JPH07193356A - Formation of circuit pattern using laser and circuit board - Google Patents

Formation of circuit pattern using laser and circuit board

Info

Publication number
JPH07193356A
JPH07193356A JP5331257A JP33125793A JPH07193356A JP H07193356 A JPH07193356 A JP H07193356A JP 5331257 A JP5331257 A JP 5331257A JP 33125793 A JP33125793 A JP 33125793A JP H07193356 A JPH07193356 A JP H07193356A
Authority
JP
Japan
Prior art keywords
circuit
thin film
metal thin
laser
circuit pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5331257A
Other languages
Japanese (ja)
Inventor
Takayuki Miyashita
貴之 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP5331257A priority Critical patent/JPH07193356A/en
Publication of JPH07193356A publication Critical patent/JPH07193356A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PURPOSE:To provide a method of manufacturing efficiently a molded item, which is used as a circuit component in the field of an electrical apparatus, an electronic equipment and the like and has an accurate conductive circuit on the surface. CONSTITUTION:In a method wherein a metal thin film formed on the surface of a synthetic resin molded item is irradiated with laser beam, the metal thin film is removed to conduct the formation of a circuit pattern and a circuit is formed by electroplating, the thickness of the metal thin film is set in a thickness of 0.2 to 2.0mum and is the metal thin film formed on the surface of the molded item to remove the metal thin film in a width of 100 to 500mum is irradiated with the laser beam having a laser spot diameter of 50 to 500mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、合成樹脂成形品表面に
形成された金属薄膜に回路パターンを形成する方法に関
し、電気・電子機器等の分野で回路部品として使用され
る、表面に正確な導電回路を有する成形品を、効率よく
製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a circuit pattern on a metal thin film formed on the surface of a synthetic resin molded product, which is used as a circuit component in the field of electric and electronic equipments, The present invention relates to a method for efficiently manufacturing a molded product having a conductive circuit.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
合成樹脂成形品の表面にレーザー光線を用い回路パター
ンを形成する方法としては、例えば成形品の表面に予め
導電回路として充分な厚さの金属膜を形成し、導電回路
以外の部分の金属膜をレーザー光線により飛散除去し
て、そのまま導電回路とする方法(特開昭64−833
91号公報)があるが、この方法では導体金属層の厚さ
を回路としての導電性が充分な比較的厚い層(例えば10
μm以上)とする必要があり、レーザー光にて金属層の
不要部を除去する場合にレーザー光の出力を高くする必
要があるため、下地の合成樹脂成形品まで損傷してその
外観形状を著しく阻害し、又、合成樹脂を炭化させて絶
縁性に支障を生じる等の問題がある。そのため、成形品
の表面に金属薄膜を形成し、導電回路部以外の部分の金
属薄膜を除去し回路パターンを形成し、電気メッキを行
い導電回路とする方法が考えられた。この方法によれば
レーザー光の出力を下げて照射するため、合成樹脂が炭
化されず絶縁性の問題はないが、従来、この方法ではレ
ーザー光による金属薄膜の除去幅が 100μm未満と狭い
ため、その後の電気メッキ工程により導電回路を所望の
厚さに形成する際、金属薄膜を除去した部分にメッキが
成長し導電回路が短絡するという問題が生じる場合があ
る。
2. Description of the Related Art Conventionally, the problems to be solved by the invention
As a method of forming a circuit pattern by using a laser beam on the surface of a synthetic resin molded product, for example, a metal film having a sufficient thickness as a conductive circuit is previously formed on the surface of the molded product, and a metal film other than the conductive circuit is formed by a laser beam. A method in which the conductive circuit is directly removed by being scattered and removed by the method described in JP-A-64-833.
No. 91), but in this method, the thickness of the conductor metal layer is a relatively thick layer (for example, 10
It is necessary to increase the output of the laser light when removing unnecessary portions of the metal layer with the laser light, so that the synthetic resin molding of the base is damaged and the appearance shape is remarkably increased. However, there is a problem in that the insulation is obstructed, and the synthetic resin is carbonized to impair the insulating property. Therefore, a method has been considered in which a metal thin film is formed on the surface of the molded product, the metal thin film in a portion other than the conductive circuit portion is removed to form a circuit pattern, and electroplating is performed to form a conductive circuit. According to this method, since the output of the laser beam is reduced and irradiation is performed, the synthetic resin is not carbonized and there is no problem of insulation. However, conventionally, in this method, the removal width of the metal thin film by the laser beam is less than 100 μm, so When a conductive circuit is formed to a desired thickness by a subsequent electroplating process, plating may grow on the portion where the metal thin film has been removed, causing a problem that the conductive circuit is short-circuited.

