JP3770968B2 - Circuit formation method using laser - Google Patents

Circuit formation method using laser Download PDF

Info

Publication number
JP3770968B2
JP3770968B2 JP19345096A JP19345096A JP3770968B2 JP 3770968 B2 JP3770968 B2 JP 3770968B2 JP 19345096 A JP19345096 A JP 19345096A JP 19345096 A JP19345096 A JP 19345096A JP 3770968 B2 JP3770968 B2 JP 3770968B2
Authority
JP
Japan
Prior art keywords
thin film
metal thin
laser
circuit
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19345096A
Other languages
Japanese (ja)
Other versions
JPH09102668A (en
Inventor
貴之 宮下
智行 明田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP19345096A priority Critical patent/JP3770968B2/en
Publication of JPH09102668A publication Critical patent/JPH09102668A/en
Application granted granted Critical
Publication of JP3770968B2 publication Critical patent/JP3770968B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、合成樹脂成形品の表面に導電回路を形成する方法に関し、電気・電子機器等の分野で回路部品として使用される、表面に正確な導電回路を有する成形品を、効率よく製造するための方法に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
現在、レーザー光を用いた回路形成法として、成形品の表面に予め導電回路として充分な厚さの金属膜を形成し、導電回路以外の部分の金属膜をレーザー光により飛散除去して、そのまま導電回路とする方法(特開昭64−83391号公報)が考えられているが、この方法によると導体金属層の厚さを回路としての導電性が充分なように比較的厚い層(例えば10μm以上)とする必要があるため、レーザー光にて金属層の不要部を除去する場合には、レーザー光の出力を高くする必要があり、その結果、下地の合成樹脂成形品まで損傷してしまい、形成した回路の外観形状を著しく阻害し、又、合成樹脂を炭化させて絶縁性に支障を生じる等の問題がある。
また、成形品の表面に金属薄膜を形成し、導電回路部以外の部分の金属薄膜を除去し回路パターンを形成し、電気メッキを行い導電回路とする方法(特開平6−164105号公報)が考えられており、この方法によればレーザー光の出力を下げて照射するため合成樹脂が炭化されず絶縁性の問題はないが、レーザー光の出力を下げているため、金属薄膜の厚さのばらつきにより、金属薄膜が部分的に除去しきれずに残留し、その結果、導電回路が短絡するという新たな問題が生じる場合がある。
【0003】
【課題を解決するための手段】
本発明者等は、上記従来法の問題を解決し、簡便な方法により複雑な形状の成形品にもレーザー光を利用して精度良く導電回路を形成する方法について詳細に検討した結果、成形品の表面に形成された金属薄膜として、表面の明度(L値)が40以下の特定のものを用い、レーザー加工を行うことにより、金属薄膜の厚さのばらつきによる金属薄膜の残留がなくなり、導電回路を短絡させることなく形成し得ることを見出し、本発明を完成するに至った。
即ち本発明は、合成樹脂成形品表面に形成した金属薄膜をレーザー光により除去して回路形成を行う方法において、有機イオウ化合物を含有する無電解銅メッキ液から得られた表面の明度(L値)が40以下である金属薄膜を用い、レーザー加工を行うことを特徴とするレーザーによる回路形成方法である。
【0004】
【発明の実施の形態】
以下、図を参照し、順を追って本発明の方法を説明する。
本発明で用いる合成樹脂成形品(基体成形品)の材質は、金属薄膜を強固に付着することのできる合成樹脂であれば、熱可塑性樹脂材料、熱硬化性樹脂材料の何れでも良いが、かかる成形品が後にハンダ付加工等の苛酷な処理を受けることを考慮すると、耐熱性が高く、かつ機械的強度の優れたものが望ましく、さらに多量産性の点では射出成形可能な熱可塑性樹脂が好ましい。その例を挙げれば、芳香族ポリエステル、ポリアミド、ポリアセタール、ポリアリーレンサルファイド、ポリサルホン、ポリフェニレンオキサイド、ポリイミド、ポリエーテルケトン、ポリアリレート及びこれらの組成物等であり、金属薄膜表面の明度(L値)を40以下にするための熱処理の関係から熱変形温度が200 ℃以上の熱可塑性樹脂が好ましく、特に高融点、高強度、高剛性、成形加工性等の観点から液晶性ポリマー(例えば液晶性ポリエステル、ポリエステルアミド)、ポリアリーレンサルファイドが特に好適であるがこれらに限定されるものではない。また、金属薄膜の密着性を高めるため、必要に応じその材料に適当な物質を配合しても良い。
基体成形品1(図1)は、射出成形等により成形され、その表面の金属薄膜の密着性を良くするため、更に酸、アルカリその他による化学的エッチング、或いはコロナ放電、プラズマ処理等の物理的表面処理を行っても良い。
【0005】
次に、この成形品の表面に金属被覆加工を行い、金属薄膜2を形成する(図2)。
ここで付与する金属薄膜2の厚さは、厚すぎると次工程におけるレーザー光による回路パターン形成に強い出力のレーザー光を要することとなり、先に述べたように基体成形品1に損傷を生じさせるため好ましくない。逆に薄すぎると後工程での電気メッキによる金属層付加工程において、メッキのための電気が流れなくなるため好ましくない。かかる見地から基体成形品1の表面に付与される金属薄膜2の厚さは0.1 〜2μm程度の範囲が適当であり、より好ましくは0.3 〜1μmである。かかる範囲の厚さであればレーザー光による回路パターン形成を比較的弱い出力で基体成形品1に損傷を生じさせることなく正確に行うことができるので好適である。
かかる金属薄膜2を形成する方法としては、化学メッキ、スパッタリング、真空蒸着、イオンプレーティング、転写法、導電剤塗装等、従来公知の何れの方法でも良いが、均一な金属薄膜2を形成するためには化学メッキ(無電解メッキ)、スパッタリング、真空蒸着、イオンプレーティングが適当である。
また、ここで用いる金属は、銅、銀、ニッケル等、後述のように、化学反応等により暗褐色に変化する金属であれば、何れの金属でも良いが、安価で導電性の良い金属薄膜を形成するためには銅が好適である。
