JPH07186283A - Thermoplastic resin composite material, production thereof and molded article obtained therefrom - Google Patents

Thermoplastic resin composite material, production thereof and molded article obtained therefrom

Info

Publication number
JPH07186283A
JPH07186283A JP5353951A JP35395193A JPH07186283A JP H07186283 A JPH07186283 A JP H07186283A JP 5353951 A JP5353951 A JP 5353951A JP 35395193 A JP35395193 A JP 35395193A JP H07186283 A JPH07186283 A JP H07186283A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
composite material
resin composite
melting point
fibrils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5353951A
Other languages
Japanese (ja)
Inventor
Minoru Matsumura
実 松村
Seiichi Fukunaga
精一 福永
Yoshiyuki Iokura
吉幸 五百蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP5353951A priority Critical patent/JPH07186283A/en
Publication of JPH07186283A publication Critical patent/JPH07186283A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To obtain a self-reinforcing type thermoplastic resin composite material excellent in handling properties and recovery reusability without employing an impregnation process being a subject of a fiber reinforced thermoplastic resin composite material. CONSTITUTION:In a thermoplastic resin composite material based on a fibril component composed of a crystalline thermoplastic resin (A) and a matrix component composed of a thermoplastic resin (B), a fibrile diameter is below 10mum and the aspect ratio of a fibril is 100 or more and fibrils are mutually arranged in an almost parallel state (a). The content of the crystalline thermoplastic resin (A) in the composite material is 10-80wt.% and the m.p. of (A) is higher than the m.p. or softening point of (B) by 10 deg.C or higher (b) and fibrils are uniformly dispersed in the cross section in the direction vertical to the orientation direction of the fibrils.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は強化繊維とマトリクス樹
脂とが共に熱可塑性高分子化合物よりなる複合材料、そ
の製造法及びそれより得られる成形体に関するものであ
る。この複合材料を成形することにより容易に複合材料
成形体を得ることができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite material in which a reinforcing fiber and a matrix resin are both made of a thermoplastic polymer compound, a method for producing the composite material, and a molded product obtained from the composite material. By molding this composite material, a composite material molded body can be easily obtained.

【0002】[0002]

【従来の技術】ガラス繊維強化プラスチツク(GFR
P)はガラス繊維と不飽和ポリエステル、ビニルエステ
ル樹脂、エポキシ樹脂などとの複合材料であり、これら
は熱硬化性樹脂をマトリクス樹脂とするのでリサイクル
性に問題がある。
2. Description of the Related Art Glass fiber reinforced plastic (GFR
P) is a composite material of glass fiber and unsaturated polyester, vinyl ester resin, epoxy resin or the like, and these are problematic in recyclability because they use a thermosetting resin as a matrix resin.

【0003】一方、熱可塑性樹脂をマトリクス樹脂と
し、ガラス繊維、カーボン繊維等を強化繊維として用い
る熱可塑性複合材料(TPC)は、強靭である、硬化反
応処理が不要である、リサイクル性に優れるなどの利点
があるが、粘度が熱硬化性樹脂のそれより著しく高いた
め、強化繊維のまわりにマトリツクスとして含浸させる
ことが困難であるという問題点がある。
On the other hand, a thermoplastic composite material (TPC) using a thermoplastic resin as a matrix resin and a glass fiber, a carbon fiber or the like as a reinforcing fiber is tough, does not require a curing reaction treatment, and has excellent recyclability. However, since the viscosity is significantly higher than that of the thermosetting resin, it is difficult to impregnate the reinforcing fibers as a matrix.

【0004】更に特開平3−244529号には強化繊
維と熱硬化性樹脂繊維を混織した後、熱可塑性樹脂繊維
を溶融させてマトリツクスにするコンポジツト用シート
状物及びその製造法が開示されているが、これは含浸工
程を容易にはするものの溶融時の含浸は不可欠であると
いう問題点がある。
Further, Japanese Patent Application Laid-Open No. 3-244529 discloses a sheet-like material for composites, in which a reinforcing fiber and a thermosetting resin fiber are mixed and woven, and then the thermoplastic resin fiber is melted into a matrix, and a manufacturing method thereof. Although this facilitates the impregnation process, there is a problem that impregnation during melting is indispensable.