【0003】[0003]

【課題を解決するための手段】本発明者等は、これら従
来法の問題を解決し、レーザー光を利用した簡便な方法
で複雑な形状の成形品にも精度良く回路パターンを形成
する方法に関し、上記問題を解決すべく詳細に検討した
結果、合成樹脂成形品表面の金属薄膜をレーザー光を照
射して特定の幅で除去することにより、その後の電気メ
ッキ工程により導電回路が短絡することなく導電回路を
形成し得ることを見出し、本発明に到達した。即ち本発
明は、合成樹脂成形品表面に形成された金属薄膜にレー
ザー光を照射し金属薄膜を除去して回路パターン形成を
行い電気メッキにより回路を形成する方法において、金
属薄膜の厚さが 0.2〜2.0 μmであり、レーザースポッ
ト径が50〜500 μmであるレーザー光を照射して金属薄
膜を 100〜500 μmの幅で除去することを特徴とする回
路パターン形成方法である。
DISCLOSURE OF THE INVENTION The inventors of the present invention solve the problems of these conventional methods, and relate to a method of forming a circuit pattern on a molded product having a complicated shape with high precision by a simple method using laser light. As a result of a detailed study to solve the above problems, the metal thin film on the surface of the synthetic resin molded product was irradiated with laser light to be removed with a specific width, so that the conductive circuit was not short-circuited by the subsequent electroplating process. The inventors have found that a conductive circuit can be formed and have reached the present invention. That is, the present invention is a method for forming a circuit by electroplating by irradiating a metal thin film formed on the surface of a synthetic resin molded product with a laser beam to form a circuit pattern by removing the metal thin film. It is a circuit pattern forming method characterized by removing a metal thin film with a width of 100 to 500 μm by irradiating a laser beam having a laser spot diameter of up to 2.0 μm and a laser spot diameter of 50 to 500 μm.

【0004】以下、順を追って本発明の方法を説明す
る。本発明で用いる合成樹脂成形品の材質は、金属薄膜
を強固に付着することのできる合成樹脂であれば、熱可
塑性樹脂、熱硬化性樹脂材料の何れでも良いが、かかる
成形品が後にハンダ付加工等の苛酷な処理を受けること
を考慮すると、耐熱性が高く、かつ機械的強度の優れた
ものが望ましく、また多量産性の点では射出成形可能な
熱可塑性樹脂が好ましい。その例を挙げれば、芳香族ポ
リエステル、ポリアミド、ポリアセタール、ポリアリー
レンサルファイド、ポリサルホン、ポリフェニレンオキ
サイド、ポリイミド、ポリエーテルケトン、ポリアリレ
ート及びこれらの組成物が挙げられ、特に高融点、高強
度、高剛性、成形加工性等の観点から液晶性ポリマー
(例えば液晶性ポリエステル、ポリエステルアミド)、
ポリアリーレンサルファイドは特に好適であるがこれら
に限定されるものではない。また、金属薄膜の密着性を
高めるため、必要に応じその材料に易エッチング性物質
等の適当な物質を配合しても良い。合成樹脂成形品は、
射出成形等により成形されるが、その表面の金属薄膜の
密着性を良くするため、更に酸、アルカリその他による
化学的エッチング、或いはコロナ放電、プラズマ処理等
の物理的表面処理を行っても良い。
The method of the present invention will be described below step by step. The material of the synthetic resin molded product used in the present invention may be either a thermoplastic resin or a thermosetting resin material as long as it is a synthetic resin capable of firmly adhering a metal thin film, but such molded product is later soldered. Considering that it is subjected to severe processing such as processing, it is desirable that it has high heat resistance and excellent mechanical strength, and in terms of mass production, a thermoplastic resin that is injection moldable is preferable. Examples thereof include aromatic polyesters, polyamides, polyacetals, polyarylene sulfides, polysulfones, polyphenylene oxides, polyimides, polyetherketones, polyarylates and compositions thereof, particularly high melting point, high strength, high rigidity, From the viewpoint of molding processability, etc., liquid crystalline polymers (eg, liquid crystalline polyester, polyester amide),
Polyarylene sulfide is particularly preferred, but not limited to. Further, in order to enhance the adhesion of the metal thin film, an appropriate substance such as an easily-etchable substance may be blended with the material if necessary. Synthetic resin molded products are
Although it is formed by injection molding or the like, in order to improve the adhesion of the metal thin film on the surface, chemical etching with acid, alkali or the like, or physical surface treatment such as corona discharge or plasma treatment may be performed.