ここで、金属薄膜の表面の明度(L値)が40以下、より好ましくは30以下であれば、そのままレーザー加工を行えばよい。例えば、無電解銅メッキ液に有機イオウ化合物を添加すると析出した銅薄膜の表面の明度(L値)は40以下であるので、そのままレーザー加工を行うことができる。ここで、有機イオウ化合物としては、2−メルカプトベンゾイミダゾール等のチオール類、ジメチルジスルフィド等のジスルフィド類、1,2 −ビス(2−ヒドロキシエチルチオ)エタン等のスルフィド類、チオアセトン、チオ尿素等のチオケトン類、1−エチルチアゾリウムクロライド等のスルホニウム類、スルホラン等のスルホラン類が挙げられ、これらの1種又は2種以上を用いることができる。
無電解メッキ表面の明度(L値)が40を越えている場合は、表面に金属薄膜2を形成した基体成形品1(図2)の金属薄膜2の表面を、明度(L値)が40以下になるように暗色に変化させれば良い(図3)。
本発明における明度とは、色差計で測定されたL値のことである。
金属薄膜表面の明度(L値)を40以下に変化させる方法としては化学反応が好適であり、具体的には酸化、硫化等の既知の方法であり、その金属に適した方法であればいかなる方法でもよく、例えば銅薄膜の場合、加熱による酸化で薄膜表面に暗色の酸化物を形成させる方法が簡便で好適である。また、ここでの加熱温度の設定は重要であり、低い温度では金属薄膜2が酸化されずらく、また逆に高い温度では基体樹脂成形品に変形などの不具合が生じるため好ましくない。かかる見地から金属薄膜を加熱により酸化させる場合の加熱温度は、100 〜200 ℃、好ましくは140 〜200 ℃が適当であり、0.5 〜3時間加熱時間が適当である。
【0006】
通常、金属と合成樹脂とのレーザーによる加工性は、合成樹脂のほうがより低い出力のレーザーで加工されるので、下地部分の合成樹脂の損傷を防ぐために、できるだけ低い出力のレーザーで加工する必要がある。本発明は、色差計での明度(L値)を40以下にすれば、金属薄膜に対するレーザー光の吸収が多くなり、合成樹脂の損傷がない低い出力のレーザーで不必要な部分の金属薄膜を完全に除去し、短絡しない導電回路を形成できることを見出したのである。つまり、色差計での明度(L値)が40より大きくなると、金属薄膜に対するレーザー光の吸収が悪くなり、高い出力のレーザーで加工しなければならないため金属薄膜を除去する際に下地の合成樹脂を炭化させる等の不具合が発生する場合があり、好ましくないのである。
【0007】
次に、表面の明度(L値)が40以下の金属薄膜が形成された成形品(図3)について、導電回路部分以外の不要部分に出力を適宜調節したレーザー光4を照射することにより、この部分の金属薄膜2だけを選択的に飛散除去し、金属薄膜2の導電回路パターン5を形成する(図4)。
ここで、照射するレーザー光4は、化学反応した金属薄膜を除去することのできるレーザーであれば如何なるものでもよいが、金属薄膜の除去性能を考慮すると、赤外領域の波長を有するYAGレーザー、炭酸ガスレーザーなどが好ましい。
かかるレーザーは、予め設定された回路パターンを、コンピュータによって制御されたXY方向のスキャン機構を有するレーザーマーカーにより選択的に照射する。また、複雑な立体成形品に回路を形成する必要のある場合には、レーザー光4を光ファイバ、プリズム等により立体的な方向に導き、コンピュータ制御により所定の領域を正確に照射することができる。またはXY方向のスキャン機構を有するレーザーマーカーとコンピュータにより同調して動くXYZ方向、回転、傾斜の5軸のテーブルを組み合せることによっても立体的に照射することができる。また、この方法によれば、パターンの作成及び修正等は、レーザー照射域の描画プログラムを変更するだけで簡単に行える利点を有する。
【0008】
その後、表面の明度(L値)が40以下の金属薄膜2の不要な部分を除去して形成した回路パターン5の導電回路部分に、更に電気メッキを施し、所望の厚さ(例えば、10〜100 μm)に金属層を付加して目的とする導電回路6を形成する(図5)。金属層は、10μm以上の厚さであれば、導電性の点、あるいは使用中の摩擦等による損傷断線等の問題もなく、また必要以上に厚くする必要もないので厚くても100 μm程度で良い。
尚、表面を酸化物などの化合物3により明度(L値)40以下とした金属薄膜2では、特にその上に形成する電気メッキによる金属層6の密着性が良くないことから、電気メッキで金属層6を形成する為の前処理として、金属薄膜表面層を除去した方が望ましい。その方法としては、公知の如何なる方法を用いても構わないが、成形品を塩酸、硫酸等の酸に浸漬し該表面層を溶解除去する方法が簡便である。
【0009】
【発明の効果】
本発明によれば、レーザー光を使用することに起因する、合成樹脂成形品の損傷による外観、形状、絶縁性等に対する弊害を避けることができ、また、金属薄膜の厚さのばらつきによる金属薄膜の残留がなくなるため、導電回路の短絡がなく、加工条件幅が広くなるため量産性に優れ、簡便な方法で所望の厚さの正確な導電回路を有する導電回路部品を得ることができ、経済的にも有利である。
【0010】
【実施例】
以下、図を参照して本発明の実施例を示すが、本発明はこれに限定されるものではない。尚、明度(L値)は、色差計(日本電色工業(株)製「Z-300A」)により、30φの投光レンズを用いて、外光の影響を受けないようにして、成形品のメッキ表面を測定することにより得た値である。また、以下の実施例1〜8は参考のため示したものである。
実施例1
液晶性ポリエステル(商品名「ベクトラ」、ポリプラスチックス(株)製)を主体とする金属密着性(メッキ性)樹脂組成物を用いて射出成形により立体的な成形品1を作成した(図1)。次いでこれを脱脂し、KOH水溶液にてその表面のほぼ全面をエッチング処理した後、HCl水溶液にて中和、洗浄後、触媒を付与して表面を活性化し後、化学銅メッキ液(奥野製薬工業(株)製OPC−750、A液、B液及びC液の混合溶液)に浸漬して、表面に厚さ0.3 μmの化学銅メッキの金属薄膜2を形成し、よく洗浄した後、乾燥した(図2)。
次に、この表面を化学銅メッキした成形品(図2)を、120 ℃で1時間加熱したところ、化学銅メッキ表面が化学反応を起こし暗褐色の酸化物3に変化した(図3)。この表面の明度(L値)は26.23 であった。
次いで、この化学銅メッキ表面を変色させた成形品に、レーザー出力が0.4 WのYAGレーザー光4を照射して、導電回路部分以外の不要部分の化学銅メッキを除去することにより、導電回路パターン5を形成した(図4)。
その後、この導電回路パターン5を形成した成形品を、5%硫酸水溶液に浸漬し、表面の変色した酸化物を溶解除去した後、導電回路パターン部分に、厚さ10μmの電気銅メッキを施し、洗浄後、乾燥し、正確で立体的な導電回路部分6を有する回路形成品(図5)を得た。
上記の工程で50個の回路形成品を製造し、その良品率を測定した結果を表1に示す。
【0011】
実施例2〜8、比較例1〜6
金属薄膜の厚さ、金属薄膜表面に暗色の化合物(酸化物)を形成する際の加熱温度と、その結果形成された成形品の表面の明度、導電回路部分以外の不要部分を除去する際のレーザー光のレーザー出力を、それぞれ表1に示すよう変えた以外は実施例1と同様にして回路形成品を製造し、同様の測定を行った。
結果を表1に示す。
【0012】
【表1】