【0005】更にプラスチツクエージ Apr. 1989, p17
4〜180に、液晶ポリマーと熱可塑性樹脂系アロイが開示
され、液晶ポリマーの剛直で配向しやすい性質を利用
し、熱可塑性樹脂と溶融ブレンド後、射出成形時に、液
晶ポリマーを配向した繊維状に形成させ、機械的特性を
向上させる研究がなされているが、液晶ポリマーは高価
格であり、特性改良には50%以上の液晶ポリマーの添加
を必要とする等の問題がある。
Further, Plastic Age Apr. 1989, p17
Liquid crystal polymers and thermoplastic resin alloys are disclosed in 4 to 180, and the property of liquid crystal polymers that is rigid and easy to align is utilized, and after melt blending with the thermoplastic resin, the liquid crystal polymers are made into oriented fibers during injection molding. Although researches have been conducted to form them and improve their mechanical properties, liquid crystal polymers are expensive, and there are problems such as the need to add 50% or more of liquid crystal polymers to improve the properties.

【0006】又、繊維学会誌 Vol.38, No.1(1982),
p87〜95、同Vol.38, No.4 (1982), p43〜52に、ポリ
プロピレン/ポリスチレン混合系の溶融紡糸について記
載があり、熱可塑性樹脂2成分を混合、溶融紡糸し、極
細繊維の形成、配合特性と力学的性質についての研究が
あるが、紡糸した後、更に引伸ばし、延伸することにつ
いては記載がなく、又、得られた複合材料を成形するも
のでもない。
In addition, Journal of the Textile Society, Vol. 38, No. 1 (1982),
p87-95, Vol.38, No.4 (1982), p43-52, describes melt-spinning of polypropylene / polystyrene mixed system. Two components of thermoplastic resin are mixed and melt-spun to form ultrafine fibers. Although there are studies on blending characteristics and mechanical properties, there is no description about further stretching and stretching after spinning, and neither is the molded composite material obtained.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は繊維強
化熱可塑性樹脂複合材料の課題である含浸工程が不要
で、しかも取り扱い性、回収再使用性に優れた自己強化
型の熱可塑性樹脂複合材料及びその成形体を提供するこ
とにある。
The object of the present invention is to provide a self-reinforced thermoplastic resin composite which does not require an impregnation step, which is a problem of the fiber-reinforced thermoplastic resin composite material, and is excellent in handleability and recovery / reusability. To provide a material and a molded body thereof.

【0008】[0008]

【課題を解決するための手段】本発明は結晶性熱可塑性
樹脂(A)からなるフィブリル成分及び熱可塑性樹脂
(B)からなるマトリツクス成分を主成分とする熱可塑
性樹脂複合材料において、(a) フィブリル径が10μm未
満、アスペクト比が100以上でありフィブリル同士がほ
ぼ平行な状態で配列しており、(b) 複合材料中の結晶性
熱可塑性樹脂(A)の含有率が10〜80重量%で、(A)
の融点が(B)の融点又は軟化温度よりも10℃以上高
く、(c) フィブリルの配列方向に垂直な方向の断面にお
いて、フィブリルが均一な分散をしていることを特徴と
する熱可塑性樹脂複合材料、その製造法、及びその複合
材料を成形して得られる成形体に係る。
The present invention relates to a thermoplastic resin composite material comprising, as a main component, a fibril component composed of a crystalline thermoplastic resin (A) and a matrix component composed of a thermoplastic resin (B). The fibril diameter is less than 10 μm, the aspect ratio is 100 or more, and the fibrils are arranged in a substantially parallel state. (B) The content of the crystalline thermoplastic resin (A) in the composite material is 10 to 80% by weight. Then, (A)
Thermoplastic resin having a melting point of 10 ° C. or more higher than the melting point or softening temperature of (B), and (c) the fibrils are uniformly dispersed in a cross section in a direction perpendicular to the fibril arrangement direction. The present invention relates to a composite material, a method for producing the composite material, and a molded body obtained by molding the composite material.

【0009】本発明において繊維強化熱可塑性樹脂複合
材料は例えば以下の方法にて製造することができる。
In the present invention, the fiber-reinforced thermoplastic resin composite material can be produced, for example, by the following method.

【0010】結晶性の熱可塑性樹脂(A)、熱可塑性樹
脂(B)及び(A)、(B)を均一に分散させるための
相溶化剤、その他界面改質剤、充填剤、着色剤等の添加
剤をドライブレンドして混合する。
A crystalline thermoplastic resin (A), a compatibilizer for uniformly dispersing the thermoplastic resins (B) and (A), (B), other interface modifiers, fillers, colorants, etc. Dry blend the additives in and mix.

