Japan
Prior art keywords
carbon steel
low carbon
casting
slab
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9894A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kajitani
敏之 梶谷
Hideyuki Misumi
秀幸 三隅
Shiyuuji Nakamura
州児 中村
Toshiya Komori
俊也 小森
Masamitsu Wakao
昌光 若生
Shoichi Araya
省一 荒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9894A priority Critical patent/JPH07195154A/en
Publication of JPH07195154A publication Critical patent/JPH07195154A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To provide a method for preventing the longitudinal crack of an extra-low carbon steel developed in a synchronous mold type continuous caster by slow-cooling in the mold. CONSTITUTION:At the time of casting the steel containing <=0.01wt% by using the synchronous mold type continuous caster, the cooling speed on the surface of a cast slab is reduced, and the uniformity of the solidified shell thickness at the initial stage and the reduction of strain in the solidified shell are controlled to prevent the longitudinal crack on the surface of the cast slab. In this case, the cooling speed at the position of 1.5mm depth from the surface of the cast slab is made to be <=-60 deg.C/sec, or the conductive heat from the mold is made to be <=2,500,000Kcal/m<2>.hr. By this method, the extra-low carbon steel cast slab without longitudinal crack can be cast in the synchronous mold type continuous caster.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、連続鋳造において極低
炭素鋼の鋳片表面に縦割れを発生させることなく、鋳片
を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a slab in continuous casting without causing vertical cracks on the surface of the slab of ultra-low carbon steel.

【0002】[0002]

【従来の技術】連続鋳造時に鋳片表面に発生する縦割れ
は、メニスカス近傍で凝固不均一が生じ、幅方向の収縮
を阻害する拘束力によって凝固遅れ部に歪が集中するた
めに発生する。固定鋳型の連続鋳造機では、中炭素鋼の
場合に縦割れ発生頻度が高い。これはδ/γ変態に起因
する初期凝固シェルの変形によるものと考えられている
(松宮徹,佐伯毅,田中純,有吉敏彦:鉄と鋼,68
(1982)1782)。一方、低炭素鋼および極低炭
素鋼の場合には、縦割れは発生しにくいと言われてい
る。
2. Description of the Related Art Vertical cracks generated on the surface of a slab during continuous casting are caused by uneven solidification in the vicinity of a meniscus, and strains are concentrated in a solidification delay portion due to a restraining force that inhibits shrinkage in the width direction. In a fixed casting continuous casting machine, the frequency of vertical cracking is high in the case of medium carbon steel. This is thought to be due to the deformation of the initially solidified shell due to the δ / γ transformation (Tetsu Matsumiya, Takeshi Saeki, Jun Tanaka, Toshihiko Ariyoshi: Iron and Steel, 68).
(1982) 1782). On the other hand, it is said that vertical cracks are unlikely to occur in the case of low carbon steel and ultra low carbon steel.

【0003】しかしながら、同期鋳型の連続鋳造機を用
いると、極低炭素鋼でも縦割れが多く発生する。これ
は、同期鋳型の連続鋳造機では、鋳型内冷却条件と潤滑
条件が、固定鋳型と異なるためと考えられる。ところ
が、極低炭素鋼の初期凝固や応力・歪に関する解析は全
く行われておらず、割れ防止対策は立っていない。
However, when a synchronous casting continuous casting machine is used, vertical cracks often occur even in extremely low carbon steel. This is considered to be because in the continuous casting machine of the synchronous mold, the cooling condition and the lubricating condition in the mold are different from those in the fixed mold. However, no analysis has been performed on the initial solidification and stress / strain of ultra-low carbon steel, and no measures have been taken to prevent cracking.

【0004】[0004]

【発明が解決しようとする課題】本発明は、同期鋳型式
連続鋳造機を用いて連続鋳造する際に、極低炭素鋼につ
いても縦割れを発生させることなく鋳造し、表面性状の
良好な鋳片を提供することを目的とするものである。
DISCLOSURE OF THE INVENTION According to the present invention, when performing continuous casting using a synchronous casting type continuous casting machine, ultra low carbon steel is cast without causing vertical cracking, and casting with good surface properties is achieved. The purpose is to provide a piece.