Figure 0003770968
【0013】
実施例9
液晶性ポリエステル(商品名「ベクトラ」、ポリプラスチックス(株)製)を主体とする金属密着性(メッキ性)樹脂組成物を用いて射出成形により立体的な成形品1を作成した(図1)。次いでこれを脱脂し、KOH水溶液にてその表面のほぼ全面をエッチング処理した後、HCl水溶液にて中和、洗浄後、触媒を付与して表面を活性化し後、奥野製薬工業(株)製の無電解化学銅メッキ液OPC−750のA液及びB液の混合溶液にチオ尿素6ppmを配合した化学銅メッキ液に浸漬して、表面に厚さ0.5 μmの化学銅メッキの金属薄膜2を形成し、よく洗浄した後、乾燥した(図2)。
この表面の明度(L値)は23.76 であった。
次いで、この化学銅メッキを形成した成形品に、レーザー出力が0.7 WのYAGレーザー光4を照射して、導電回路部分以外の不要部分の化学銅メッキを除去することにより、導電回路パターン5を形成した(図4)。
その後、この導電回路パターン5を形成した成形品の導電回路パターン部分に、厚さ10μmの電気銅メッキを施し、洗浄後、乾燥し、正確で立体的な導電回路部分6を有する回路形成品(図5)を得た。
上記の工程で50個の回路形成品を製造し、その良品率を測定した結果を表2に示す。
実施例10
金属薄膜の厚さを変えた以外は実施例9と同様にして回路形成品を製造し、同様の測定を行った。
結果を表2に示す。
【0014】
【表2】
Figure 0003770968