【0011】混合物を、二軸混練機、ニーダーなどで結
晶性の熱可塑性樹脂(A)の融点以上の温度で溶融混練
し分散させる。
The mixture is melt-kneaded and dispersed at a temperature not lower than the melting point of the crystalline thermoplastic resin (A) with a biaxial kneader, a kneader or the like.

【0012】混練物を押出機、紡糸機などでストランド
状又はシート状に連続的に押出し、更に3m/分以上、
好ましくは20〜500m/分の速度で引伸して巻取る。イン
フレーシヨン成形により行うこともできる。これにより
結晶性の熱可塑性樹脂(A)及び熱可塑性樹脂(B)に
よる2成分複合型のストランド又はシートが得られる。
The kneaded product is continuously extruded in a strand form or a sheet form with an extruder, a spinning machine or the like, and further 3 m / min or more,
It is preferably stretched and wound at a speed of 20 to 500 m / min. It can also be performed by inflation molding. As a result, a two-component composite type strand or sheet of crystalline thermoplastic resin (A) and thermoplastic resin (B) is obtained.

【0013】さらにこれを延伸装置により2〜10倍に一
軸延伸し結晶性の熱可塑性樹脂(A)の配向度及び結晶
化度を高めることにより、10μm未満、好ましくは0.1〜
1μm径の極細繊維状の結晶性熱可塑性樹脂(A)及び
熱可塑性樹脂(B)を主成分とする繊維強化熱可塑性樹
脂複合材料が得られる。
Further, this is uniaxially stretched 2 to 10 times by a stretching device to increase the degree of orientation and crystallinity of the crystalline thermoplastic resin (A), so that it is less than 10 μm, preferably 0.1 to
A fiber reinforced thermoplastic resin composite material containing a 1 μm diameter ultrafine fibrous crystalline thermoplastic resin (A) and a thermoplastic resin (B) as main components is obtained.

【0014】用いる結晶性熱可塑性樹脂(A)は溶融紡
糸が可能なポリアミド(PA)、ポリエステル(PE
s)、ポリプロピレン(PP)、ポリエチレン(P
E)、ポリアセタールなどが好適であるが、これらに限
られるものではない。
The crystalline thermoplastic resin (A) used is a melt-spinnable polyamide (PA) or polyester (PE).
s), polypropylene (PP), polyethylene (P
E), polyacetal and the like are preferable, but not limited to these.

【0015】一方、マトリクスを形成する熱可塑性樹脂
(B)は結晶性、非晶性を問わず、結晶性熱可塑性樹脂
(A)の融点よりも10℃以上低い融点又は軟化点を有す
るものから選択される。例えばポリエチレン(PE)、
ポリプロピレン(PP)等のポリオレフイン、ポリエチ
レンテレフタレート(PET)、ポリブチレンテレフタ
レート(PBT)等のポリエステル、ポリスチレン(P
S)、ポリ塩化ビニル(PVC)、アクリルニトリル−
ブタジエン−スチレン樹脂(ABS)、ポリアミド(P
A)、ポリカーボネート(PC)、ポリアセタール(P
OM)、ポリフエニレンエーテル(PPE)、ポリメチ
ルメタクリレート(PMMA)、結晶性ポリブタジエン
などが挙げられる。
On the other hand, the thermoplastic resin (B) forming the matrix, regardless of whether it is crystalline or amorphous, has a melting point or softening point lower than the melting point of the crystalline thermoplastic resin (A) by 10 ° C. or more. To be selected. For example, polyethylene (PE),
Polyolefin such as polypropylene (PP), polyester such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT), polystyrene (P
S), polyvinyl chloride (PVC), acrylonitrile-
Butadiene-styrene resin (ABS), polyamide (P
A), polycarbonate (PC), polyacetal (P
OM), polyphenylene ether (PPE), polymethyl methacrylate (PMMA), crystalline polybutadiene and the like.

【0016】相溶化剤としては例えばカルボキシ変性ポ
リプロピレン、無水マレイン酸変性ポリプロピレン(P
P)、アイオノマー、カルボン酸、無水酸変性ポリエチ
レン(PE)、エチレン/メタクリル酸共重合体、無水
マレイン酸グラフトスチレン/エチレン・ブタジエン/
スチレンブロツク共重合体(SEBS)、エチレン/ア
クリル酸エチル共重合体、無水マレイン酸グラフトエチ
レンプロピレンラバー(EPR)、ポリアクリル酸イミ
ド、SEBS、スチレン/ブタジエン/スチレンブロツ
ク共重合体(SBS)、エチレンプロピレンジエンモノ
マー(EPDM)共重合体、PP/EPDM共重合体、
ポリメチルメタクリレート(PMMA)/EPDM共重
合体、PE/ポリスチレン(PS)共重合体、エチレン
/グリシジルメタクリレート共重合体、スチレン/無水
マレイン酸共重合体、エチレン/アクリル酸エステル/
無水マレイン酸共重合体、エチレン/エチルアクリレー
ト共重合体、エチレン/エチルアクリレート/無水マレ
イン酸共重合体、グリシジルメタアクリレート/ビニル
系モノマー共重合体、エチレン/メタクリル酸/アクリ
ル酸エステル共重合体、エチレン/グリシジルメタアク
リレート/酢酸ビニル共重合体、マレイン化エチレン/
プロピレンゴム、エチレンービニルアセテート(EV
A)共重合体、エチレン/ビニルアセテート/無水マレ
イン酸共重合体、EPDM/EVA/低密度ポリエチレ
ン(LDPE)共重合体、SBS/EPDM/EVA/
LDPE共重合体等を挙げることができる。添加剤とし
ては例えば界面改質剤、充填剤、着色剤等を使用するこ
とができる。
Examples of the compatibilizer include carboxy-modified polypropylene and maleic anhydride-modified polypropylene (P
P), ionomer, carboxylic acid, acid modified polyethylene (PE), ethylene / methacrylic acid copolymer, maleic anhydride grafted styrene / ethylene butadiene /
Styrene block copolymer (SEBS), ethylene / ethyl acrylate copolymer, maleic anhydride grafted ethylene propylene rubber (EPR), polyacrylic acid imide, SEBS, styrene / butadiene / styrene block copolymer (SBS), ethylene Propylene diene monomer (EPDM) copolymer, PP / EPDM copolymer,
Polymethylmethacrylate (PMMA) / EPDM copolymer, PE / polystyrene (PS) copolymer, ethylene / glycidyl methacrylate copolymer, styrene / maleic anhydride copolymer, ethylene / acrylic ester /
Maleic anhydride copolymer, ethylene / ethyl acrylate copolymer, ethylene / ethyl acrylate / maleic anhydride copolymer, glycidyl methacrylate / vinyl monomer copolymer, ethylene / methacrylic acid / acrylic ester copolymer, Ethylene / glycidyl methacrylate / vinyl acetate copolymer, maleated ethylene /
Propylene rubber, ethylene-vinyl acetate (EV
A) Copolymer, ethylene / vinyl acetate / maleic anhydride copolymer, EPDM / EVA / low density polyethylene (LDPE) copolymer, SBS / EPDM / EVA /
LDPE copolymer etc. can be mentioned. As the additive, for example, an interface modifier, a filler, a colorant, etc. can be used.

【0017】本発明の繊維強化熱可塑性樹脂複合材料は
例えばフィラメント状、テープ状、シート状、フイルム
状、ストランド状、ペレツト状等に予備成形して、これ
をフィラメントワインデイング成形、積層プレス成形、
射出成形等して成形体を得ることができ、成形体の前駆
体として有用である。
The fiber-reinforced thermoplastic resin composite material of the present invention is preformed into, for example, a filament shape, a tape shape, a sheet shape, a film shape, a strand shape, a pellet shape, and the like, which is then filament winding molding, laminated press molding,
A molded product can be obtained by injection molding or the like and is useful as a precursor of the molded product.

【0018】[0018]

【実施例】以下に実施例を挙げて更に詳しく説明する。EXAMPLES The present invention will be described in more detail below with reference to examples.

【0019】実施例1 ナイロン6ペレツト〔東洋紡(株)製、T−850、mp
=215℃〕、ポリプロピレンペレツト〔昭和電工(株)
製、シヨウアロマーMA−410、mp=165℃〕及び相溶
化剤〔長瀬産業(株)製、ベネツトGR−25〕をそれぞ
れ50/50/5の重量比でドライブレンドし、二軸混練機
にて240℃にて、スクリユー回転数100RPMの条件で溶
融混練した。混練物を粉砕した後、3mm径のストランド
状のダイを取り付けた押出機により240℃で混練押出し
し、8m/分の速度で引き取り、約1mm径のストランド
状押出物を得た。それを更に室温で3倍に延伸し、スト
ランド状延伸物を得た。これが繊維強化熱可塑性樹脂複
合材料成形用前駆体となる。このストランド状の前駆体
を一方向に配列、積み重ね、180℃で熱プレスして2mm
厚のシート状成形体を得た。ダンベル形状に打ち抜き、
100mm/分で繊維軸方向に引張テストし、引張破断強度
を求めた。
Example 1 Nylon 6 pellet [Toyobo Co., Ltd., T-850, mp]
= 215 ° C], polypropylene pellets [Showa Denko KK]
Manufactured by YOYO-ALOMAR MA-410, mp = 165 ° C.) and a compatibilizing agent [Venezto GR-25 manufactured by Nagase & Co., Ltd.] at a weight ratio of 50/50/5, respectively, and blended into a biaxial kneader. Melted and kneaded at 240 ° C. under the condition of screw rotation speed of 100 RPM. After crushing the kneaded product, it was kneaded and extruded at 240 ° C. by an extruder equipped with a strand-shaped die having a diameter of 3 mm and taken at a speed of 8 m / min to obtain a strand-shaped extrudate having a diameter of about 1 mm. It was further stretched 3 times at room temperature to obtain a strand-shaped stretched product. This serves as a precursor for molding the fiber-reinforced thermoplastic resin composite material. This strand-shaped precursor is arranged in one direction, stacked, and hot pressed at 180 ° C to 2 mm
A thick sheet-shaped compact was obtained. Punched into a dumbbell shape,
A tensile test was conducted in the fiber axis direction at 100 mm / min to determine the tensile breaking strength.

【0020】実施例2 ポリプロピレン〔昭和電工(株)製、シヨウアロマーM
A−410、mp=165℃〕、低密度ポリエチレン〔昭和電
工(株)製、シヨウレツクス、mp=105℃〕及び相溶
化剤〔長瀬産業(株)製、ベネツトGR−25〕をそれぞ
れ40/60/5の重量比でドライブレンドし、二軸混練機
にて180℃にて、スクリユー回転数100RPMの条件で溶
融混練した。混練物を粉砕した後、3mm径のストランド
状のダイを取り付けた押出機により240℃で混練押出し
し、8m/分の速度で引き取り、約1mm径のストランド
状押出物を得た。それを更に室温で5倍に延伸し、スト
ランド状延伸物を得た。これが繊維強化熱可塑性樹脂複
合材料成形用前駆体となる。このストランド状の前駆体
を一方向に配列、積み重ね、130℃で熱プレスして2mm
厚のシート状成形体を得た。ダンベル形状に打ち抜き、
100mm/分で繊維軸方向に引張テストし、引張破断強度
を求めた。
Example 2 Polypropylene [Showa Denko K.K.
A-410, mp = 165 ° C.], low density polyethylene [Showa Denko KK, Cyolex, mp = 105 ° C.] and compatibilizer [Nagase Sangyo KK, Veneto GR-25] 40/60 respectively The mixture was dry blended at a weight ratio of / 5 and melt-kneaded in a twin-screw kneader at 180 ° C. under the condition of a screw rotation speed of 100 RPM. After crushing the kneaded product, it was kneaded and extruded at 240 ° C. by an extruder equipped with a strand-shaped die having a diameter of 3 mm and taken at a speed of 8 m / min to obtain a strand-shaped extrudate having a diameter of about 1 mm. It was further stretched 5 times at room temperature to obtain a strand-shaped stretched product. This serves as a precursor for molding the fiber-reinforced thermoplastic resin composite material. This strand-shaped precursor is arranged in one direction, stacked, and hot pressed at 130 ° C to 2 mm
A thick sheet-shaped compact was obtained. Punched into a dumbbell shape,
A tensile test was conducted in the fiber axis direction at 100 mm / min to determine the tensile breaking strength.

【0021】比較例1 ナイロン6を240℃の温度でストランド状に押し出し、
8m/分で引取る。次いで室温にて3倍に延伸した後、
実施例と同様に配列、積み重ね、240℃で熱プレスして
2mm厚のシート状成形体を得た。ダンベル形状に打ち抜
き、100mm/分で繊維軸方向に引張テストし、引張破断
強度を求めた。
Comparative Example 1 Nylon 6 was extruded into a strand at a temperature of 240 ° C.
Collect at 8m / min. Then, after stretching 3 times at room temperature,
Arrangement, stacking and hot pressing at 240 ° C. were carried out in the same manner as in the example to obtain a sheet-shaped molded product having a thickness of 2 mm. It was punched into a dumbbell shape and subjected to a tensile test in the fiber axis direction at 100 mm / min to determine the tensile breaking strength.

【0022】比較例2 ポリプロピレンを180℃の温度でストランド状に押し出
し、8m/分で引取る。次いで室温にて8倍に延伸した
後、実施例と同様に配列、積み重ね、180℃で熱プレス
して2mm厚のシート状成形体を得た。ダンベル形状に打
ち抜き、100mm/分で繊維軸方向に引張テストし、引張
破断強度を求めた。
COMPARATIVE EXAMPLE 2 Polypropylene was extruded in strands at a temperature of 180 ° C. and taken up at 8 m / min. Then, the sheet was stretched 8 times at room temperature, arranged and stacked in the same manner as in the example, and heat-pressed at 180 ° C. to obtain a sheet-shaped compact having a thickness of 2 mm. It was punched into a dumbbell shape and subjected to a tensile test in the fiber axis direction at 100 mm / min to determine the tensile breaking strength.

【0023】比較例3 低密度ポリエチレンを130℃の温度でストランド状に押
し出し、8m/分で引取る。次いで室温にて5倍に延伸
した後、実施例と同様に配列、積み重ね、130℃で熱プ
レスして2mm厚のシート状成形体を得た。ダンベル形状
に打ち抜き、100mm/分で繊維軸方向に引張テストし、
引張破断強度を求めた。
Comparative Example 3 Low-density polyethylene was extruded at a temperature of 130 ° C. in a strand shape and taken out at 8 m / min. Then, after stretching 5 times at room temperature, the sheets were arranged, stacked and heat-pressed at 130 ° C. in the same manner as in Example to obtain a sheet-shaped molded product having a thickness of 2 mm. Punched into a dumbbell shape, tested at 100 mm / min in the fiber axis direction,
The tensile breaking strength was determined.

【0024】実施例1〜2及び比較例1〜3の結果を表
1に示す。また成形用前駆体ストランドの繊維の形状を
示す断面SEM写真を図1に、複合材料成形品シート中
の繊維の形状を示す断面SEM写真を図2に示す。実施
例1,2では複合材料成形品はそれぞれナイロン6,P
Pの極細繊維にて強化されており単独材料で成形された
シートよりも引張強度が大きく上廻ることが判る。
The results of Examples 1 and 2 and Comparative Examples 1 to 3 are shown in Table 1. A cross-sectional SEM photograph showing the shape of the fibers of the molding precursor strand is shown in FIG. 1, and a cross-sectional SEM photograph showing the shape of the fibers in the composite material molded product sheet is shown in FIG. In Examples 1 and 2, the composite material molded products were nylon 6 and P, respectively.
It can be seen that the tensile strength is significantly higher than that of a sheet formed of a single material, which is reinforced with ultrafine P fibers.

【0025】[0025]

【表1】 [Table 1]

【0026】実施例3〜5及び比較例4〜5 ナイロン6ペレツト〔東洋紡(株)製、T−850、mp
=215℃〕及びポリプロピレンペレツト〔昭和電工
(株)製、シヨウアロマーMA−410、mp=165℃〕の
割合を表2に示すように変更した以外は実施例1と同様
にしてストランド状延伸物を得た。これが繊維強化熱可
塑性樹脂複合材料成形用前駆体となる。このストランド
状の前駆体を一方向に配列、積み重ね、180℃で熱プレ
スして2mm厚のシート状成形体を得た。ダンベル形状に
打ち抜き、100mm/分で繊維軸方向に引張テストし、引
張破断強度を求めた。結果を表2に示す。
Examples 3 to 5 and Comparative Examples 4 to 5 Nylon 6 pellets [manufactured by Toyobo Co., Ltd., T-850, mp]
= 215 ° C.) and polypropylene pellets (Showa Denko KK, Shiyo Aroma MA-410, mp = 165 ° C.) were changed in the same manner as in Example 1 except that the ratios were changed as shown in Table 2. I got a thing. This serves as a precursor for molding the fiber-reinforced thermoplastic resin composite material. This strand-shaped precursor was arranged in one direction, stacked, and hot pressed at 180 ° C. to obtain a sheet-shaped molded product having a thickness of 2 mm. It was punched into a dumbbell shape and subjected to a tensile test in the fiber axis direction at 100 mm / min to determine the tensile breaking strength. The results are shown in Table 2.

