JPH07190613A - Air-liquefaction-separation apparatus - Google Patents

Air-liquefaction-separation apparatus

Info

Publication number
JPH07190613A
JPH07190613A JP33350293A JP33350293A JPH07190613A JP H07190613 A JPH07190613 A JP H07190613A JP 33350293 A JP33350293 A JP 33350293A JP 33350293 A JP33350293 A JP 33350293A JP H07190613 A JPH07190613 A JP H07190613A
Authority
JP
Japan
Prior art keywords
condenser
nitrogen
pressure
pipe
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33350293A
Other languages
Japanese (ja)
Inventor
Shotaro Yokota
正太郎 横田
Toshimitsu Nagashima
敏光 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP33350293A priority Critical patent/JPH07190613A/en
Publication of JPH07190613A publication Critical patent/JPH07190613A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04793Rectification, e.g. columns; Reboiler-condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04357Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger

Abstract

PURPOSE:To provide an apparatus for the liquefaction-separation of air in which even during quantitative decrease in operation the pressure in the lower column can be maintained at a specified point and, even when the quantitative decrease is by a considerable rate, the operation can be stabilized. CONSTITUTION:A condenser 2 provided in a composite rectifying column 1 is equipped with an intermediate tank 4 having, for example, a liquid level gauge 3 as a means of detecting the level of liquid nitrogen in the condenser 2. Furthermore, there is provided a regulating valve 6 for controlling the discharge rate of liquid nitrogen drawn from the condenser 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧縮,精製,冷却した
原料空気を複精留塔に導入して液化精留分離を行い、製
品として窒素や酸素,アルゴン等を採取する空気液化分
離装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is an air liquefaction / separation device for introducing compressed, purified and cooled raw material air into a double rectification column for liquefaction rectification separation and collecting nitrogen, oxygen, argon and the like as products. Regarding

【0002】[0002]

【従来の技術】従来から、空気を原料として窒素,酸素
等の空気成分を分離する装置として、複精留塔を用いた
空気液化分離装置が広く知られている。この複精留塔を
用いた空気液化分離装置は、圧縮,精製,冷却した原料
空気を複精留塔下部塔に導入して液化精留分離を行い、
該下部塔頂部に窒素ガスを、底部に酸素富化液化空気を
それぞれ分離し、次いで複精留塔上部塔での液化精留分
離により、該上部塔上部に窒素ガスを、底部に液化酸素
を分離するものである。
2. Description of the Related Art Conventionally, an air liquefaction separation apparatus using a double rectification column has been widely known as an apparatus for separating air components such as nitrogen and oxygen from air as a raw material. The air liquefaction separation apparatus using this double rectification column introduces the compressed, purified and cooled raw material air into the lower column of the double rectification column to perform liquefaction rectification separation,
Nitrogen gas is separated at the top of the lower column, oxygen-enriched liquefied air is separated at the bottom, and then liquefied rectification separation is performed at the upper part of the double rectification column to obtain nitrogen gas at the upper part of the upper column and liquid oxygen at the bottom. To separate.

【0003】また、上記複精留塔には、下部塔と上部塔
との間に凝縮器(主凝縮蒸発器)が設けられており、該
凝縮器で下部塔上部の窒素ガスと上部塔底部の液化酸素
とを熱交換させ、液化酸素を蒸発させて上部塔の上昇ガ
スを得るとともに、窒素ガスを液化するようにしてい
る。凝縮器で液化した液化窒素は、下部塔の還流液や上
部塔の還流液として用いられる以外に、その一部が製品
として採取される。
Further, the double rectification column is provided with a condenser (main condensing evaporator) between the lower column and the upper column, in which nitrogen gas at the upper part of the lower column and the bottom part of the upper column are provided. The liquefied oxygen is heat-exchanged with the liquefied oxygen to evaporate the liquefied oxygen to obtain an ascending gas in the upper tower and to liquefy the nitrogen gas. The liquefied nitrogen liquefied in the condenser is collected as a product in addition to being used as the reflux liquid of the lower tower or the reflux liquid of the upper tower.

【0004】また、製品としては、上記凝縮器からの液
化窒素の他、下部塔上部の中圧窒素ガス、上部塔底部の
液化酸素、上部塔下部の酸素ガス、上部塔上部の低圧窒
素ガス等が採取され、さらに、上部塔に粗アルゴン塔を
付設した場合には、該粗アルゴン塔から粗アルゴンが導
出される。
In addition to the liquefied nitrogen from the condenser, the products include medium pressure nitrogen gas in the upper part of the lower tower, liquefied oxygen in the lower part of the upper tower, oxygen gas in the lower part of the upper tower, low pressure nitrogen gas in the upper part of the upper tower, etc. Is collected, and when a crude argon column is attached to the upper column, crude argon is derived from the crude argon column.

【0005】[0005]

【発明が解決しようとする課題】このような空気液化分
離装置において、製品需要の増減に応じて製品産出量を
増減することが行われているが、一般的には、製品産出
量に応じて原料空気導入量を増減させるようにしてい
る。
In such an air liquefaction / separation apparatus, the product output amount is increased or decreased according to the increase or decrease of the product demand. Generally, the product output amount is changed according to the product output amount. The amount of raw material air introduced is increased or decreased.