【0005】[0005]

【課題を解決するための手段】本発明者らは、極低炭素
鋼の縦割れ発生原因を明らかにするため、その初期凝固
シェル厚の不均一現象に関する基礎実験を行い、以下の
知見を得た。
Means for Solving the Problems In order to clarify the cause of the occurrence of vertical cracks in ultra-low carbon steel, the present inventors conducted a basic experiment on the non-uniform phenomenon of the initial solidified shell thickness and obtained the following findings. It was

【0006】極低炭素鋼では、低炭素鋼や中炭素鋼に
較べて、初期凝固シェル厚が不均一である。これが、縦
割れ発生の原因と考えられる。 この凝固不均一は、極低炭素領域において初期凝固時
の核生成頻度が小さいことに起因している。 極低炭素鋼の凝固不均一は、凝固時の冷却速度を低下
させることにより緩和することができる。 冷却速度を低下させることにより、初期凝固シェルに
生じる歪を低減できる。
The ultra-low carbon steel has a non-uniform initial solidified shell thickness as compared with the low carbon steel and the medium carbon steel. This is considered to be the cause of vertical cracking. This non-uniform solidification is due to the small frequency of nucleation during initial solidification in the extremely low carbon region. The non-uniform solidification of ultra low carbon steel can be mitigated by reducing the cooling rate during solidification. By reducing the cooling rate, the strain generated in the initial solidified shell can be reduced.

【0007】従って、少なくとも鋳片表面での冷却速度
を低下させて、初期凝固シェル厚の均一化および歪の低
減を図れば、極低炭素鋼の縦割れは防止できる。
Therefore, if the cooling rate at least on the surface of the cast slab is lowered to make the initial solidified shell thickness uniform and reduce the strain, vertical cracking of the ultra low carbon steel can be prevented.

【0008】本発明の極低炭素鋼の連続鋳造方法は、上
記の知見に基づいてなされたものであり、その要旨は、
Cを0.01重量%以下含有する鋼を同期鋳型式連続鋳
造機を用いて鋳造する際に、(1)少なくとも鋳片表面
の冷却速度を鋳片表面に縦割れが発生しないような速度
まで低下させ、初期凝固シェル厚の均一化および凝固シ
ェル内に蓄積される歪を低減して、鋳片表面の縦割れ発
生を防止することを特徴とし、具体的には、(2)特
に、少なくとも鋳片表層における表面から深さ1.5mm
の位置での冷却速度を60℃/sec以下にする、あるい
は、(3)鋳型抜熱量を2,500,000kcal/m2
・時以下にすることで目的を達成する。
The continuous casting method for ultra-low carbon steel of the present invention was made on the basis of the above findings.
When casting a steel containing 0.01% by weight or less of C using a synchronous casting continuous casting machine, (1) at least the cooling rate of the surface of the slab to such a rate that vertical cracks do not occur on the surface of the slab. It is characterized by lowering and homogenizing the thickness of the initial solidified shell and reducing the strain accumulated in the solidified shell to prevent the occurrence of vertical cracks on the surface of the slab. Specifically, (2) particularly, at least 1.5 mm depth from the surface of the cast slab surface
Cooling rate at 60 ° C / sec or less, or (3) mold heat removal amount is 2,500,000 kcal / m 2
・ Achieve the purpose by keeping the time below.

【0009】[0009]

【作用】以下、本発明を作用とともに説明する。図1
に、極低炭素鋼および低炭素鋼に対し、同期鋳型式連続
鋳造機を用いて鋳片を連続鋳造した場合について冷却速
度と初期凝固不均一度との関係を示す。図より鋳片表面
から深さ1.5mmの位置での冷却速度を、60℃/sec以
下にすると、極低炭素鋼(SULC)の凝固均一度が、
縦割れの全く発生しない低炭素鋼(LC)とほぼ同等と
なる。
The operation of the present invention will be described below. Figure 1
Fig. 3 shows the relationship between the cooling rate and the initial solidification nonuniformity in the case of continuously casting a slab of ultra-low carbon steel and low-carbon steel using a synchronous casting continuous casting machine. From the figure, if the cooling rate at a position 1.5 mm deep from the surface of the slab is set to 60 ° C / sec or less, the solidification uniformity of the ultra low carbon steel (SULC) becomes
It is almost equivalent to low carbon steel (LC) with no vertical cracking.

【0010】図2は、極低炭素鋼に対する初期凝固シェ
ルの応力歪解析結果である。鋳片表面から深さ1.5mm
の位置での冷却速度が60℃/secの場合には、80℃/s
ecに較べて、凝固シェル内の歪の蓄積量が小さい。従っ
て、鋳片表面から深さ1.5mmの位置での冷却速度を6
0℃/sec以下にすることにより、初期凝固シェル厚が均
一化され、かつ、シェル内の歪が低減するため、その結
果として、縦割れを防止できる。
FIG. 2 shows the results of stress-strain analysis of the initially solidified shell for ultra-low carbon steel. 1.5mm depth from the surface of the slab
If the cooling rate at the position is 60 ℃ / sec, 80 ℃ / s
The amount of strain accumulated in the solidified shell is smaller than that of ec. Therefore, the cooling rate at a depth of 1.5 mm from the slab surface is 6
By setting the temperature to 0 ° C./sec or less, the initial solidified shell thickness is made uniform and the strain in the shell is reduced, and as a result, vertical cracking can be prevented.

【0011】[0011]

【実施例】次に、本発明を実施例に基づきその効果につ
いて説明する。 (実施例1)Cを0.002,0.01,0.05の各
重量%含有する鋼を、鋳造速度6m/minで同期鋳型連続
鋳造機を用いて鋳造する際に、鋳型コーティング厚みを
変えることによって、冷却速度を変化させた。その時の
縦割れ発生の有無と鋳片表面から深さ1.5mmの位置で
の冷却速度との関係を、表1に示す。
EXAMPLES Next, the effects of the present invention will be described based on examples. (Example 1) When casting steel containing 0.002, 0.01, and 0.05% by weight of C using a synchronous casting continuous casting machine at a casting speed of 6 m / min, the casting coating thickness was set to By changing, the cooling rate was changed. Table 1 shows the relationship between the presence or absence of vertical cracking at that time and the cooling rate at a position 1.5 mm deep from the surface of the slab.

【0012】この表1より、Cが0.002,0.01
重量%の極低炭素鋼では、冷却速度を80℃/secとする
と、鋳片表面に縦割れが発生しているが、冷却速度を6
0℃/sec以下にすると縦割れ発生を完全に防止できる。
また、0.05重量%のCを含む低炭素鋼では、冷却速
度80℃/secでも縦割れは発生しておらず、従って、本
発明の対象とはならない。
From Table 1, C is 0.002,0.01.
When the cooling rate is 80 ° C./sec in the ultra-low carbon steel of weight%, vertical cracking occurs on the surface of the slab, but the cooling rate is 6%.
When the temperature is 0 ° C / sec or less, vertical cracking can be completely prevented.
Further, in the low carbon steel containing 0.05% by weight of C, vertical cracking did not occur even at the cooling rate of 80 ° C./sec. Therefore, it is not the object of the present invention.

【0013】[0013]

【表1】 [Table 1]

【0014】(実施例2)Cを0.002,0.01,
0.05の各重量%含有する鋼を、鋳造速度6m/minで
同期鋳型連続鋳造機を用いて鋳造する際に、鋳型コーテ
ィング厚みを変化させ、その時の鋳型抜熱量と縦割れ発
生の有無について調査した結果を、表2に示す。
(Embodiment 2) C is 0.002, 0.01,
About the content of 0.05 wt% of steel, casting speed was 6m / min when casting with a continuous casting continuous casting machine, changing the thickness of the casting mold, The results of the investigation are shown in Table 2.

【0015】表2より、Cが0.002,0.01重量
%の極低炭素鋼では、鋳型内抜熱量を250万kcal/m
2 ・時以下にすることにより、縦割れ発生を完全に防止
できる。また、0.05重量%のCを含む低炭素鋼で
は、鋳型抜熱量が250万kcal/m2 ・時を超えても縦
割れは発生しておらず、本発明の対象とはならない。
From Table 2, it can be seen that for ultra low carbon steel with C of 0.002,0.01% by weight, the heat removal amount in the mold is 2.5 million kcal / m.
By setting the time to 2 hours or less, the occurrence of vertical cracks can be completely prevented. Further, in the case of low carbon steel containing 0.05% by weight of C, vertical cracking does not occur even when the heat removal amount from the mold exceeds 2.5 million kcal / m 2 · hour, which is not the subject of the present invention.

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【発明の効果】同期鋳型式連続鋳造機を用いて連続鋳造
する際に、本発明を実施することにより、極低炭素鋼に
ついても鋳片表面に縦割れを発生させることなく鋳造す
ることが可能となり、表面性状の良好な鋳片を得ること
ができるようになった。
EFFECTS OF THE INVENTION By carrying out the present invention during continuous casting using a synchronous casting continuous casting machine, it is possible to cast ultra-low carbon steel without causing vertical cracks on the surface of the slab. As a result, it is possible to obtain a slab having a good surface property.

【図面の簡単な説明】[Brief description of drawings]

【図1】極低炭素鋼および低炭素鋼に対し、同期鋳型式
連続鋳造機を用いて鋳片を連続鋳造した場合について、
冷却速度と初期凝固不均一度との関係を示す図。
FIG. 1 shows a case where a slab is continuously cast on an ultra-low carbon steel and a low-carbon steel using a synchronous casting continuous casting machine.
The figure which shows the relationship between a cooling rate and an initial solidification nonuniformity.

【図2】極低炭素鋼に対する初期凝固シェルの応力歪解
析結果を示す図。
FIG. 2 is a diagram showing the results of stress strain analysis of an initially solidified shell for ultra-low carbon steel.