【0027】[0027]

【表2】 (*a) 前駆体ストランド同士が融着せず、成形できな
い。
[Table 2] (* A) The precursor strands are not fused to each other and cannot be molded.

【0028】[0028]

【発明の効果】本発明は熱可塑性材料同士の繊維強化複
合材料のため、リサイクル性に優れる。溶融混練〜押出
引伸し工程において、マトリクス材中に繊維を形成させ
るため界面の密着性に優れる。熱可塑性の極細繊維によ
り強化されているため、成形体表面の平滑性に優れる。
Since the present invention is a fiber reinforced composite material of thermoplastic materials, it is excellent in recyclability. In the melt-kneading-extrusion stretching process, fibers are formed in the matrix material, so that the adhesiveness at the interface is excellent. Since it is reinforced with ultrafine thermoplastic fibers, it has excellent smoothness on the surface of the molded product.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の成形用前駆体ストランドの繊維の形
状を示す断面SEM写真である。
FIG. 1 is a cross-sectional SEM photograph showing the shape of fibers of a molding precursor strand of Example 1.

【図2】実施例1の複合材料成形品シート中の繊維の形
状を示す断面SEM写真である。
2 is a cross-sectional SEM photograph showing the shape of fibers in the composite material molded product sheet of Example 1. FIG.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 結晶性熱可塑性樹脂(A)からなるフィ
ブリル成分及び熱可塑性樹脂(B)からなるマトリツク
ス成分を主成分とする熱可塑性樹脂複合材料において、
(a) フィブリル径が10μm未満、アスペクト比が100以上
でありフィブリル同士がほぼ平行な状態で配列してお
り、(b) 複合材料中の結晶性熱可塑性樹脂(A)の含有
率が10〜80重量%で、(A)の融点が(B)の融点又は
軟化温度よりも10℃以上高く、(c) フィブリルの配列方
向に垂直な方向の断面において、フィブリルが均一な分
散をしていることを特徴とする熱可塑性樹脂複合材料。
1. A thermoplastic resin composite material comprising a fibril component composed of a crystalline thermoplastic resin (A) and a matrix component composed of a thermoplastic resin (B) as main components,
(a) The fibril diameter is less than 10 μm, the aspect ratio is 100 or more, and the fibrils are arranged in a substantially parallel state. (b) The content of the crystalline thermoplastic resin (A) in the composite material is 10 to At 80% by weight, the melting point of (A) is 10 ° C or more higher than the melting point or softening temperature of (B), and (c) the fibrils are uniformly dispersed in the cross section in the direction perpendicular to the fibril arrangement direction. A thermoplastic resin composite material characterized by the above.
【請求項2】 結晶性熱可塑性樹脂(A)、熱可塑性樹
脂(B)、相溶化剤及びその他の添加剤を、結晶性熱可
塑性樹脂(A)の融点以上の温度で溶融混合した後、押
出し、引伸ばしした後、延伸することを特徴とする熱可
塑性樹脂複合材料の製造法。
2. A crystalline thermoplastic resin (A), a thermoplastic resin (B), a compatibilizer and other additives are melt-mixed at a temperature equal to or higher than the melting point of the crystalline thermoplastic resin (A), A method for producing a thermoplastic resin composite material, which comprises extruding, stretching, and then stretching.
【請求項3】 請求項1の複合材料を成形して得られる
熱可塑性樹脂複合材料成形体。
3. A thermoplastic resin composite material molded body obtained by molding the composite material according to claim 1.
【請求項4】 請求項1の複合材料を、(A)の融点よ
りも低く、(B)の融点又は軟化温度よりも高い成形温
度にて成形することを特徴とする熱可塑性樹脂複合材料
成形体の製造法。
4. The thermoplastic resin composite material molding, wherein the composite material according to claim 1 is molded at a molding temperature lower than the melting point of (A) and higher than the melting point or softening temperature of (B). Body manufacturing method.
JP5353951A 1993-12-27 1993-12-27 Thermoplastic resin composite material, production thereof and molded article obtained therefrom Pending JPH07186283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5353951A JPH07186283A (en) 1993-12-27 1993-12-27 Thermoplastic resin composite material, production thereof and molded article obtained therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5353951A JPH07186283A (en) 1993-12-27 1993-12-27 Thermoplastic resin composite material, production thereof and molded article obtained therefrom

Publications (1)

Publication Number Publication Date
JPH07186283A true JPH07186283A (en) 1995-07-25

Family

ID=18434315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5353951A Pending JPH07186283A (en) 1993-12-27 1993-12-27 Thermoplastic resin composite material, production thereof and molded article obtained therefrom

Country Status (1)

Country Link
JP (1) JPH07186283A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5874146A (en) * 1996-11-01 1999-02-23 Alliedsignal Inc. Performance of vibration welded thermoplastic joints
JP2000158549A (en) * 1998-11-27 2000-06-13 Toyama Prefecture Frp formed of single material and manufacture thereof
JP2006524150A (en) * 2003-04-24 2006-10-26 ラスムッセン・オーレ−ベント Process for producing oriented films from alloyed thermoplastic polymers, apparatus for such production, and the resulting products

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5874146A (en) * 1996-11-01 1999-02-23 Alliedsignal Inc. Performance of vibration welded thermoplastic joints
JP2000158549A (en) * 1998-11-27 2000-06-13 Toyama Prefecture Frp formed of single material and manufacture thereof
JP2006524150A (en) * 2003-04-24 2006-10-26 ラスムッセン・オーレ−ベント Process for producing oriented films from alloyed thermoplastic polymers, apparatus for such production, and the resulting products
JP4841424B2 (en) * 2003-04-24 2011-12-21 ラスムッセン・オーレ−ベント Process for producing oriented films from alloyed thermoplastic polymers, apparatus for such production, and the resulting products

Similar Documents

Publication Publication Date Title
US10822482B2 (en) Composite resin composition
US11306206B2 (en) Vacuum-assisted co-extrusion of flexible fibres and the moldable thermoplastic composites produced
WO2011079637A1 (en) Ultra-high toughness and high strength organic fiber reinforced thermoplastic composite material and preparation process thereof
JP2013091775A (en) Fiber-reinforced resin composition
US6649103B1 (en) Process for making multiphase polymeric film having a lamellar structure with controlled permeability and/or controlled mechanical properties
JP2012062453A (en) Molded product and method for manufacturing the same
CN109705446A (en) A kind of modified polyolefin mother material and its preparation method and application
JPH07186283A (en) Thermoplastic resin composite material, production thereof and molded article obtained therefrom
JPH11106570A (en) Polyolefin-polyamide resin composition and its production
CN117106289A (en) Thermoplastic composite laminated material and preparation method thereof
JP2007245517A (en) Resin mass and its manufacturing method
MXPA05004599A (en) Polyolefin resin composition and processes for the production thereof.
JPS6387228A (en) Manufacture of composite body
JP6353691B2 (en) Glass wool composite thermoplastic resin composition, method for producing the same, and molded product.
WO1996005347A1 (en) Jute and kenaf fiber composite materials and methods for producing same
TW202102585A (en) Composite plastic alloy manufacturing process method for producing a composite plastic alloy material blended with polyethylene and polyethylene terephthalate for manufacturing various daily necessities
JPH07238189A (en) Fiber-reinforced thermoplastic composition and preparation thereof
JP2001179763A (en) Method for producing liquid crystal resin-reinforced isotropic film
JPH11302464A (en) Polyamide fiber-reinforced polyolefin resin composition and its preparation
JP2006249233A (en) Method for producing fiber-reinforced plastic and fiber material for reinforcing use
JP2000239532A (en) Thermoplastic resin composition
JPS6049084B2 (en) Method for manufacturing crosslinked polyolefin resin molded products with improved properties
JP2000007847A (en) Polyester-fiber reinforced rubber composition and its production
CA2307083C (en) Process for making multiphase polymeric film having a lamellar structure with controlled permeability and/or controlled mechanical properties
CN110862608B (en) Regenerated carbon fiber reinforced PP material and preparation method thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031104