【図面の簡単な説明】
【図1】図1は、本発明の一例として立体回路成形部品となる基体成形品の斜視図である。
【図2】図2は、図1に示す基体成形品の表面に化学銅メッキを施し、銅薄膜を形成した状態を示す斜視図である。
【図3】図3は、図2に示す銅薄膜を形成した成形品を加熱し、銅薄膜表面に明度(L値)が40以下の酸化物を形成させた状態を示す斜視図である。
【図4】図4は、成形品の導電回路部分以外の銅薄膜をYAGレーザーにより除去し、導電回路パターンを形成した状態を示す斜視図である。
【図5】図5は、図4に示す導電回路パターンを形成した成形品の導電回路部分に電気銅メッキを施し、回路を形成した状態を示す斜視図である。
【符号の説明】
1・・・基体成形品
2・・・化学金属メッキによる金属薄膜
3・・・明度(L値)が40以下に変化した金属
4・・・レーザー光
5・・・レーザー光により形成された導電回路パターン
6・・・電気銅メッキにより形成された導電回路[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming a conductive circuit on the surface of a synthetic resin molded product, and efficiently produces a molded product having an accurate conductive circuit on the surface, which is used as a circuit component in the field of electrical and electronic equipment. For the method.
[0002]
[Prior art and problems to be solved by the invention]
Currently, as a method of forming a circuit using laser light, a metal film having a sufficient thickness as a conductive circuit is formed on the surface of the molded product in advance, and the metal film other than the conductive circuit is scattered and removed by laser light. A method of forming a conductive circuit (Japanese Patent Laid-Open No. 64-83391) has been considered, but according to this method, the thickness of the conductive metal layer is set to a relatively thick layer (for example, 10 μm) so that the conductivity as a circuit is sufficient. Therefore, when removing unnecessary parts of the metal layer with laser light, it is necessary to increase the output of the laser light, resulting in damage to the underlying synthetic resin molded product. There are problems such as remarkably hindering the external shape of the formed circuit, and carbonizing the synthetic resin to hinder insulation.
Further, there is a method (Japanese Patent Laid-Open No. 6-164105) in which a metal thin film is formed on the surface of a molded product, a metal thin film other than the conductive circuit portion is removed to form a circuit pattern, and electroplating is performed to form a conductive circuit. According to this method, the laser light output is lowered to irradiate, so the synthetic resin is not carbonized and there is no problem with insulation, but the laser light output is lowered, so the thickness of the metal thin film is reduced. Due to the variation, the metal thin film may not be partially removed and may remain, resulting in a new problem that the conductive circuit is short-circuited.
[0003]
[Means for Solving the Problems]
As a result of studying in detail a method for forming a conductive circuit with high precision using a laser beam on a molded product having a complicated shape by a simple method, the present inventors have solved the above-mentioned problems of the conventional method. As a metal thin film formed on the surface of the metal, a specific one having a surface lightness (L value) of 40 or less is used, and by performing laser processing, the metal thin film does not remain due to variations in the thickness of the metal thin film. The inventors have found that the circuit can be formed without short-circuiting, and have completed the present invention .
That is, the present invention relates to a method of performing circuit formation by removing a metal thin film formed on the surface of a synthetic resin molded article with a laser beam, and the surface brightness (L value) obtained from an electroless copper plating solution containing an organic sulfur compound. ) Is a circuit forming method using a laser, characterized by performing laser processing using a metal thin film of 40 or less.
[0004]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the method of the present invention will be described step by step with reference to the drawings.
The material of the synthetic resin molded product (substrate molded product) used in the present invention may be either a thermoplastic resin material or a thermosetting resin material as long as it is a synthetic resin capable of firmly attaching a metal thin film. Considering that the molded product will undergo severe processing such as soldering later, it is desirable to have a high heat resistance and excellent mechanical strength. preferable. Examples include aromatic polyesters, polyamides, polyacetals, polyarylene sulfides, polysulfones, polyphenylene oxides, polyimides, polyether ketones, polyarylates and compositions thereof, and the lightness (L value) of the metal thin film surface. A thermoplastic resin having a heat distortion temperature of 200 ° C. or higher is preferable from the viewpoint of heat treatment to make it 40 or less, and in particular, from the viewpoint of high melting point, high strength, high rigidity, molding processability, etc. Polyesteramide) and polyarylene sulfide are particularly suitable, but not limited thereto. Moreover, in order to improve the adhesiveness of a metal thin film, you may mix | blend a suitable substance with the material as needed.
The base molded product 1 (FIG. 1) is molded by injection molding or the like, and in order to improve the adhesion of the metal thin film on the surface, further chemical etching with acid, alkali, etc., or physical such as corona discharge, plasma treatment, etc. Surface treatment may be performed.
[0005]
Next, a metal coating process is performed on the surface of the molded product to form a metal thin film 2 (FIG. 2).
If the thickness of the metal thin film 2 applied here is too thick, a strong laser beam is required for forming a circuit pattern by the laser beam in the next process, and as described above, the base molded article 1 is damaged. Therefore, it is not preferable. On the other hand, if it is too thin, electricity for plating does not flow in the metal layer adding step by electroplating in a later step, which is not preferable. From this standpoint, the thickness of the metal thin film 2 applied to the surface of the base molded article 1 is suitably in the range of about 0.1 to 2 μm, more preferably 0.3 to 1 μm. A thickness within such a range is preferable because circuit pattern formation by laser light can be accurately performed with relatively weak output without causing damage to the base molded article 1.