【0006】しかしながら、原料空気導入量を減らし、
いわゆる減量運転を行うと、凝縮器の処理量が減少し、
該凝縮器の負荷が低下して窒素ガスを凝縮させる凝縮能
力に余裕を生じるため、窒素ガスの相対的な液化量が増
大し、これによって下部塔内の圧力が低下する現象を生
じる。
However, the amount of raw air introduced is reduced,
The so-called reduction operation reduces the throughput of the condenser,
Since the load of the condenser is reduced and the condensing capacity for condensing the nitrogen gas has a margin, the relative liquefaction amount of the nitrogen gas increases, which causes a phenomenon that the pressure in the lower column decreases.

【0007】下部塔内の圧力が低下すると、該下部塔か
ら導出する中圧窒素ガスの圧力も低下するため、場合に
よっては窒素圧縮機を設けて製品中圧窒素ガスを昇圧す
る必要が生じることもある。さらに、この中圧窒素ガス
を処理流体とする膨張タービンや寒冷発生用の窒素サイ
クルが設けられている場合には、該膨張タービンや窒素
サイクルにおける寒冷発生量に影響を与えることにな
る。
When the pressure in the lower column is lowered, the pressure of the medium pressure nitrogen gas discharged from the lower column is also lowered. Therefore, it may be necessary to provide a nitrogen compressor to raise the pressure of the product medium pressure nitrogen gas in some cases. There is also. Further, when an expansion turbine using this medium-pressure nitrogen gas as a processing fluid and a nitrogen cycle for generating cold are provided, the amount of cold generated in the expansion turbine and the nitrogen cycle will be affected.

【0008】したがって、装置を安定した状態で運転す
るためには、減量運転の幅をある程度に抑える必要があ
るが、製品需要が少ない場合には、製品ガスの一部を放
出しなければならない状態となり、製品収率が低下し、
コスト的にも問題となる。
Therefore, in order to operate the device in a stable state, it is necessary to suppress the width of the reduction operation to a certain extent, but when the product demand is small, a part of the product gas must be released. And the product yield decreases,
It also becomes a problem in terms of cost.

【0009】そこで本発明は、減量運転を行った際でも
下部塔内の圧力を所定の圧力に保持することができ、大
幅な減量運転を行った場合でも安定した運転を行うこと
ができる空気液化分離装置を提供することを目的として
いる。
Therefore, according to the present invention, the pressure in the lower column can be maintained at a predetermined pressure even when the volume reduction operation is performed, and the stable operation can be performed even when the volume reduction operation is significantly performed. The purpose is to provide a separating device.

【0010】[0010]

【課題を解決するための手段】上記した目的を達成する
ため、本発明の空気液化分離装置は、圧縮,精製,冷却
した原料空気を、凝縮器を備えた複精留塔に導入して液
化精留分離を行う空気液化分離装置において、前記凝縮
器に、該凝縮器内の液化窒素の液面高さを検出する手段
を設けるとともに、該凝縮器から導出する液化窒素の導
出量を制御する調節弁を設けたことを特徴としている。
In order to achieve the above object, the air liquefaction separation apparatus of the present invention introduces compressed, purified and cooled raw material air into a double rectification column equipped with a condenser for liquefaction. In an air liquefaction separation device for rectifying and separating, the condenser is provided with means for detecting the liquid level height of liquefied nitrogen in the condenser, and the amount of liquefied nitrogen discharged from the condenser is controlled. It is characterized by the provision of a control valve.

【0011】また、本発明は、圧縮,精製,冷却した原
料空気を、凝縮器を備えた複精留塔に導入して液化精留
分離を行う空気液化分離装置において、前記複精留塔下
部塔から導出した窒素を、圧縮機,膨張タービン,熱交
換器を備えた寒冷発生経路に導入して寒冷を発生する窒
素サイクルを設けるとともに、前記凝縮器に、該凝縮器
内の液化窒素の液面高さを検出する手段と、該凝縮器か
ら導出する液化窒素の導出量を制御する調節弁とを設け
たことを特徴としている。
Further, the present invention is an air liquefaction / separation apparatus for introducing liquefied rectification separation by introducing compressed, purified, and cooled raw material air into a double rectification column equipped with a condenser. Nitrogen derived from the tower is introduced into a cold generation path provided with a compressor, an expansion turbine, and a heat exchanger to provide a nitrogen cycle for generating cold, and the condenser is provided with a liquid nitrogen liquid in the condenser. It is characterized in that a means for detecting the surface height and a control valve for controlling the amount of liquefied nitrogen discharged from the condenser are provided.