【0005】次にこの成形品の表面に金属被覆加工を行
い、金属薄膜を形成する。ここで付与する金属薄膜の厚
さは特に重要であり、厚すぎると次工程におけるレーザ
ー光線による回路パターン形成に強い出力のレーザー光
を要し、先に述べたように基体成形品に損傷を生じさせ
るため好ましくない。また、逆に薄すぎると電気メッキ
により導電回路として充分な厚さの金属層を形成する工
程において、電気メッキの加工性に支障を生じ好ましく
ない。かかる見地から基体成形品の表面に付与される金
属薄膜の厚さは 0.2〜2μmであり、好ましくは 0.3〜
1μmである。かかる範囲の厚さであればレーザー光線
による回路パターン形成が比較的弱い出力で基体成形品
に損傷を生じることなく正確に行うことができ、また最
終的な回路形成のため電気メッキ加工に必要な程度の導
電性は保たれるので好適である。かかる金属膜を形成す
る方法としては、化学メッキ、スパッタリング、真空蒸
着、イオンプレーティング、転写法、導電剤塗装等、従
来公知の何れの方法でも良いが、均一な金属薄膜を形成
するためには化学メッキ(無電解メッキ)、スパッタリ
ング、真空蒸着、イオンプレーティングが適当である。
Next, a metal coating process is performed on the surface of this molded product to form a metal thin film. The thickness of the metal thin film provided here is particularly important. If it is too thick, a laser beam with a strong output is required for forming a circuit pattern by a laser beam in the next step, which causes damage to the base molded article as described above. Therefore, it is not preferable. On the other hand, if it is too thin, the processability of electroplating is hindered in the step of forming a metal layer having a sufficient thickness as a conductive circuit by electroplating, which is not preferable. From this point of view, the thickness of the metal thin film applied to the surface of the substrate molded article is 0.2 to 2 μm, preferably 0.3 to
It is 1 μm. If the thickness is within such a range, the circuit pattern formation by the laser beam can be accurately performed with a comparatively weak output without causing damage to the base molded product, and to the extent necessary for electroplating for the final circuit formation. Is preferable because it maintains the conductivity. As a method for forming such a metal film, any conventionally known method such as chemical plating, sputtering, vacuum deposition, ion plating, transfer method, conductive agent coating and the like may be used, but in order to form a uniform metal thin film. Chemical plating (electroless plating), sputtering, vacuum deposition, and ion plating are suitable.

【0006】次に表面に金属薄膜を形成した合成樹脂成
形品について、絶縁回路となる部分又は絶縁回路となる
部分の輪郭線部分に出力及びレーザースポット径を適宜
調節したレーザー光を照射し、この部分の金属薄膜を選
択的に除去する。ここで用いるレーザーのスポット径及
び除去する金属薄膜の幅は特に重要であり、除去する金
属薄膜の幅が狭すぎると次工程における電気メッキによ
り導電回路部分が短絡する問題を生じさせるため好まし
くない。そのため除去する金属薄膜の幅は回路形成に支
障のない範囲で広いほうが好ましいが、レーザースポッ
ト径が50μmより小さなレーザー光を用いた場合、エネ
ルギー密度が高いためスポット径よりも広い幅で金属薄
膜が除去されるが、一回の照射で充分な幅の金属薄膜を
除去することは不可能であり、そのため照射する回数が
多くなり過ぎレーザー照射時間が長くなるため、生産性
が悪くなり且つ不経済でもある。また、レーザーのエネ
ルギーにより樹脂が劣化するおそれがある。逆にレーザ
ースポット径が500 μmより大きなレーザー光を用いて
照射する場合、エネルギー密度が低いため金属薄膜を除
去するのに必要なエネルギーが確保できず、金属薄膜が
残存する問題が生じる。かかる見地より、金属薄膜を除
去するために用いるレーザー光のスポット径は50〜500
μm、好ましくは150 〜250 μmである。また、除去す
る金属薄膜の幅が500 μmよりも広い場合は、スポット
径が500 μmのレーザー光を複数回照射するより、それ
よりも小さなスポット径のレーザー光を用いて絶縁部分
の輪郭に照射する方法を用いるほうが回路の制度が高く
なるため、金属薄膜を除去する幅は 500μ以下が良い。
かかる見地から除去する金属薄膜の幅は 100〜500 μm
であり、好ましくは 150〜250 μmである。かかる範囲
の幅であれば電気メッキにより導電回路が短絡すること
なく、また、レーザー照射時間が短くなり生産性が良く
なるため好適である。以上のように、本発明は、金属薄
膜の厚さおよびレーザースポット径を特定することによ
り、基体となる合成樹脂成形品を損傷せず、 150〜250
μmという幅の回路パターンを形成し、電気メッキによ
り導電回路が短絡することなくレーザー照射時間を短く
し、生産性を向上したものである。
Next, a synthetic resin molded article having a metal thin film formed on its surface is irradiated with a laser beam whose output and laser spot diameter are appropriately adjusted to the portion to be an insulating circuit or the contour line portion of the portion to be an insulating circuit. The metal thin film in the part is selectively removed. The spot diameter of the laser used here and the width of the metal thin film to be removed are particularly important. If the width of the metal thin film to be removed is too narrow, the problem of short-circuiting the conductive circuit portion due to electroplating in the next step is not preferable. Therefore, it is preferable that the width of the metal thin film to be removed is wide as long as it does not hinder the circuit formation. However, when using a laser beam with a laser spot diameter smaller than 50 μm, the metal thin film has a width wider than the spot diameter because the energy density is high. Although it is removed, it is impossible to remove a metal thin film having a sufficient width with one irradiation, and therefore the number of times of irradiation becomes too large and the laser irradiation time becomes long, resulting in poor productivity and uneconomical. But also. Also, the energy of the laser may deteriorate the resin. On the other hand, in the case of irradiating with a laser beam having a laser spot diameter larger than 500 μm, the energy required for removing the metal thin film cannot be secured because the energy density is low, and there is a problem that the metal thin film remains. From this viewpoint, the spot diameter of the laser beam used to remove the metal thin film is 50 to 500.
μm, preferably 150 to 250 μm. Also, if the width of the thin metal film to be removed is wider than 500 μm, laser light with a spot diameter of 500 μm is irradiated multiple times, and the outline of the insulating part is irradiated with laser light with a smaller spot diameter. The width of the metal thin film removed should be 500μ or less because the circuit accuracy is higher when the method described above is used.
From this point of view, the width of the metal thin film to be removed is 100-500 μm
And preferably 150 to 250 μm. The width within this range is preferable because electroplating does not short-circuit the conductive circuit, and the laser irradiation time is shortened to improve productivity. As described above, according to the present invention, by specifying the thickness of the metal thin film and the laser spot diameter, the synthetic resin molded article as the base is not damaged, and
A circuit pattern having a width of μm is formed, and the laser irradiation time is shortened by electroplating without short-circuiting the conductive circuit, thereby improving productivity.

【0007】かかる金属薄膜に照射するレーザー光はY
AGレーザー、炭酸ガスレーザー等、予め設定された回
路パターンを、コンピュータによって制御されたXY方
向のスキャン機構を有するレーザーマーカーにより選択
的に照射する。また、複雑な立体成形品に回路を形成す
る必要のある場合には、レーザー光を光ファイバ、プリ
ズム等により立体的な方向に導き、コンピュータ制御に
より立体的に所定の領域を正確に照射することができ
る。またはXY方向のスキャン機構を有するレーザーマ
ーカーとコンピュータにより同調して動くXYZ方向、
回転、傾斜の5軸のテーブルを組み合わせることによっ
ても立体的に照射することができる。また、この方法に
よれば、パターンの作成及び修正等はレーザー照射域の
描画プログラムの変更だけで簡単に行える利点を有す
る。また、同一処理内でのスポット径の変更およびスポ
ット径を可変させながらレーザー光を照射することは難
しいため、金属薄膜の除去幅を数種類混在させたい場
合、Z軸を動かしてレーザーの焦点位置をずらしてレー
ザースポット径を大きくして照射する方法、またはレー
ザーを一部重なる位置に複数回照射する方法により行う
ことができる。
The laser light for irradiating the metal thin film is Y
A predetermined circuit pattern such as an AG laser or a carbon dioxide laser is selectively irradiated by a laser marker having a scanning mechanism in XY directions controlled by a computer. If it is necessary to form a circuit in a complicated three-dimensional molded product, the laser light should be guided in a three-dimensional direction by an optical fiber, prism, etc., and computer-controlled to accurately irradiate a predetermined area three-dimensionally. You can Or XYZ directions that move in synchronization with a laser marker having a scanning mechanism in XY directions and a computer,
It is also possible to irradiate three-dimensionally by combining a 5-axis table of rotation and inclination. Further, according to this method, the creation and modification of the pattern can be easily performed only by changing the drawing program in the laser irradiation area. Further, since it is difficult to irradiate laser light while changing the spot diameter and varying the spot diameter within the same process, if you want to mix several removal widths of the metal thin film, move the Z axis to change the focus position of the laser. It can be performed by a method of displacing the laser to increase the laser spot diameter, or a method of irradiating the laser at a position where it partially overlaps a plurality of times.

【0008】次に金属薄膜による回路パターンを形成し
た合成樹脂成形品は、使用目的により可能であればその
まま回路部品として使用しても良いが、一般に回路部品
として使用する場合は、その導電性の点で、あるいは使
用中の摩擦等による損傷断線等の点で、上記の如き2μ
m未満の薄膜の回路では、不都合な場合が多く、一般に
は少なくとも10μm以上の厚さが必要とされる。従って
本発明においては、この回路パターンの導電回路となる
部分に更に電気メッキを施し、所望の厚さ(例えば、10
〜100 μm)に金属層を付加して目的とする導電回路を
形成する。かかる金属層の付加は既に形成された回路パ
ターンが電気メッキに可能な程度の導電性を有するため
一般的な電気メッキ法を適用することができる。
Next, the synthetic resin molded product having a circuit pattern formed of a metal thin film may be used as it is as a circuit component if possible depending on the purpose of use. At the point, or at the point of damage and disconnection due to friction during use, etc.
Thin film circuits of less than m are often inconvenient and generally require a thickness of at least 10 μm or more. Therefore, in the present invention, the portion of the circuit pattern that becomes the conductive circuit is further electroplated to obtain a desired thickness (for example, 10
˜100 μm) with a metal layer to form the desired conductive circuit. A general electroplating method can be applied to the addition of the metal layer because the already formed circuit pattern has a conductivity that allows electroplating.

【0009】次いで、導電回路に金属層が付加され、絶
縁回路が形成、又は絶縁部分に化学メッキの残った合成
樹脂成形品は、そのまま、もしくは必要であれば化学メ
ッキのエッチング液により、絶縁部分に残った化学メッ
キを溶解除去し回路基板を形成する。かかるエッチング
液は一般的な金属エッチング液(例えば、塩化鉄等)を
用いれば良い。次に導電回路が形成された回路基板に電
子素子を収容しハンダ、ワイヤーボンディング等により
電気的に接続を行い封止し電子部品、又は電子部品の集
合体とした後、必要により基板を切り分けて最終的な電
子部品を形成する。
Next, a metal layer is added to the conductive circuit to form an insulating circuit, or the synthetic resin molded product in which the chemical plating remains on the insulating portion is used as it is or, if necessary, by an etching solution for chemical plating, to isolate the insulating portion. The chemical plating remaining on the substrate is dissolved and removed to form a circuit board. A general metal etching solution (for example, iron chloride) may be used as the etching solution. Next, an electronic element is housed in a circuit board on which a conductive circuit is formed, and electrically connected by soldering, wire bonding, etc., and sealed to form an electronic component or an assembly of electronic components, and then the substrate is cut if necessary. Form the final electronic component.

【0010】[0010]

【発明の効果】本発明によれば、レーザー光を使用する
際の合成樹脂成形品の損傷による外観、形状、さらには
絶縁性等に対する支障を避けることができ、また、電気
メッキ工程の際の導電回路の短絡を避けることができ、
簡便な方法で所望の正確な導電回路を有する回路基板及
び電子部品を良品率高く得ることができ、経済的にも有
利である。
EFFECTS OF THE INVENTION According to the present invention, it is possible to avoid an obstacle to the appearance, shape, insulation and the like due to damage of a synthetic resin molded product when using a laser beam, and, in addition, during the electroplating process. You can avoid the short circuit of the conductive circuit,
A circuit board and an electronic component having a desired accurate conductive circuit can be obtained with a high yield rate by a simple method, which is economically advantageous.

【0011】[0011]

【実施例】以下、本発明の実施例を示すが、本発明はこ
れに限定されるものではない。
EXAMPLES Examples of the present invention will be shown below, but the present invention is not limited thereto.

【0012】実施例1 液晶性ポリエステル(商品名「ベクトラ」、ポリプラス
チックス(株)製)を主体とする金属密着性(メッキ
性)樹脂組成物を用いて射出成形し立体的な成形品を作
成した。次いでこれを脱脂し、KOH水溶液にてその表
面のほぼ全面をエッチング処理した後、HCl水溶液に
て中和し、洗浄後、触媒(商品名「キャタリストA−3
0」、奥野製薬工業(株)製)を付与して表面を活性化
した後、化学銅メッキ液(商品名「OPC−750」、
奥野製薬工業(株)製)に浸漬して成形品の表面に、厚
さ 0.6μmの化学銅メッキを施し、よく洗浄後、乾燥し
た。次に、この表面を化学銅メッキした成形品に、レー
ザーパワーが 0.5WのYAGレーザー光をレーザースポ
ット径が 150μmとなるように照射して、絶縁回路部分
及び絶縁部分の輪郭線上の化学銅メッキを幅 150μmで
除去することにより回路パターンを形成した。次いで、
この回路パターンを形成した成形品に、電気銅メッキを
行い、導電回路部分の銅膜の厚さが30μmで、絶縁部分
に化学銅メッキが残った成形品を得た。次にこの絶縁部
分に化学銅メッキが残った成形品を、塩化鉄(III) 水溶
液に浸漬し、化学銅メッキを溶解除去し、正確で立体的
な導電回路部分を有する回路基板を得た。次にこの回路
基板にフィルムコンデンサ素子を収容し、このフィルム
コンデンサ素子の電極と回路基板の回路を電気的に接続
し、封止樹脂により封止した後、このフィルムコンデン
サ素子を収容した回路基板を切断しフィルムコンデンサ
を得た。
Example 1 A three-dimensional molded product was obtained by injection molding using a metal adhesive (plating) resin composition mainly composed of liquid crystalline polyester (trade name "Vectra", manufactured by Polyplastics Co., Ltd.). Created. Next, this is degreased, and almost the entire surface is etched with a KOH aqueous solution, neutralized with an HCl aqueous solution, washed, and then washed with a catalyst (trade name "Catalyst A-3").
0 ", Okuno Seiyaku Kogyo Co., Ltd. to activate the surface, and then a chemical copper plating solution (trade name" OPC-750 ",
The surface of the molded product was dipped in Okuno Chemical Industries Co., Ltd., and the surface of the molded product was subjected to chemical copper plating with a thickness of 0.6 μm, thoroughly washed, and dried. Next, the surface of the molded product with chemical copper plating is irradiated with YAG laser light with a laser power of 0.5 W so that the laser spot diameter is 150 μm, and chemical copper plating is applied on the contour lines of the insulating circuit part and the insulating part. Was removed with a width of 150 μm to form a circuit pattern. Then
The molded product on which the circuit pattern was formed was subjected to electrolytic copper plating to obtain a molded product in which the thickness of the copper film in the conductive circuit portion was 30 μm and the chemical copper plating remained in the insulating portion. Next, the molded product with the chemical copper plating remaining on the insulating portion was immersed in an aqueous solution of iron (III) chloride to dissolve and remove the chemical copper plating to obtain a circuit board having an accurate and three-dimensional conductive circuit portion. Next, the film capacitor element is housed in this circuit board, the electrodes of the film capacitor element are electrically connected to the circuit of the circuit board, and the circuit board containing the film capacitor element is sealed after sealing with the sealing resin. A film capacitor was obtained by cutting.

【0013】比較例1 液晶性ポリエステル(商品名「ベクトラ」、ポリプラス
チックス(株)製)を主体とする金属密着性(メッキ
性)樹脂組成物を用いて射出成形し立体的な成形品を作
成し、実施例1と同様にして化学銅メッキを施した成形
品を得た。次に、この表面を化学銅メッキした成形品
に、レーザーパワーが 0.5WのYAGレーザー光をレー
ザースポット径が40μmとなるように照射して、絶縁回
路部分及び絶縁部分の輪郭線上の化学銅メッキを幅60μ
mで除去することにより回路パターンを形成した。次い
で、この回路パターンを形成した成形品に、電気銅メッ
キを行い、導電回路部分の銅膜の厚さを30μmとしたと
ころ、導電回路の短絡した成形品しか得られなかった。
Comparative Example 1 A three-dimensional molded article was obtained by injection molding using a metal adhesive (plating) resin composition mainly composed of liquid crystalline polyester (trade name "Vectra", manufactured by Polyplastics Co., Ltd.). A molded product was prepared and plated with chemical copper in the same manner as in Example 1. Next, a YAG laser beam with a laser power of 0.5 W is applied to the molded product whose surface is chemically copper-plated so that the laser spot diameter will be 40 μm, and the chemical copper plating on the contour line of the insulating circuit portion and the insulating portion will be performed. Width 60μ
A circuit pattern was formed by removing with m. Then, the molded product having the circuit pattern formed thereon was subjected to electrolytic copper plating to make the thickness of the copper film in the conductive circuit portion 30 μm, and only a molded product in which the conductive circuit was short-circuited was obtained.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 合成樹脂成形品表面に形成された金属薄
膜にレーザー光を照射し金属薄膜を除去して回路パター
ン形成を行い電気メッキにより回路を形成する方法にお
いて、金属薄膜の厚さが 0.2〜2.0 μmであり、レーザ
ースポット径が50〜500 μmであるレーザー光を照射し
て金属薄膜を 100〜500 μmの幅で除去することを特徴
とする回路パターン形成方法。
1. A method for forming a circuit by electroplating by irradiating a metal thin film formed on the surface of a synthetic resin molded product with laser light to remove the metal thin film to form a circuit pattern, wherein the metal thin film has a thickness of 0.2. A method for forming a circuit pattern, which comprises irradiating a laser beam having a laser spot diameter of 50 μm to 2.0 μm with a laser spot diameter of 50 to 500 μm to remove a metal thin film with a width of 100 to 500 μm.
【請求項2】 レーザーの焦点位置をずらしてレーザー
スポット径を50〜500 μmとしてレーザー光照射を行う
請求項1記載の回路パターン形成方法。
2. The circuit pattern forming method according to claim 1, wherein the laser beam irradiation is performed by shifting the focal position of the laser so that the laser spot diameter is 50 to 500 μm.
【請求項3】 レーザーを一部重なる位置に複数回照射
し金属薄膜を除去する請求項1又は2記載の回路パター
ン形成方法。
3. The method for forming a circuit pattern according to claim 1, wherein the metal thin film is removed by irradiating the position where the laser is partially overlapped a plurality of times.
【請求項4】 合成樹脂成形品が立体形状を有するもの
である請求項1〜3の何れか1項記載の回路パターン形
成方法。
4. The circuit pattern forming method according to claim 1, wherein the synthetic resin molded product has a three-dimensional shape.
【請求項5】 請求項1〜4の何れか1項記載の方法に
より回路パターンを形成した合成樹脂成形品を電気メッ
キした後、必要によりフラッシュエッチングし回路形成
した回路基板。
5. A circuit board on which a circuit is formed by electroplating a synthetic resin molded product on which a circuit pattern is formed by the method according to claim 1 and then flash etching if necessary.
【請求項6】 請求項5記載の回路基板に電子素子を収
容し、電子素子の電極と回路基板の回路とを電気的に接
続を行い封止した後、必要により基板を切り分けて製造
した電子部品。
6. An electronic device manufactured by accommodating an electronic element in the circuit board according to claim 5, electrically connecting and sealing an electrode of the electronic element and a circuit of the circuit board, and then cutting the board if necessary. parts.
JP5331257A 1993-12-27 1993-12-27 Formation of circuit pattern using laser and circuit board Pending JPH07193356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5331257A JPH07193356A (en) 1993-12-27 1993-12-27 Formation of circuit pattern using laser and circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5331257A JPH07193356A (en) 1993-12-27 1993-12-27 Formation of circuit pattern using laser and circuit board