As a method for forming the metal thin film 2, any conventionally known method such as chemical plating, sputtering, vacuum deposition, ion plating, transfer method, and conductive agent coating may be used. However, in order to form a uniform metal thin film 2. For this, chemical plating (electroless plating), sputtering, vacuum deposition, or ion plating is suitable.
In addition, the metal used here may be any metal as long as it is a metal that changes to dark brown due to a chemical reaction or the like, as described later, such as copper, silver, nickel, etc. Copper is preferred for forming.
Here, if the lightness (L value) of the surface of the metal thin film is 40 or less, more preferably 30 or less, laser processing may be performed as it is. For example, when an organic sulfur compound is added to the electroless copper plating solution, the lightness (L value) of the surface of the deposited copper thin film is 40 or less, so that laser processing can be performed as it is. Here, examples of the organic sulfur compound include thiols such as 2-mercaptobenzimidazole, disulfides such as dimethyl disulfide, sulfides such as 1,2-bis (2-hydroxyethylthio) ethane, thioacetone and thiourea. Examples include thioketones, sulfoniums such as 1-ethylthiazolium chloride, and sulfolanes such as sulfolane, and one or more of these can be used.
When the lightness (L value) of the electroless plating surface exceeds 40, the lightness (L value) of the surface of the metal thin film 2 of the base molded product 1 (FIG. 2) having the metal thin film 2 formed on the surface is 40. What is necessary is just to change to a dark color so that it may become the following (FIG. 3).
The brightness in the present invention is an L value measured with a color difference meter.
As a method for changing the lightness (L value) of the metal thin film surface to 40 or less, a chemical reaction is suitable, and specifically, a known method such as oxidation or sulfuration, and any method suitable for the metal can be used. For example, in the case of a copper thin film, a method of forming a dark oxide on the surface of the thin film by oxidation by heating is simple and suitable. The setting of the heating temperature here is important, and the metal thin film 2 is difficult to be oxidized at a low temperature, and conversely, a problem such as deformation occurs in the base resin molded product at a high temperature. From this standpoint, the heating temperature when the metal thin film is oxidized by heating is suitably 100 to 200 ° C, preferably 140 to 200 ° C, and the heating time is suitably 0.5 to 3 hours.
[0006]
In general, laser processing of metal and synthetic resin is processed with a laser with a lower output of synthetic resin, so it is necessary to process with a laser with the lowest possible output to prevent damage to the synthetic resin in the base part. is there. In the present invention, if the lightness (L value) of the color difference meter is set to 40 or less, the absorption of the laser beam to the metal thin film increases, and the unnecessary portion of the metal thin film is formed by a low-power laser that does not damage the synthetic resin. It has been found that a conductive circuit that is completely removed and does not short-circuit can be formed. In other words, if the lightness (L value) of the color difference meter is greater than 40, the absorption of the laser beam with respect to the metal thin film deteriorates, and it must be processed with a high-power laser. In some cases, such as carbonization of carbon dioxide may occur, which is not preferable.
[0007]
Next, by irradiating the unnecessary part other than the conductive circuit part with the laser beam 4 whose output is appropriately adjusted, for the molded article (FIG. 3) on which the metal thin film having the surface brightness (L value) of 40 or less is formed, Only the metal thin film 2 in this portion is selectively scattered and removed to form a conductive circuit pattern 5 of the metal thin film 2 (FIG. 4).
Here, the laser beam 4 to be irradiated may be any laser as long as it can remove the chemically reacted metal thin film, but considering the removal performance of the metal thin film, a YAG laser having a wavelength in the infrared region, A carbon dioxide laser or the like is preferable.
Such a laser selectively irradiates a preset circuit pattern with a laser marker having a scanning mechanism in XY directions controlled by a computer. In addition, when it is necessary to form a circuit in a complicated three-dimensional molded product, the laser beam 4 can be guided in a three-dimensional direction by an optical fiber, a prism, etc., and a predetermined area can be accurately irradiated by computer control. . Alternatively, three-dimensional irradiation can be performed by combining a laser marker having a scanning mechanism in the XY directions and a table of five axes in the XYZ directions, rotation, and tilt that move in synchronization with a computer. Further, according to this method, there is an advantage that pattern creation and correction can be easily performed only by changing a laser irradiation region drawing program.
[0008]
Thereafter, the conductive circuit portion of the circuit pattern 5 formed by removing unnecessary portions of the metal thin film 2 having a surface brightness (L value) of 40 or less is further electroplated to obtain a desired thickness (for example, 10 to 10). 100 μm) is added with a metal layer to form the desired conductive circuit 6 (FIG. 5). If the thickness of the metal layer is 10 μm or more, there is no problem of electrical conductivity or damage disconnection due to friction during use, and it is not necessary to make it thicker than necessary. good.