【0012】[0012]

【作 用】上記構成によれば、調節弁で凝縮器からの液
化窒素の導出量を制御して凝縮器内の液面高さを調節す
ることにより、凝縮器の有効伝熱面積を変化させること
ができ、これにより窒素ガスの液化量を適切な量とし、
下部塔内の圧力を必要圧力に保つことができる。したが
って、下部塔から導出する中圧窒素ガスも所定圧力に保
持され、また、膨張タービンや寒冷発生用の窒素サイク
ルの寒冷発生量も一定に保てるので、装置を安定した状
態で運転することができる。
[Operation] According to the above configuration, the effective heat transfer area of the condenser is changed by controlling the amount of liquefied nitrogen discharged from the condenser by the control valve to adjust the liquid level height in the condenser. It is possible to make the liquefied amount of nitrogen gas an appropriate amount by this,
The pressure in the lower tower can be maintained at the required pressure. Therefore, the medium pressure nitrogen gas discharged from the lower tower is also maintained at a predetermined pressure, and the amount of cold generation in the expansion turbine and the nitrogen cycle for cold generation can be kept constant, so that the device can be operated in a stable state. .

【0013】[0013]

【実施例】以下、本発明を、図面に示す実施例に基づい
てさらに詳細に説明する。まず、図1は、本発明の第1
実施例を示すもので、複精留塔1に設けられる凝縮器2
の部分に、液化窒素の液面高さを検出する手段として、
液面計3を備えた中間槽4を設けるとともに、該中間槽
4から下部塔頂部に液化窒素を導入する経路5に、凝縮
器2から導出する液化窒素の導出量を制御する調節弁6
を設けたものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail below with reference to the embodiments shown in the drawings. First, FIG. 1 shows the first embodiment of the present invention.
An example is shown, and the condenser 2 provided in the double rectification column 1
In the part of, as a means to detect the liquid level height of liquefied nitrogen,
An intermediate tank 4 provided with a liquid level gauge 3 is provided, and a control valve 6 for controlling the amount of liquefied nitrogen discharged from the condenser 2 is provided in a path 5 for introducing liquefied nitrogen from the intermediate tank 4 to the lower tower top.
Is provided.

【0014】本実施例装置において、図示しない圧縮機
で圧縮され、吸着器で精製された原料空気は、主熱交換
器11で液化点付近まで冷却された後、管12から複精
留塔1の下部塔13に導入される。
In the apparatus of this embodiment, the raw material air compressed by a compressor (not shown) and purified by the adsorber is cooled to near the liquefaction point in the main heat exchanger 11, and then the tube 12 is passed through the double rectification column 1 Is introduced into the lower tower 13 of.

【0015】下部塔13に導入された原料空気は、該下
部塔13での精留操作により、頂部の窒素ガスと底部の
酸素富化液化空気(以下、液化空気という)とに分離す
る。この液化空気は、下部塔13の底部から管14に導
出され、過冷器15,減圧弁16を経て上部塔17の中
段に導入される。
The raw material air introduced into the lower tower 13 is separated into nitrogen gas at the top and oxygen-enriched liquefied air at the bottom (hereinafter referred to as liquefied air) by a rectification operation in the lower tower 13. The liquefied air is led from the bottom of the lower tower 13 to the pipe 14, and introduced into the middle stage of the upper tower 17 via the supercooler 15 and the pressure reducing valve 16.

【0016】一方、下部塔頂部の窒素ガスは、管18に
導出された後、一部が管19に分岐して製品中圧窒素ガ
スとなり、主熱交換器11を経て採取される。残りの窒
素ガスは、管18から管20を介して凝縮器2に導入さ
れ、凝縮液化して液化窒素となり、管21から中間槽4
内に流入する。なお、中間槽4には、凝縮器2内の圧
力、すなわち管20から凝縮器2に導入される中圧窒素
ガスの圧力と中間槽4内とを同圧力とし、中間槽4内の
液面高さを凝縮器2内の液面高さと等しくするため、該
中間槽4内と前記管20内とを連通するバランス管7が
設けられている。
On the other hand, the nitrogen gas at the top of the lower column is led to a pipe 18, and then partly branched to a pipe 19 to become product intermediate-pressure nitrogen gas, which is collected through the main heat exchanger 11. The remaining nitrogen gas is introduced into the condenser 2 from the pipe 18 through the pipe 20, and is condensed and liquefied into liquefied nitrogen.
Flows in. In the intermediate tank 4, the pressure in the condenser 2, that is, the pressure of the medium-pressure nitrogen gas introduced into the condenser 2 from the pipe 20 and the inside of the intermediate tank 4 are the same, and the liquid level in the intermediate tank 4 is In order to make the height equal to the height of the liquid surface in the condenser 2, a balance pipe 7 that connects the inside of the intermediate tank 4 and the inside of the pipe 20 is provided.

【0017】上記中間槽4の底部から管22に導出され
た液化窒素は、一部が管23に分岐して過冷器15,減
圧弁24を経て上部塔17の頂部に還流液として導入さ
れ、残りの液化窒素は、前記管5,調節弁6を経て下部
塔13の頂部にに還流液として導入される。
Part of the liquefied nitrogen discharged from the bottom of the intermediate tank 4 into the pipe 22 is branched into the pipe 23 and introduced into the top of the upper tower 17 as a reflux liquid through the subcooler 15 and the pressure reducing valve 24. The remaining liquefied nitrogen is introduced as a reflux liquid into the top of the lower column 13 through the pipe 5 and the control valve 6.