フロントページの続き (72)発明者 小森 俊也 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内 (72)発明者 若生 昌光 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 荒谷 省一 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内Continued Front Page (72) Inventor Toshiya Komori 1 Nishinosu, Oita-shi, Oita Prefecture Nippon Steel Co., Ltd. Inside Oita Steel Co., Ltd. Inside the Technology Development Headquarters (72) Inventor Shoichi Aratani 20-1 Shintomi, Futtsu City, Chiba Shin Nippon Steel Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Cを0.01重量%以下含有する鋼を同
期鋳型式連続鋳造機を用いて鋳造する際に、少なくとも
鋳片表面の冷却速度を鋳片表面に縦割れが発生しないよ
うな速度まで低下させ、初期凝固シェル厚の均一化およ
び凝固シェル内に蓄積される歪を低減することを特徴と
する極低炭素鋼の連続鋳造方法。
1. When casting steel containing 0.01% by weight or less of C using a synchronous casting continuous casting machine, at least the cooling rate of the surface of the slab is such that vertical cracks do not occur on the surface of the slab. A continuous casting method for ultra-low carbon steel, which is characterized by reducing the speed to a uniform speed, homogenizing the initial solidified shell thickness, and reducing the strain accumulated in the solidified shell.
【請求項2】 鋳片表面から深さ1.5mmの位置での冷
却速度を60℃/sec以下にすることを特徴とする請求項
1記載の極低炭素鋼の連続鋳造方法。
2. The continuous casting method for ultra low carbon steel according to claim 1, wherein the cooling rate at a position 1.5 mm deep from the surface of the slab is set to 60 ° C./sec or less.
【請求項3】 Cを0.01重量%以下含有する鋼を同
期鋳型式連続鋳造機を用いて鋳造する際に、鋳型抜熱量
を2,500,000kcal/m2 ・時以下にすることを
特徴とする極低炭素鋼の連続鋳造方法。
3. When casting a steel containing 0.01% by weight or less of C by using a synchronous casting continuous casting machine, the heat removal amount of the casting mold is set to 2,500,000 kcal / m 2 · hr or less. A continuous casting method for ultra low carbon steel.
JP9894A 1994-01-05 1994-01-05 Method for continuously casting extra-low carbon steel Pending JPH07195154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9894A JPH07195154A (en) 1994-01-05 1994-01-05 Method for continuously casting extra-low carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9894A JPH07195154A (en) 1994-01-05 1994-01-05 Method for continuously casting extra-low carbon steel

Publications (1)

Publication Number Publication Date
JPH07195154A true JPH07195154A (en) 1995-08-01

Family

ID=11464633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9894A Pending JPH07195154A (en) 1994-01-05 1994-01-05 Method for continuously casting extra-low carbon steel

Country Status (1)

Country Link
JP (1) JPH07195154A (en)

Similar Documents

Publication Publication Date Title
JPH07195154A (en) Method for continuously casting extra-low carbon steel
JP2903927B2 (en) Continuous casting method
JP3149763B2 (en) Prevention method of placing cracks in continuous cast slabs of bearing steel
JP2004237291A (en) Method of manufacturing continuous casting slab and steel material obtained by working the cast slab
JPH08164460A (en) Production of continuously cast slab having good internal quality
JPH0218936B2 (en)
JP3215573B2 (en) Continuous casting method of nickel-containing steel
JPH11197809A (en) Method for preventing surface crack on continuously cast slab
JPS63168260A (en) Hot working method for continuously cast billet
JP4717357B2 (en) High-speed continuous casting method for carbon steel
JP4026792B2 (en) Billet continuous casting method
JP7273307B2 (en) Steel continuous casting method
JPH1043850A (en) Continuous casting method of steel
JP2721382B2 (en) Method for refining organization of steel slab
JPS5633156A (en) Preventing method of surface crack formation in continuously cast slab
JP3055462B2 (en) Continuous casting method
JPH1058093A (en) Method for continuously casting steel
JPH11254115A (en) Method for on-line judging surface quality of cast slab and steel slab in continuous casting and blooming and judging instrument
JP4164925B2 (en) Manufacturing method of continuous cast slab
JP3358137B2 (en) Method for producing thin slab slab containing Cu and Sn and steel sheet containing Cu and Sn
JPH09136145A (en) Method for working recessed parts on peripheral surface for continuously casting cast strip
JP4265054B2 (en) Method for producing hot-rolled steel sheet with excellent surface properties
JP2001018040A (en) Manufacture of continuously cast slab
JP3398127B2 (en) Steel continuous casting method
JP3030596B2 (en) Continuous casting method