The metal thin film 2 having a lightness (L value) of 40 or less due to the compound 3 such as an oxide is not particularly good in the adhesion of the metal layer 6 formed by electroplating on the metal thin film 2, so that the metal is obtained by electroplating. As a pretreatment for forming the layer 6, it is desirable to remove the metal thin film surface layer. As the method, any known method may be used, but a method of dissolving and removing the surface layer by immersing the molded article in an acid such as hydrochloric acid or sulfuric acid is convenient.
[0009]
【The invention's effect】
According to the present invention, it is possible to avoid adverse effects on appearance, shape, insulation, etc. due to damage of a synthetic resin molded product due to the use of laser light, and metal thin films due to variations in metal thin film thickness Therefore, there is no short circuit of the conductive circuit, and the processing condition width is wide, so that the mass productivity is excellent, and a conductive circuit component having an accurate conductive circuit of a desired thickness can be obtained by a simple method, This is also advantageous.
[0010]
【Example】
Hereinafter, examples of the present invention will be described with reference to the drawings, but the present invention is not limited thereto. The lightness (L value) is determined by a color difference meter (“Z-300A” manufactured by Nippon Denshoku Industries Co., Ltd.) using a 30φ projection lens so that it is not affected by external light. It is the value obtained by measuring the plating surface. The following Examples 1 to 8 are shown for reference.
Example 1
A three-dimensional molded article 1 was prepared by injection molding using a metal adhesive (plating property) resin composition mainly composed of liquid crystalline polyester (trade name “Vectra”, manufactured by Polyplastics Co., Ltd.) (FIG. 1). ). Next, this was degreased and the entire surface was etched with an aqueous KOH solution, neutralized with an aqueous HCl solution, washed, and then given a catalyst to activate the surface, then a chemical copper plating solution (Okuno Pharmaceutical Co., Ltd.) It was immersed in OPC-750 manufactured by Co., Ltd., a mixed solution of A liquid, B liquid and C liquid) to form a chemical copper-plated metal thin film 2 having a thickness of 0.3 μm on the surface, washed well, and then dried. (FIG. 2).
Next, when the molded product (FIG. 2) whose surface was chemically copper-plated was heated at 120 ° C. for 1 hour, the chemical copper-plated surface caused a chemical reaction and changed to dark brown oxide 3 (FIG. 3). The lightness (L value) of this surface was 26.23.
Next, the molded product with the discolored surface of the chemical copper plating is irradiated with a YAG laser beam 4 having a laser output of 0.4 W to remove the unnecessary portion of the chemical copper plating other than the conductive circuit portion. 5 was formed (FIG. 4).
Thereafter, the molded article on which the conductive circuit pattern 5 is formed is immersed in a 5% aqueous sulfuric acid solution, and the discolored oxide on the surface is dissolved and removed. Then, the conductive circuit pattern portion is subjected to electrolytic copper plating with a thickness of 10 μm, After washing, drying was performed to obtain a circuit-formed product (FIG. 5) having an accurate and three-dimensional conductive circuit portion 6.
Table 1 shows the results of manufacturing 50 circuit-formed products by the above process and measuring the yield rate.
[0011]
Examples 2-8, Comparative Examples 1-6
The thickness of the metal thin film, the heating temperature when forming a dark compound (oxide) on the surface of the metal thin film, the brightness of the surface of the molded product formed as a result, and the removal of unnecessary parts other than the conductive circuit part A circuit-formed product was produced in the same manner as in Example 1 except that the laser output of the laser beam was changed as shown in Table 1, and the same measurement was performed.
The results are shown in Table 1.
[0012]
[Table 1]
Figure 0003770968
[0013]
Example 9
A three-dimensional molded article 1 was prepared by injection molding using a metal adhesive (plating property) resin composition mainly composed of liquid crystalline polyester (trade name “Vectra”, manufactured by Polyplastics Co., Ltd.) (FIG. 1). ). Next, this was degreased and the entire surface of the surface was etched with an aqueous KOH solution, neutralized with an aqueous HCl solution, washed, activated with a catalyst, and then manufactured by Okuno Pharmaceutical Co., Ltd. Electroless chemical copper plating solution OPC-750 solution A and B solution mixed with chemical copper plating solution containing 6ppm thiourea to form 0.5μm thick chemical copper plating metal thin film 2 on the surface After washing well, it was dried (FIG. 2).
The lightness (L value) of this surface was 23.76.
Next, the molded product formed with the chemical copper plating is irradiated with YAG laser light 4 having a laser output of 0.7 W to remove unnecessary portions of the chemical copper plating other than the conductive circuit portion, thereby forming the conductive circuit pattern 5. Formed (FIG. 4).
Thereafter, the conductive circuit pattern portion of the molded product on which the conductive circuit pattern 5 is formed is subjected to electrolytic copper plating with a thickness of 10 μm, washed and dried, and a circuit-formed product having an accurate and three-dimensional conductive circuit portion 6 ( Fig. 5) was obtained.
Table 2 shows the results of manufacturing 50 circuit-formed products by the above process and measuring the yield rate.
Example 10
A circuit-formed product was produced in the same manner as in Example 9 except that the thickness of the metal thin film was changed, and the same measurement was performed.
The results are shown in Table 2.
[0014]
[Table 2]
Figure 0003770968