【0018】前記減圧弁16を介して上部塔17に導入
された液化空気及び減圧弁24を介して上部塔17に導
入された液化窒素は、該上部塔17での精留操作によ
り、頂部の窒素ガスと底部の液化酸素とに分離する。こ
の液化酸素は、前記凝縮器2内の窒素ガスにより加温さ
れて蒸発し、上部塔17の上昇ガスとなる。
The liquefied air introduced into the upper tower 17 via the pressure reducing valve 16 and the liquefied nitrogen introduced into the upper tower 17 via the pressure reducing valve 24 are rectified in the upper tower 17 and rectified in the top. Separate into nitrogen gas and liquefied oxygen at the bottom. The liquefied oxygen is heated by the nitrogen gas in the condenser 2 to evaporate and become the rising gas in the upper tower 17.

【0019】上部塔17頂部の窒素ガスは、管25に導
出され、前記過冷器15,主熱交換器11を経て採取さ
れる。また、上部塔17の下部からは、凝縮器2で蒸発
した酸素ガスの一部が管26に導出され、主熱交換器1
1を経て採取される。さらに、上部塔17の上部から
は、管27に不純窒素ガスが排ガスとして抜き出され、
過冷器15,主熱交換器11を経て導出され、前記吸着
器の再生ガス等として用いられる。
Nitrogen gas at the top of the upper tower 17 is led to a pipe 25 and collected through the subcooler 15 and the main heat exchanger 11. Further, from the lower part of the upper tower 17, a part of the oxygen gas evaporated in the condenser 2 is led out to the pipe 26, and the main heat exchanger 1
Collected through 1. Further, impure nitrogen gas is extracted as exhaust gas from the upper part of the upper tower 17 into the pipe 27,
It is led out through the subcooler 15 and the main heat exchanger 11, and is used as a regenerated gas of the adsorber.

【0020】また、前記管19から主熱交換器11に導
入された中圧窒素ガスの一部は、主熱交換器11の中間
部から管28に分岐し、膨張タービン29で膨張して寒
冷を発生し、管30を介して前記上部塔17頂部から導
出された窒素ガスが流れる管25に合流し、再び主熱交
換器11に導入される。なお、膨張タービン29の処理
流体として、上記中圧窒素に代えて原料空気の一部を用
いることも可能である。この場合は、図1に破線で示す
ように、主熱交換器11の原料空気経路の中間部から管
28aに原料空気の一部を分岐して抜出し、膨張タービ
ン29で膨張して寒冷を発生したガスを、管30aから
前記排ガスの経路である管27に合流させるようにすれ
ばよい。
Further, a part of the medium pressure nitrogen gas introduced into the main heat exchanger 11 from the pipe 19 is branched from the intermediate portion of the main heat exchanger 11 into a pipe 28 and expanded in an expansion turbine 29 to be cooled. Is generated, merges with the pipe 25 through which the nitrogen gas derived from the top of the upper tower 17 flows, and is again introduced into the main heat exchanger 11. In addition, as the processing fluid of the expansion turbine 29, it is possible to use a part of the raw material air instead of the medium pressure nitrogen. In this case, as shown by the broken line in FIG. 1, a part of the raw material air is branched and extracted from the intermediate portion of the raw material air path of the main heat exchanger 11 to the pipe 28a and expanded by the expansion turbine 29 to generate cold. The above gas may be allowed to join from the pipe 30a to the pipe 27 that is the path of the exhaust gas.

【0021】このような構成の空気液化分離装置におい
て、製品ガスの需要が減少して装置を減量運転する場合
には、原料空気導入量を製品発生量に見合った量に減量
するとともに、前記調節弁6を絞って凝縮器2からの液
化窒素導出量を減少させる。このときの調節弁6の開度
調整は、例えば、下部塔13内の圧力に対する凝縮器液
面をあらかじめ設定しておき、下部塔13内の圧力の変
化に応じて中間槽4内の液面高さが所定位置になるよう
に調節弁6を開閉することにより行うことができる。こ
の制御は、下部塔13に設置した圧力計や液面計3の状
態を見ながら手動で調節弁6を操作するようにしてもよ
く、調節計を設けるか、あるいはコンピューター等で自
動的に行うようにしてもよい。
In the air liquefaction / separation apparatus having such a structure, when the demand for product gas is reduced and the apparatus is operated in a reduced amount, the amount of raw material air introduced is reduced to an amount commensurate with the amount of product generated and the above adjustment is performed. The valve 6 is throttled to reduce the amount of liquefied nitrogen discharged from the condenser 2. For adjusting the opening of the control valve 6 at this time, for example, the condenser liquid level with respect to the pressure in the lower tower 13 is set in advance, and the liquid surface in the intermediate tank 4 is changed according to the change in the pressure in the lower tower 13. This can be done by opening and closing the control valve 6 so that the height is at a predetermined position. This control may be performed by manually operating the control valve 6 while observing the states of the pressure gauge and the liquid level gauge 3 installed in the lower tower 13, or by providing a controller or automatically by a computer or the like. You may do it.

【0022】すなわち、原料空気導入量が減少した場合
に、中間槽4内の液面高さを上昇させて凝縮器液面を上
昇させることにより、凝縮器内の窒素ガスと凝縮器外の
液化酸素との熱交換伝熱面積を減少させることができ、
窒素ガスの相対的な液化量を適正量に保持することがで
きる。これにより、下部塔13内の圧力を所定の圧力に
保つことが可能となり、該下部塔13から導出する製品
中圧窒素の圧力低下を防止することができる。同時に、
下部塔13に原料空気を導入する系統の圧力も所定の圧
力に保たれるので、吸着器等の前処理設備の安定運転も
図れる。さらに、中圧窒素ガスや原料空気の一部を処理
流体とする膨張タービン29の入口圧力も所定圧力を保
持できるので、所定量の寒冷量を安定した状態で得るこ
とができる。
That is, when the amount of raw material air introduced decreases, the liquid level in the intermediate tank 4 is raised to raise the liquid level in the condenser, so that the nitrogen gas in the condenser and the liquefaction outside the condenser are liquefied. The heat transfer heat transfer area with oxygen can be reduced,
The relative liquefaction amount of nitrogen gas can be maintained at an appropriate amount. As a result, the pressure in the lower tower 13 can be maintained at a predetermined pressure, and the pressure drop of the product intermediate-pressure nitrogen discharged from the lower tower 13 can be prevented. at the same time,
Since the pressure of the system for introducing the raw material air into the lower tower 13 is also maintained at a predetermined pressure, stable operation of pretreatment equipment such as an adsorber can be achieved. Further, since the inlet pressure of the expansion turbine 29 using the medium pressure nitrogen gas or a part of the raw material air as the processing fluid can also be kept at a predetermined pressure, a predetermined amount of cold can be obtained in a stable state.

【0023】また、上記減量運転時以外でも、凝縮器液
面を調節することにより、下部塔13内の圧力を変化さ
せることができるので、該下部塔13から導出する中圧
窒素ガスの圧力や、膨張タービン29の発生寒冷量も調
節することができる。
The pressure in the lower column 13 can be changed by adjusting the liquid level of the condenser even during the above-described reduction operation, so that the pressure of the medium pressure nitrogen gas discharged from the lower column 13 and The amount of cold generated by the expansion turbine 29 can also be adjusted.

【0024】図2は、本発明の第2実施例を示すもの
で、粗アルゴンを採取する粗アルゴン塔と、寒冷発生用
の窒素サイクルとを付設した装置の一例を示すものであ
る。なお、前記図1と同一要素のものには同一符号を付
して、その詳細な説明は省略する。
FIG. 2 shows a second embodiment of the present invention and shows an example of an apparatus equipped with a crude argon column for collecting crude argon and a nitrogen cycle for generating cold. The same elements as those in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0025】まず、粗アルゴン塔31は、下部に上部塔
中段部からアルゴン原料ガスが導入される管32と、塔
底部に分離する液化酸素を上部塔中段部に戻す管33と
を備えるとともに、頂部にアルゴン凝縮器34と、頂部
に分離した粗アルゴンを導出する管35とを備えたもの
で、管35に導出された粗アルゴンは、前記主熱交換器
11を経て採取される。
First, the crude argon column 31 is provided with a pipe 32 into which an argon source gas is introduced from the middle part of the upper column and a pipe 33 for returning liquefied oxygen separated at the bottom part of the column to the middle part of the upper column. The apparatus is provided with an argon condenser 34 at the top and a pipe 35 for leading the separated crude argon to the top. The crude argon led to the pipe 35 is collected via the main heat exchanger 11.

【0026】また、アルゴン凝縮器34には、前記下部
塔底部から管14に導出された液化空気の一部が管36
に分岐して減圧弁36aを介して導入されており、アル
ゴン凝縮器34からは、液化空気の一部が管37によ
り、蒸発したガスが管38により、それぞれ上部塔17
の中段に導入されている。
In the argon condenser 34, a part of the liquefied air led to the pipe 14 from the bottom of the lower tower is pipe 36.
And is introduced via a pressure reducing valve 36a. From the argon condenser 34, a part of the liquefied air is fed through a pipe 37, and a vaporized gas is fed through a pipe 38.
It is introduced in the middle section.

【0027】さらに、前記凝縮器2で凝縮液化した後、
管23に分岐した液化窒素の一部は、管41から製品液
化窒素として採取され、上部塔17底部の液化酸素の一
部は、管42及び過冷器15を介して製品液化酸素とし
て採取されている。
After condensing and liquefying in the condenser 2,
Part of the liquefied nitrogen branched to the pipe 23 is collected as product liquefied nitrogen from the pipe 41, and part of the liquefied oxygen at the bottom of the upper column 17 is collected as product liquefied oxygen via the pipe 42 and the supercooler 15. ing.

【0028】一方、前記窒素サイクル50は、下部塔上
部から管18,管19,主熱交換器11を経て管51に
導出した常温の中圧窒素を圧縮する窒素圧縮機52と、
該窒素圧縮機52で昇圧した窒素ガスを更に圧縮する第
1昇圧機53及び第2昇圧機54と、該第1昇圧機53
に連設した第1膨張タービン55及び第2昇圧機54に
連設した第2膨張タービン56と、常温側の第1熱交換
器57及び低温側の第2熱交換器58とを有するもの
で、前液製品を採取するために必要な寒冷を得るために
設けられている。
On the other hand, the nitrogen cycle 50 comprises a nitrogen compressor 52 for compressing room temperature medium pressure nitrogen discharged from the upper part of the lower tower through the pipes 18, 19 and the main heat exchanger 11 into the pipe 51.
A first booster 53 and a second booster 54 for further compressing the nitrogen gas boosted by the nitrogen compressor 52, and the first booster 53
And a second expansion turbine 56 connected to the second booster 54, a first heat exchanger 57 on the room temperature side and a second heat exchanger 58 on the low temperature side. , Is provided to obtain the cold required to collect the pre-liquid product.

【0029】窒素圧縮機52で昇圧した窒素ガスは、ア
フタークーラー52aで冷却された後、管61と管62
とに分岐し、それぞれ第1昇圧機53及び第2昇圧機5
4に導入される。第1昇圧機53に導入されて更に昇圧
した窒素ガスは、アフタークーラー53a,管62を経
て第1熱交換器57に導入され、中間温度まで冷却され
た後、弁55aを介して第1膨張タービン55に導入さ
れて膨張し、寒冷を発生するとともに、発生した動力を
前記第1昇圧機53に伝達して管63に導出され、第2
熱交換器58,管64,第1熱交換器57,管65を通
って常温に昇温し、前記管51の中圧窒素ガスに合流し
て循環する。
The nitrogen gas pressurized by the nitrogen compressor 52 is cooled by the aftercooler 52a, and then the pipe 61 and the pipe 62 are provided.
And the first booster 53 and the second booster 5 respectively.
Introduced in 4. The nitrogen gas introduced into the first booster 53 and further boosted in pressure is introduced into the first heat exchanger 57 via the aftercooler 53a and the pipe 62, cooled to an intermediate temperature, and then subjected to the first expansion via the valve 55a. It is introduced into the turbine 55 and expanded to generate cold, and the generated power is transmitted to the first booster 53 and led out to the pipe 63.
Through the heat exchanger 58, the pipe 64, the first heat exchanger 57, and the pipe 65, the temperature is raised to room temperature, and the pipe 51 is joined with the medium-pressure nitrogen gas and circulated.

【0030】一方の第2昇圧機54に導入されて更に昇
圧した窒素ガスは、アフタークーラー54a,管66を
経て第1熱交換器57に導入される。この窒素ガスの一
部は、第1熱交換器57の中間から管67に分岐し、弁
56aを介して第2膨張タービン56に導入され、膨張
して寒冷を発生するとともに、発生した動力で前記第2
昇圧機54を駆動した後、管68に導出されて前記管6
4の窒素ガスと合流し、第1熱交換器57,管65を通
って循環する。また、前記窒素ガスの残部は、第1熱交
換器57から管69に導出された後、第2熱交換器5
8,管70,弁70aを経て下部塔13の上部に戻る。
The nitrogen gas introduced into one of the second boosters 54 and further boosted in pressure is introduced into the first heat exchanger 57 via the aftercooler 54a and the pipe 66. A part of this nitrogen gas branches from the middle of the first heat exchanger 57 into a pipe 67, is introduced into the second expansion turbine 56 via the valve 56a, expands to generate cold, and is generated by the generated power. The second
After driving the booster 54, it is led out to the pipe 68 and
4 merges with the nitrogen gas and circulates through the first heat exchanger 57 and the pipe 65. In addition, the remaining part of the nitrogen gas is discharged from the first heat exchanger 57 to the pipe 69, and then the second heat exchanger 5
It returns to the upper part of the lower tower 13 through 8, the pipe 70, and the valve 70a.

【0031】なお、前記下部塔13から導出されて管1
9を流れる中圧窒素ガスは、その一部が主熱交換器11
の手前で管71に分岐して、弁71aを介して前記管6
3の窒素ガスに合流し、さらに中圧窒素ガスの一部は、
主熱交換器11の中間で管72に分岐し、弁72aを介
して前記管64の窒素ガスに合流する。また、各部の窒
素ガスの流量は、設定温度等の条件に応じて所定の位置
に設けられた弁55a,56a,70a,71a,72
aにより調節される。
The pipe 1 is drawn out from the lower tower 13
Part of the medium pressure nitrogen gas flowing through 9 is the main heat exchanger 11
Of the pipe 6 via the valve 71a.
It joins the nitrogen gas of No. 3, and a part of the medium pressure nitrogen gas is
It branches into a pipe 72 in the middle of the main heat exchanger 11, and joins the nitrogen gas in the pipe 64 through a valve 72a. Further, the flow rate of nitrogen gas in each part is determined by valves 55a, 56a, 70a, 71a, 72 provided at predetermined positions according to conditions such as set temperature.
regulated by a.

【0032】上記のような窒素サイクル50を備えた空
気液化分離装置において、前述のように凝縮器2内の液
か窒素の液面高さを検出する液面計3を備えた中間槽4
を設けるとともに、該中間槽4から導出する液化窒素の
導出量を制御する調節弁6を設けたので、調節弁6を調
節して凝縮器2からの液化窒素の導出量を適当に設定す
ることにより、下部塔13内の圧力を所望の圧力にする
ことができる。これにより、該下部塔13から導出して
窒素サイクル50に導入する中圧窒素ガスの圧力を所定
圧力に保つことが可能となり、窒素圧縮機52の吸引圧
力の低下による発生寒冷量の不足を防止でき、所定の発
生寒冷量を得ることができる。
In the air liquefaction separation apparatus equipped with the nitrogen cycle 50 as described above, the intermediate tank 4 equipped with the liquid level gauge 3 for detecting the liquid level of the liquid in the condenser 2 or nitrogen as described above.
And a control valve 6 for controlling the amount of liquefied nitrogen discharged from the intermediate tank 4, so that the amount of liquefied nitrogen discharged from the condenser 2 should be set appropriately by adjusting the control valve 6. Thereby, the pressure in the lower tower 13 can be set to a desired pressure. As a result, it is possible to maintain the pressure of the medium pressure nitrogen gas, which is discharged from the lower tower 13 and is introduced into the nitrogen cycle 50, at a predetermined pressure, and to prevent the amount of cold generated due to the decrease in suction pressure of the nitrogen compressor 52 from being insufficient. It is possible to obtain a predetermined amount of generated cold.

【0033】したがって、上述のように液製品を採取す
る装置においては、装置を減量運転した場合でも必要十
分な寒冷量を得られるので、液製品も安定して採取する
ことができる。また、凝縮器2における窒素ガスの凝縮
量を制御することにより、自動的に上部塔17の液化酸
素の蒸発量も制御されるので、上部塔17,下部塔13
のガス量のバランスを略一定に保って運転でき、安定し
た状態で製品を採取することができる。
Therefore, in the apparatus for collecting the liquid product as described above, a necessary and sufficient amount of cold can be obtained even when the apparatus is operated in a reduced amount, so that the liquid product can be stably collected. Further, by controlling the condensation amount of nitrogen gas in the condenser 2, the evaporation amount of liquefied oxygen in the upper tower 17 is also automatically controlled, so the upper tower 17 and the lower tower 13
It is possible to operate while keeping the balance of the gas amount of the above substantially constant, and it is possible to collect the product in a stable state.

【0034】[0034]

【発明の効果】以上説明したように、本発明の空気液化
分離装置は、減量運転時でも下部塔内の圧力を所定の圧
力に保つことができるので、該下部塔から導出する中圧
窒素ガスの圧力を一定に保つことができる。これによ
り、中圧窒素ガスを製品として送出する場合の送出圧力
を一定に保つことができるとともに、該中圧窒素を用い
た膨張タービンや窒素サイクルの安定運転も図ることが
でき、原料空気導入系統の圧力も一定に保つことができ
る。
As described above, the air liquefaction separation apparatus of the present invention can maintain the pressure in the lower column at a predetermined pressure even during the reduction operation, so that the medium pressure nitrogen gas discharged from the lower column is discharged. The pressure of can be kept constant. As a result, the delivery pressure when delivering the intermediate pressure nitrogen gas as a product can be kept constant, and stable operation of the expansion turbine and the nitrogen cycle using the intermediate pressure nitrogen can be achieved. The pressure of can also be kept constant.

【0035】したがって、減量運転を行っても各部のバ
ランスを略一定に保つことができるので、減量運転幅を
拡大することができ、製品需要に合わせた運転を行うこ
とにより、製品収率の向上も図れる。
Therefore, since the balance of each part can be kept substantially constant even during the weight reduction operation, the weight reduction operation range can be expanded, and the product yield can be improved by performing the operation according to the product demand. Can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1実施例を示す系統図である。FIG. 1 is a system diagram showing a first embodiment of the present invention.

【図2】 本発明の第2実施例を示す系統図である。FIG. 2 is a system diagram showing a second embodiment of the present invention.