Publications (1)

Publication Number Publication Date
JPH07193356A true JPH07193356A (en) 1995-07-28

Family

ID=18241670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5331257A Pending JPH07193356A (en) 1993-12-27 1993-12-27 Formation of circuit pattern using laser and circuit board

Country Status (1)

Country Link
JP (1) JPH07193356A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677014A (en) * 1995-07-31 1997-10-14 Ngk Insulators, Ltd. Process for film formation
JP2000022307A (en) * 1998-06-29 2000-01-21 Miyachi Technos Corp Forming method of circuit pattern with plating film
JP2004152750A (en) * 2002-10-10 2004-05-27 Matsushita Electric Works Ltd Soldering terminal and treatment method of surface of soldering terminal
JP2008028255A (en) * 2006-07-24 2008-02-07 Matsushita Electric Works Ltd Method for manufacturing three-dimensional circuit substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677014A (en) * 1995-07-31 1997-10-14 Ngk Insulators, Ltd. Process for film formation
JP2000022307A (en) * 1998-06-29 2000-01-21 Miyachi Technos Corp Forming method of circuit pattern with plating film
JP2004152750A (en) * 2002-10-10 2004-05-27 Matsushita Electric Works Ltd Soldering terminal and treatment method of surface of soldering terminal
JP2008028255A (en) * 2006-07-24 2008-02-07 Matsushita Electric Works Ltd Method for manufacturing three-dimensional circuit substrate

Similar Documents

Publication Publication Date Title
JP3159841B2 (en) Circuit forming method by laser and conductive circuit forming part
US3099608A (en) Method of electroplating on a dielectric base
US4691091A (en) Direct writing of conductive patterns
JPH02128492A (en) Manufacture of printed wiring board
US5863405A (en) Process for forming conductive circuit on the surface of molded article
EP0615257B1 (en) Method of manufactoring a laminated structure of a metal layer on a conductive polymer layer
JPH07193356A (en) Formation of circuit pattern using laser and circuit board
CN104955281A (en) Method for manufacturing or repairing stereoscopic circuit on surface of three-dimensional high polymer material
US5211803A (en) Producing metal patterns on a plastic surface
JPH06164105A (en) Method for forming conductive circuit on surface of molded item and part with conductive circuit formed thereon
JP3706165B2 (en) Circuit forming method by laser using nickel metal film and conductive circuit forming component
JP3645926B2 (en) Circuit forming method and conductive circuit forming component
JP3159840B2 (en) Circuit forming method and conductive circuit forming component
JPH07193357A (en) Formation of polyhedral circuit pattern using laser and circuit board
EP0711102B1 (en) Method for forming a conductive circuit on the surface of a molded product
JPH08167769A (en) Circuit forming method by laser, and part having conductive circuit formed thereby
JPH05198920A (en) Manufacture of printed board
JP2724077B2 (en) Method of forming conductive circuit on molded product surface
JP3770968B2 (en) Circuit formation method using laser
US5063660A (en) Method for manufacturing preforms coated with hard solder for repairing interconnect interruptions
JP2000022307A (en) Forming method of circuit pattern with plating film
WO2020251018A1 (en) Formed body and method for producing same
JP2595187B2 (en) Surface treatment agent for fluorine resin
KR100906188B1 (en) Aluminium coil with ultrasonic soldering and method for producing the same
WO1992010079A1 (en) Cubic molded article with built-in cubic conductor circuit and production method thereof