[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a perspective view of a base molded product that becomes a three-dimensional circuit molded component as an example of the present invention.
FIG. 2 is a perspective view showing a state in which a surface of the base molded product shown in FIG. 1 is subjected to chemical copper plating to form a copper thin film.
FIG. 3 is a perspective view showing a state in which a molded product on which the copper thin film shown in FIG. 2 is formed is heated to form an oxide having a lightness (L value) of 40 or less on the surface of the copper thin film.
FIG. 4 is a perspective view showing a state in which a conductive circuit pattern is formed by removing a copper thin film other than a conductive circuit portion of a molded product with a YAG laser.
5 is a perspective view showing a state in which a circuit is formed by applying electrolytic copper plating to a conductive circuit portion of a molded product on which the conductive circuit pattern shown in FIG. 4 is formed. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Base-molded article 2 ... Metal thin film 3 by chemical metal plating 3 ... Metal whose brightness (L value) has changed to 40 or less 4 ... Laser beam 5 ... Conductivity formed by laser beam Circuit pattern 6: conductive circuit formed by electrolytic copper plating

Claims (4)

合成樹脂成形品表面に形成した金属薄膜をレーザー光により除去して回路形成を行う方法において、有機イオウ化合物を含有する無電解銅メッキ液から得られた表面の明度(L値)が40以下である金属薄膜を用い、レーザー加工を行うことを特徴とするレーザーによる回路形成方法。In a method of forming a circuit by removing a metal thin film formed on the surface of a synthetic resin molded product with a laser beam, the surface brightness (L value) obtained from an electroless copper plating solution containing an organic sulfur compound is 40 or less. A method of forming a circuit using a laser, characterized by performing laser processing using a metal thin film. 有機イオウ化合物が、チオール類、ジスルフィド類、スルフィド類、チオケトン類、スルホニウム類、スルホラン類より選ばれた1種又は2種以上である請求項1記載の回路形成方法。 2. The circuit forming method according to claim 1, wherein the organic sulfur compound is one or more selected from thiols, disulfides, sulfides, thioketones, sulfoniums, and sulfolanes . YAGレーザーによりレーザー加工することを特徴とする請求項1又は2記載の回路形成方法。 3. The circuit forming method according to claim 1, wherein laser processing is performed with a YAG laser . 合成樹脂成形品が立体的形状であることを特徴とする請求項1〜3の何れか1項記載の回路形成方法。The circuit forming method according to claim 1, wherein the synthetic resin molded product has a three-dimensional shape.
JP19345096A 1995-07-28 1996-07-23 Circuit formation method using laser Expired - Fee Related JP3770968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19345096A JP3770968B2 (en) 1995-07-28 1996-07-23 Circuit formation method using laser