【符号の説明】 1…複精留塔、2…凝縮器、3…液面計、4…中間槽、
6…調節弁、11…主熱交換器、13…下部塔、17…
上部塔、29…膨張タービン、31…粗アルゴン塔、5
0…窒素サイクル、52…窒素圧縮機、53…第1昇圧
機、54…第2昇圧機、55…第1膨張タービン、56
…第2膨張タービン、57…第1熱交換器、58…第2
熱交換器
[Explanation of Codes] 1 ... Double rectification column, 2 ... Condenser, 3 ... Liquid level gauge, 4 ... Intermediate tank,
6 ... Control valve, 11 ... Main heat exchanger, 13 ... Lower tower, 17 ...
Upper tower, 29 ... Expansion turbine, 31 ... Crude argon tower, 5
0 ... Nitrogen cycle, 52 ... Nitrogen compressor, 53 ... First booster, 54 ... Second booster, 55 ... First expansion turbine, 56
... second expansion turbine, 57 ... first heat exchanger, 58 ... second
Heat exchanger

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮,精製,冷却した原料空気を、凝縮
器を備えた複精留塔に導入して液化精留分離を行う空気
液化分離装置において、前記凝縮器に、該凝縮器内の液
化窒素の液面高さを検出する手段を設けるとともに、該
凝縮器から導出する液化窒素の導出量を制御する調節弁
を設けたことを特徴とする空気液化分離装置。
1. An air liquefaction separation apparatus which introduces compressed, purified, and cooled raw material air into a double rectification column equipped with a condenser to perform liquefaction rectification separation. An air liquefaction / separation device, characterized in that it is provided with a means for detecting the liquid level of liquefied nitrogen and a control valve for controlling the amount of liquefied nitrogen discharged from the condenser.
【請求項2】 圧縮,精製,冷却した原料空気を、凝縮
器を備えた複精留塔に導入して液化精留分離を行う空気
液化分離装置において、前記複精留塔下部塔から導出し
た窒素を、圧縮機,膨張タービン,熱交換器を備えた寒
冷発生経路に導入して寒冷を発生する窒素サイクルを設
けるとともに、前記凝縮器に、該凝縮器内の液化窒素の
液面高さを検出する手段と、該凝縮器から導出する液化
窒素の導出量を制御する調節弁とを設けたことを特徴と
する空気液化分離装置。
2. An air liquefaction separation apparatus for introducing compressed, purified, and cooled raw material air into a double rectification column equipped with a condenser to perform liquefaction rectification separation, which is derived from the lower column of the double rectification column. Nitrogen is introduced into a cold generation path provided with a compressor, an expansion turbine, and a heat exchanger to provide a nitrogen cycle for generating cold, and the condenser is provided with a liquid level height of liquefied nitrogen in the condenser. An air liquefaction separation device, characterized in that it is provided with a detection means and a control valve for controlling the amount of liquefied nitrogen discharged from the condenser.
JP33350293A 1993-12-27 1993-12-27 Air-liquefaction-separation apparatus Pending JPH07190613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33350293A JPH07190613A (en) 1993-12-27 1993-12-27 Air-liquefaction-separation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33350293A JPH07190613A (en) 1993-12-27 1993-12-27 Air-liquefaction-separation apparatus

Publications (1)

Publication Number Publication Date
JPH07190613A true JPH07190613A (en) 1995-07-28

Family

ID=18266773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33350293A Pending JPH07190613A (en) 1993-12-27 1993-12-27 Air-liquefaction-separation apparatus

Country Status (1)

Country Link
JP (1) JPH07190613A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100454810B1 (en) * 2002-02-18 2004-11-05 대성산업가스 주식회사 Method of nitrogen gas manufacture using an air separator in the type of sub-zero

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100454810B1 (en) * 2002-02-18 2004-11-05 대성산업가스 주식회사 Method of nitrogen gas manufacture using an air separator in the type of sub-zero

Similar Documents

Publication Publication Date Title
JP3065229B2 (en) Capacity control method for cryogenic rectification system
JPH0861844A (en) Method and equipment for restarting sub-column for separating argon and oxygen by distilation
US3735599A (en) Process for automatic control of air separation apparatus
JPH06201259A (en) Method and apparatus for manufacturing gaseous nitrogen at variable flow rate
JPH07190613A (en) Air-liquefaction-separation apparatus
JPH0217795B2 (en)
JP3644918B2 (en) Air separation device and air separation method
JP2736543B2 (en) Air liquefaction separation method
JP3065968B2 (en) Air liquefaction separation device and air liquefaction separation method
JP4408211B2 (en) Pressure adjusting device for liquefied natural gas tank and pressure adjusting method thereof
JP2967427B2 (en) Air separation method and apparatus suitable for demand fluctuation
JP4551334B2 (en) Cryogenic air separation device and control method thereof
JP3026098B2 (en) Air liquefaction separation method and apparatus suitable for fluctuations in demand
JP2781983B2 (en) Air liquefaction separation method and apparatus
JPH1082582A (en) Air liquefying separation device and its starting method
JP3181482B2 (en) High-purity nitrogen gas production method and apparatus used therefor
JP2645994B2 (en) Oxygen purity control method in air liquefaction separator
JP2003166783A (en) Low-temperature air processing equipment
JP2791580B2 (en) Air liquefaction separation method and apparatus
JP3710252B2 (en) Control method of air liquefaction separation device
JP3306668B2 (en) Air liquefaction separation method and apparatus
JPH03160294A (en) Supercooling method of liquefied nitrogen in air liquefier/separator
JPH0587449A (en) Air-liquefying and separating apparatus, and operating method therefor
JP3026091B2 (en) Air liquefaction separation device and start-up method thereof
JPH0437353B2 (en)