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19287795 1995-07-28
JP7-192877 1995-07-28
JP19345096A JP3770968B2 (en) 1995-07-28 1996-07-23 Circuit formation method using laser

Publications (2)

Publication Number Publication Date
JPH09102668A JPH09102668A (en) 1997-04-15
JP3770968B2 true JP3770968B2 (en) 2006-04-26

Family

ID=26507571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19345096A Expired - Fee Related JP3770968B2 (en) 1995-07-28 1996-07-23 Circuit formation method using laser

Country Status (1)

Country Link
JP (1) JP3770968B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6509026B2 (en) * 2015-05-11 2019-05-08 アルプスアルパイン株式会社 Wiring structure manufacturing method and wiring structure manufactured by the manufacturing method
KR102011928B1 (en) * 2016-09-22 2019-08-19 주식회사 엘지화학 Composition and method for forming conductive pattern by irradiation of electromagnetic wave

Also Published As

Publication number Publication date
JPH09102668A (en) 1997-04-15

Similar Documents

Publication Publication Date Title
JP3159841B2 (en) Circuit forming method by laser and conductive circuit forming part
US4691091A (en) Direct writing of conductive patterns
US3698940A (en) Method of making additive printed circuit boards and product thereof
US3854973A (en) Method of making additive printed circuit boards
KR102080728B1 (en) Polyimide precursor composition, use thereof and polyimide made therefrom
DE19602659A1 (en) Metallization of thermoplastics
CN104025722A (en) Copper foil for lamination
US5863405A (en) Process for forming conductive circuit on the surface of molded article
JP3770968B2 (en) Circuit formation method using laser
EP0615257B1 (en) Method of manufactoring a laminated structure of a metal layer on a conductive polymer layer
US4532186A (en) Circuit substrate with resistance layer and process for producing the same
JPS62293689A (en) Presensitized circuit material
JP3322028B2 (en) Polyimide film and laminate
US5211803A (en) Producing metal patterns on a plastic surface
JPH06164105A (en) Method for forming conductive circuit on surface of molded item and part with conductive circuit formed thereon
JP3645926B2 (en) Circuit forming method and conductive circuit forming component
JP2002208768A (en) Method for forming metal plated film onto polyimide substrate
JP3706165B2 (en) Circuit forming method by laser using nickel metal film and conductive circuit forming component
EP0711102A1 (en) Method for forming conductive circuit on surface of molded product, and component having conduction circuit
JP3159840B2 (en) Circuit forming method and conductive circuit forming component
JPH05198920A (en) Manufacture of printed board
JPH06112626A (en) Method of forming conducting circuit on surface of molded product
JPH07193356A (en) Formation of circuit pattern using laser and circuit board
JPH07243085A (en) Production of metal-clad polyimide substrate
JPH01222062A (en) Treatment of polyarylene sulfide molded article

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees