JPH07186263A - Bonding method for plastic member - Google Patents

Bonding method for plastic member

Info

Publication number
JPH07186263A
JPH07186263A JP33510293A JP33510293A JPH07186263A JP H07186263 A JPH07186263 A JP H07186263A JP 33510293 A JP33510293 A JP 33510293A JP 33510293 A JP33510293 A JP 33510293A JP H07186263 A JPH07186263 A JP H07186263A
Authority
JP
Japan
Prior art keywords
joining
joint
vibration
hot air
plastic member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33510293A
Other languages
Japanese (ja)
Other versions
JP3169153B2 (en
Inventor
Hideaki Takahashi
秀昭 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP33510293A priority Critical patent/JP3169153B2/en
Publication of JPH07186263A publication Critical patent/JPH07186263A/en
Application granted granted Critical
Publication of JP3169153B2 publication Critical patent/JP3169153B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/131Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
    • B29C66/1312Single flange to flange joints, the parts to be joined being rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/06Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding
    • B29C65/0609Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding characterised by the movement of the parts to be joined
    • B29C65/0618Linear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/10Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using hot gases (e.g. combustion gases) or flames coming in contact with at least one of the parts to be joined
    • B29C65/103Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using hot gases (e.g. combustion gases) or flames coming in contact with at least one of the parts to be joined direct heating both surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/20Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror"
    • B29C65/2053Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror" characterised by special ways of bringing the welding mirrors into position
    • B29C65/2061Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror" characterised by special ways of bringing the welding mirrors into position by sliding
    • B29C65/2069Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror" characterised by special ways of bringing the welding mirrors into position by sliding with an angle with respect to the plane comprising the parts to be joined
    • B29C65/2076Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror" characterised by special ways of bringing the welding mirrors into position by sliding with an angle with respect to the plane comprising the parts to be joined perpendicularly to the plane comprising the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/024Thermal pre-treatments
    • B29C66/0242Heating, or preheating, e.g. drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • B29C66/1142Single butt to butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/32Measures for keeping the burr form under control; Avoiding burr formation; Shaping the burr
    • B29C66/322Providing cavities in the joined article to collect the burr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5221Joining tubular articles for forming coaxial connections, i.e. the tubular articles to be joined forming a zero angle relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/542Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles joining hollow covers or hollow bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7214Fibre-reinforced materials characterised by the length of the fibres
    • B29C66/72143Fibres of discontinuous lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To provide a bonding method which can bond plastic members in high quality, with high strength, and at low costs. CONSTITUTION:A running groove 3 is formed in a flange 1a. Flanges 1a, 2a are pressed to face each other so that the groove 3 is closed on the side facing the flange surface. In this state, hot air, the temperature of which exceeds the melting point of a thermoplastic resin, is supplied to pass through the groove 3 so that the flanges 1a, 2a are welded while they are facing each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱可塑性プラスチック
を含有するプラスチック部材に形成された互いに対面可
能な第1接合面と第2接合面とを接合するプラスチック
部材の接合方法の改良に関する。この方法は、特にプラ
スチック部材が繊維強化品である場合に好適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a method for joining a plastic member containing a thermoplastic resin containing a first joining surface and a second joining surface which can face each other. This method is particularly suitable when the plastic member is a fiber reinforced product.

【0002】[0002]

【従来の技術】従来、プラスチック部材の接合方法とし
て、熱融着接合方法及び振動溶着方法が知られている
(「接着の技術」vol12、No.1(1992)通
巻26号第9〜10頁、「プラスチックス」vol4
2、No.5第89〜94頁)。例えば加熱板を用いた
熱融着接合方法として、図9(A)に示すように、熱可
塑性プラスチックを含有する第1プラスチック部材91
に形成された第1接合面91aと、熱可塑性プラスチッ
クを含有する第2プラスチック部材92に形成され、第
1接合面91aと対面可能な第2接合面92aとを接合
する場合について説明する。この方法では、まず接合せ
んとする第1、2接合面91a、92aのみを加熱する
ため、両熱可塑性プラスチックの融点を超える温度に加
熱した加熱板93を用意し、この加熱板93に第1、第
2接合面91a、92aを接触させる。これにより、図
9(B)に示すように、第1、第2接合面91a、92
aが溶融されるため、すかさず図9(C)に示すよう
に、加熱板93から第1、第2接合面91a、92aを
離反させ、さらに図9(D)に示すように、第1、第2
接合面91a、92aを加圧しつつ対面させ、第1、第
2接合面91a、92aを接合させる。加熱板93以外
に電気ゴテ、バーナ等を用いる場合もある。
2. Description of the Related Art Conventionally, as a method for joining plastic members, a heat fusion joining method and a vibration welding method have been known ("Adhesion Techniques" vol 12, No. 1 (1992), Vol. 26, pp. 9-10. , "Plastics" vol4
2, No. 5, pages 89-94). For example, as a heat fusion bonding method using a heating plate, as shown in FIG. 9A, a first plastic member 91 containing a thermoplastic is used.
A case will be described in which the first joint surface 91a formed on the first joint surface 91a and the second joint surface 92a that is formed on the second plastic member 92 containing a thermoplastic and can face the first joint surface 91a are joined. In this method, first, only the first and second joint surfaces 91a and 92a to be joined are heated. Therefore, a heating plate 93 heated to a temperature exceeding the melting points of both thermoplastics is prepared. , The second joint surfaces 91a and 92a are brought into contact with each other. As a result, as shown in FIG. 9B, the first and second joint surfaces 91a, 92
Since a is melted, as shown in FIG. 9C, the first and second joint surfaces 91a and 92a are separated from the heating plate 93, and as shown in FIG. Second
The joining surfaces 91a and 92a are faced while being pressed, and the first and second joining surfaces 91a and 92a are joined. In addition to the heating plate 93, an electric iron, burner or the like may be used.

【0003】また、振動溶着方法は、摩擦熱により第
1、2接合面を溶融させるため、広義では上記熱融着接
合方法に含まれるが、この振動溶着方法では、例えば第
1、第2接合面間を加圧すると同時に、数mmの横振幅
で第1、2接合面に平行な横振動を与え、これにより生
じる摩擦熱により第1、第2接合面を接合させる。
Further, the vibration welding method is included in the above heat fusion bonding method in a broad sense because the first and second bonding surfaces are melted by frictional heat. In this vibration welding method, for example, the first and second bonding methods are used. At the same time as the pressure between the surfaces is applied, lateral vibration parallel to the first and second joint surfaces is applied with a lateral amplitude of several mm, and the friction heat generated thereby causes the first and second joint surfaces to join.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来の接
合方法では、プラスチック部材を高品質・高強度・安価
に接合することが困難である。すなわち、従来の熱融着
接合方法では、接合せんとする第1、第2接合面だけを
溶融させるために、第1、第2接合面を離れた状態で溶
融させ、しかる後に加圧対面することにより接合させて
いる。このため、加熱板等に接触させた時にプラスチッ
ク部材を汚染したり、接触痕を残留させたりしやすい。
また、溶融させてから加圧対面するまでにタイムラグを
生じやすいため、第1、第2接合面を必要以上に加熱し
なければならず、エネルギーロスを生じるとともに、接
合後のプラスチック部材に物性の低下を生じるおそれも
ある。
However, with the above-mentioned conventional joining method, it is difficult to join the plastic members with high quality, high strength and low cost. That is, in the conventional thermal fusion bonding method, in order to melt only the first and second bonding surfaces to be bonded, the first and second bonding surfaces are melted apart from each other, and then they are faced to each other under pressure. By doing so, they are joined together. Therefore, it is easy to contaminate the plastic member or leave a contact mark when the plastic member is contacted with the heating plate or the like.
In addition, since a time lag is likely to occur from the melting to the pressing face-to-face contact, it is necessary to heat the first and second joint surfaces more than necessary, resulting in energy loss and physical properties of the plastic member after joining. There is also the possibility of a decrease.

【0005】また、この方法では、第1、2接合面近傍
を溶融させて加圧接着しているにすぎず、第1、第2接
合面が対面された状態で溶融が進行するわけではないた
め、第1、第2接合面間で材料の流動が深い範囲で生じ
にくい。このため、接合された第1、第2接合面間にお
いて応力緩和がなされにくいことから、接合前に存在し
た歪や変形等が接合後のプラスチック部材にも残留しや
すく、接合強度が未だ十分でない場合がある。特にプラ
スチック部材が繊維強化品である場合には第1、第2接
合面間で繊維強化がほとんど行われず、接合強度は低い
ものとなりやすい。
Further, in this method, the vicinity of the first and second joint surfaces is only melted and pressure-bonded, and the melting does not proceed with the first and second joint surfaces facing each other. Therefore, the material flow is unlikely to occur in the deep range between the first and second joint surfaces. Therefore, since it is difficult to relax stress between the joined first and second joint surfaces, strain or deformation existing before joining tends to remain in the joined plastic member, and the joining strength is still insufficient. There are cases. Particularly when the plastic member is a fiber reinforced product, fiber reinforcement is hardly performed between the first and second joint surfaces, and the joint strength tends to be low.

【0006】一方、従来の振動溶着方法では、第1、2
接合面を摩擦熱で溶融すべく横振動を行っているにすぎ
ず、溶融が進むにつれて摩擦熱が発生しにくくなること
から、通常、溶融するとほぼ同時に振動を中止して冷却
により接合を終了する。このため、第1、第2接合面間
で材料の流動が深い範囲で生じにくいことから、残留応
力によりやはり接合強度が未だ十分でなかったり、また
特にプラスチック部材が繊維強化品である場合には、溶
融の深さや面積が強化繊維の形状より狭いことから第
1、第2接合面間で繊維強化がほとんど行われなかった
りし、接合強度は低いものとなりやすい。
On the other hand, in the conventional vibration welding method, the first and second methods are used.
Lateral vibration is merely performed to melt the joint surface with frictional heat, and frictional heat is less likely to be generated as the melting progresses. Normally, when melted, the vibration is stopped almost at the same time and the joining is finished by cooling. . For this reason, since the flow of the material between the first and second joint surfaces is unlikely to occur in a deep range, the joint strength is still insufficient due to residual stress, and particularly when the plastic member is a fiber-reinforced product. Since the melting depth and area are narrower than the shape of the reinforcing fibers, fiber reinforcement is hardly performed between the first and second bonding surfaces, and the bonding strength tends to be low.

【0007】その他に、この方法では、振動のみによっ
て接合を行うことから、比較的大きなエネルギーを必要
とし、接合コストの高騰化を生じてしまう。本発明は、
上記従来の実情に鑑みてなされたものであって、プラス
チック部材を高品質・高強度・安価に接合することので
きる接合方法を提供することを目的とする。
In addition, in this method, since the joining is performed only by vibration, a relatively large amount of energy is required and the joining cost is increased. The present invention is
The present invention has been made in view of the above conventional circumstances, and an object of the present invention is to provide a joining method capable of joining plastic members with high quality, high strength, and at low cost.

【0008】[0008]

【課題を解決するための手段】[Means for Solving the Problems]

(1)請求項1のプラスチック部材の接合方法は、熱可
塑性プラスチックを含有するプラスチック部材に形成さ
れた互いに対面可能な第1接合面と第2接合面とを接合
するプラスチック部材の接合方法であって、前記第1接
合面及び前記第2接合面の少なくとも一方に流通溝を刻
設し、該第1接合面及び該第2接合面を加圧しつつ対面
させることにより該流通溝を対面方向で閉塞した状態と
し、この状態で該流通溝に前記熱可塑性プラスチックの
融点を超える温度の熱風を流通させて該第1接合面及び
該第2接合面を融着することを特徴とする。
(1) The method for joining plastic members according to claim 1 is a method for joining plastic members, in which a first joining surface and a second joining surface which are formed on a plastic member containing a thermoplastic and can face each other are joined. Then, a flow groove is formed on at least one of the first bonding surface and the second bonding surface, and the first bonding surface and the second bonding surface are opposed to each other while being pressed, so that the flow groove is in the facing direction. It is characterized in that it is in a closed state, and in this state, hot air having a temperature exceeding the melting point of the thermoplastic is circulated in the circulation groove to fuse the first joint surface and the second joint surface.

【0009】本発明において、熱風としては、プラスチ
ック部材の物性を変化させないよう不活性ガス、N2
ドライエアー等を用いることができる。また、本発明に
おいて、熱可塑性プラスチックとしては、ポリエチレ
ン、ポリプロピレン、ポリエチエンテレフタレート、ポ
リカーボネート、ポリアミド等を採用することができ
る。
[0009] In the present invention, the hot air, inert gas so as not to change the physical properties of the plastic member, N 2,
Dry air or the like can be used. Further, in the present invention, as the thermoplastic, polyethylene, polypropylene, polyethylene terephthalate, polycarbonate, polyamide or the like can be adopted.

【0010】さらに、本発明において、プラスチック部
材が繊維強化品である場合、強化繊維としては、無機繊
維ではガラス、ボロン、カーボン、金属、セラミックウ
ィスカ等が採用され、有機繊維ではビニロン、ナイロ
ン、テトロン、綿、麻等が採用され得る。 (2)請求項2の接合方法では、請求項1の方法におい
て、熱風を流通させつつ、第1接合面及び第2接合面間
に振動数が50Hz以下であって該第1接合面及び該第
2接合面に平行な横振動を与えて該第1接合面及び該第
2接合面の全部を溶融することにより、該第1接合面及
び該第2接合面を融着することを特徴とする。
Further, in the present invention, when the plastic member is a fiber reinforced product, as the reinforcing fiber, glass, boron, carbon, metal, ceramic whisker, etc. are adopted as the inorganic fiber, and vinylon, nylon, tetron as the organic fiber. , Cotton, hemp, etc. may be employed. (2) In the joining method according to claim 2, in the method according to claim 1, a frequency of 50 Hz or less is generated between the first joining surface and the second joining surface while circulating hot air, and the first joining surface and the A lateral vibration parallel to the second joint surface is applied to melt all of the first joint surface and the second joint surface, thereby fusing the first joint surface and the second joint surface. To do.

【0011】熱風を流通させつつ与える横振動の振動数
は、50Hz以下である。この振動数は10Hz以下で
あることが好ましい。横振動の振動数が50Hzを超え
ると、熱風による熱量を流通溝と対面する接合面へ供給
しにくくなり、溶融温度が進行しにくくなるため、プラ
スチック部材が繊維強化品である場合に強化繊維が第
1、2接合面間を移動しにくくなる。
The frequency of lateral vibration applied while circulating hot air is 50 Hz or less. This frequency is preferably 10 Hz or less. When the frequency of the lateral vibration exceeds 50 Hz, it becomes difficult to supply the amount of heat due to hot air to the joint surface facing the flow groove, and the melting temperature becomes difficult to progress. Therefore, when the plastic member is a fiber-reinforced product, It becomes difficult to move between the first and second joint surfaces.

【0012】なお、横振動の振幅は、閉塞された流通溝
を開放しない範囲で、かつプラスチック部材が繊維強化
品である場合には強化繊維の形状より大きく選択する。
例えば、プラスチック部材が繊維強化品であり、通常繊
維長0.1〜20mm、径1〜1000μmであるが、
強化繊維が繊維長0.2mm、径10μmのガラスチョ
プドストランド繊維である場合、第1、2接合面の接合
代を繊維長の10倍の2mm以上とし、横振動の振幅も
繊維長の10倍の2mm以上とする。
The amplitude of the lateral vibration is selected to be larger than the shape of the reinforcing fiber when the plastic member is a fiber reinforced product within the range where the closed flow groove is not opened.
For example, the plastic member is a fiber reinforced product, and usually has a fiber length of 0.1 to 20 mm and a diameter of 1 to 1000 μm.
When the reinforcing fiber is a glass chopped strand fiber having a fiber length of 0.2 mm and a diameter of 10 μm, the bonding margin of the first and second bonding surfaces is set to 2 mm or more, which is 10 times the fiber length, and the amplitude of transverse vibration is 10 times the fiber length. 2 mm or more.

【0013】(3)請求項3の接合方法では、請求項1
の方法において、熱風を流通させることにより第1接合
面及び第2接合面の一部を溶融した直後、該第1接合面
及び該第2接合面間に振動数が100〜250Hzであ
って該第1接合面及び該第2接合面に平行な横振動を与
えることにより、該第1接合面及び該第2接合面を融着
することを特徴とする。
(3) According to the joining method of claim 3, claim 1
In the method, immediately after melting a part of the first joint surface and the second joint surface by circulating hot air, the frequency between the first joint surface and the second joint surface is 100 to 250 Hz, and It is characterized in that the first bonding surface and the second bonding surface are fused by applying a lateral vibration parallel to the first bonding surface and the second bonding surface.

【0014】熱風を流通させて第1、2接合面の一部を
溶融した直後に与える横振動の振動数は、100〜25
0Hzである。横振動の振動数が100Hz未満では、
熱風により溶融された一部を除く部分が横振動の摩擦熱
により溶融しにくく、プラスチック部材が繊維強化品で
ある場合に強化繊維が第1、2接合面間を移動しにくく
なる。また、横振動の振動数が250Hzを超えれば、
熱風により溶融された一部を除く部分が摩擦熱により過
剰に溶融され、製品誤差を大きくしやすい。
The frequency of transverse vibration applied immediately after the hot air is circulated to melt a part of the first and second joint surfaces is 100 to 25.
It is 0 Hz. If the frequency of lateral vibration is less than 100 Hz,
The part excluding the part melted by the hot air is less likely to be melted by the frictional heat of the lateral vibration, and when the plastic member is a fiber-reinforced product, the reinforcing fibers are less likely to move between the first and second joint surfaces. Also, if the frequency of lateral vibration exceeds 250 Hz,
The part except the part melted by hot air is excessively melted by frictional heat, and it is easy to increase the product error.

【0015】(4)請求項4の接合方法では、請求項2
の方法において、横振動と同時に振幅が溶融深さ以下で
あって第1接合面及び第2接合面に垂直な50Hz以下
の縦振動も与えることを特徴とする。ここで、横振動と
は、一次元でも二次元でもよく、二次元の場合は例えば
楕円状、円状運動等がある。また、縦振動と合わせた三
次元の運動も可能である。かかる構成により、各接合面
間で溶融材料の相互の流動混合が行われる。
(4) According to the joining method of claim 4,
The method of (1) is characterized in that, in addition to transverse vibration, longitudinal vibration of 50 Hz or less, which has an amplitude equal to or less than the melting depth and is perpendicular to the first and second joint surfaces, is also applied. Here, the lateral vibration may be one-dimensional or two-dimensional, and in the case of two-dimensional, there are, for example, an elliptical motion and a circular motion. Also, three-dimensional motion combined with longitudinal vibration is possible. With such a configuration, the molten materials are mutually fluidized and mixed between the joint surfaces.

【0016】[0016]

【作用】[Action]

(1)請求項1の接合方法では、第1、2接合面を加圧
しつつ対面させることにより流通溝を対面方向で閉塞し
た状態とし、この状態で流通溝に熱風を流通させる。こ
のとき、熱風の温度は熱可塑性プラスチックの融点を超
えているため、第1、第2接合面が溶融する。このと
き、第1、第2接合面が加圧対面された状態において、
流通溝から熱が周囲に十分に伝達されると、接合せんと
する第1、第2接合面だけが溶融され、融着される。
(1) In the joining method according to the first aspect, the first and second joining surfaces are opposed to each other while being pressed, whereby the flow groove is closed in the facing direction, and hot air is circulated in the flow groove in this state. At this time, since the temperature of the hot air exceeds the melting point of the thermoplastic, the first and second joint surfaces are melted. At this time, in the state where the first and second joint surfaces are pressed against each other,
When the heat is sufficiently transferred to the surroundings from the circulation groove, only the first and second joint surfaces to be joined are melted and fused.

【0017】このため、プラスチック部材の汚染が回避
可能であり、接触痕は生じない。また、タイムラグは生
じず、第1、第2接合面を必要以上に加熱する必要がな
いため、エネルギーロスが生じないとともに、接合後の
プラスチック部材は物性の低下が生じない。また、第
1、第2接合面が対面された状態で溶融が進行するた
め、第1、第2接合面間で材料の溶融が深い範囲で生じ
る。このため、接合された第1、第2接合面間において
応力緩和がなされ、接合前に存在した歪や変形等が接合
後のプラスチック部材には残留しにくく、接合強度が十
分に確保される。
Therefore, contamination of the plastic member can be avoided, and no contact mark is produced. Further, since there is no time lag and there is no need to heat the first and second joint surfaces more than necessary, energy loss does not occur and the physical properties of the plastic members after joining do not deteriorate. Further, since the melting proceeds in a state where the first and second joint surfaces face each other, the material is melted in a deep range between the first and second joint surfaces. Therefore, stress is relieved between the joined first and second joint surfaces, strain and deformation existing before joining do not easily remain in the joined plastic member, and sufficient joining strength is ensured.

【0018】さらに、振動を同時に行うとしても、熱風
のエネルギーと振動のエネルギーとがともに補われるた
め、比較的小さなエネルギーで足り、接合コストの低廉
化が実現される。 (2)請求項2の接合方法では、第1、2接合面の溶融
は専ら熱風により行われ、横振動による摩擦熱は全く利
用しない。このとき、横振動によって材料が第1、2接
合面間で深い範囲で生じ、特にプラスチック部材が繊維
強化品である場合には第1、第2接合面間で繊維強化が
より行われやすく、接合強度が高いものとなりやすい。
この理由は、強化繊維が第1、2接合面間を跨ぐ形で強
化するためである。
Further, even if the vibrations are simultaneously performed, the energy of the hot air and the energy of the vibrations are both supplemented, so that a relatively small amount of energy is sufficient and the bonding cost can be reduced. (2) In the joining method of claim 2, the first and second joining surfaces are melted exclusively by hot air, and frictional heat due to lateral vibration is not used at all. At this time, the material is generated in a deep range between the first and second joint surfaces due to the lateral vibration, and particularly when the plastic member is a fiber-reinforced product, the fiber reinforcement is more easily performed between the first and second joint surfaces, It tends to have high bonding strength.
The reason for this is that the reinforcing fibers are reinforced by straddling the first and second joint surfaces.

【0019】(3)請求項3の接合方法では、熱風によ
り溶融された一部の溶融材料分が横振動の摩擦熱により
溶融する部分の材料と混合したりして、プラスチック部
材が繊維強化品である場合に強化繊維が第1、2接合面
間を跨ぐ形で強化しやすくなる。つまり、第1、第2接
合面間で材料の流動が深い範囲で生じ、特にプラスチッ
ク部材が繊維強化品である場合には第1、第2接合面間
で繊維強化がより行われやすく、接合強度が高いものと
なりやすい。また、横振動の振動数が250Hzを超え
ないことから、熱風により溶融された一部を除く部分が
摩擦熱により過剰に溶融されることもなく、製品誤差が
小さい。
(3) In the joining method according to claim 3, a part of the molten material melted by the hot air is mixed with a material of a part melted by the frictional heat of the lateral vibration, so that the plastic member is a fiber reinforced product. When it is, it becomes easy for the reinforcing fiber to be reinforced by straddling the first and second joint surfaces. That is, the material flow occurs between the first and second joint surfaces in a deep range, and particularly when the plastic member is a fiber-reinforced product, the fiber reinforcement is more likely to be performed between the first and second joint surfaces. It tends to have high strength. Further, since the frequency of the lateral vibration does not exceed 250 Hz, the part except the part melted by the hot air is not excessively melted by the frictional heat, and the product error is small.

【0020】(4)請求項4の接合方法では、プラスチ
ック部材が繊維強化品である場合、溶融材料がより第
1、2接合面間で流動混合され、強化繊維が第1、2接
合面間を跨ぐ形で強化する。つまり、第1、第2接合面
間で材料の流動が深い範囲で生じ、特にプラスチック部
材が繊維強化品である場合には第1、第2接合面間で繊
維強化がより行われやすく、接合強度がより高いものと
なりやすい。
(4) In the joining method according to the fourth aspect, when the plastic member is a fiber reinforced product, the molten material is more fluidly mixed between the first and second joining surfaces, and the reinforcing fiber is between the first and second joining surfaces. Strengthen by straddling. That is, the material flow occurs between the first and second joint surfaces in a deep range, and particularly when the plastic member is a fiber-reinforced product, the fiber reinforcement is more likely to be performed between the first and second joint surfaces. It tends to have higher strength.

【0021】[0021]

【実施例】以下、本発明を具体化した実施例1、2を試
験とともに図面を参照しつつ説明する。 (実施例1)実施例1は請求項1、2、4を具体化した
ものである。この実施例1では、図1に示すように、と
もに70重量%のナイロン66と30重量%のガラス繊
維(繊維長0.2mm、径10μmのガラスチョップド
ストランド)とからなる第1、2プラスチック部材とし
てのケース1、2を接合せんとする。これらケース1、
2は別々に射出成形されたものであり、ケース1、2に
は互いに対面可能な第1、2接合面としてのフランジ1
a、2aが形成されている。
EXAMPLES Examples 1 and 2 embodying the present invention will be described below along with tests with reference to the drawings. (Embodiment 1) Embodiment 1 embodies claims 1, 2 and 4. In Example 1, as shown in FIG. 1, first and second plastic members both made of 70% by weight of nylon 66 and 30% by weight of glass fiber (fiber length 0.2 mm, glass chopped strand having a diameter of 10 μm). Cases 1 and 2 are joined together. These cases 1,
2 is separately injection-molded, and the cases 1 and 2 have flanges 1 as first and second joint surfaces which can face each other.
a and 2a are formed.

【0022】ケース1のフランジ1aには、図2(A)
に示すように、断面V字形状の流通溝3がフランジ1a
を周回して1条刻設されており、図3(A)に示すよう
に、流通溝3は隣接する開口3a、3bにより側方に開
放されている。なお、図2(A)〜(C)にガラス繊維
の配向状態を細線で示す。流通溝3の内側には流通溝3
と平行なバリ逃がし溝4がフランジ1aを周回して刻設
され、流通溝3の外側には流通溝3と平行なバリ逃がし
溝5が開口3a、3bにより遮断された部分を除いてフ
ランジ1aを周回して刻設されている。
The flange 1a of the case 1 is shown in FIG.
As shown in FIG. 3, the flow groove 3 having a V-shaped cross section has a flange 1a.
1 is encircled, and as shown in FIG. 3 (A), the flow groove 3 is opened laterally by the adjacent openings 3a and 3b. Note that, in FIGS. 2A to 2C, the orientation state of the glass fiber is shown by a thin line. Inside the distribution groove 3, the distribution groove 3
And a burr escape groove 4 parallel to the circulation groove 3 is engraved around the flange 1a, and a burr escape groove 5 parallel to the circulation groove 3 is provided outside the circulation groove 3 except for a portion blocked by the openings 3a and 3b. It is engraved around the.

【0023】また、ケース2のフランジ2aには、図2
(A)に示すように、バリ逃がし溝4、5と対向するバ
リ逃がし凹部6、7が凹設されている。フランジ1a、
2aにおける流通溝3、バリ逃がし溝4、5及びバリ逃
がし凹部6、7の幅を除いた接合代は、ガラス繊維の繊
維長の10倍の2mm以上である。これら流通溝3、バ
リ逃がし溝4、5及びバリ逃がし凹部6、7はケース
1、2の成形金型により賦形されたものである。
Further, the flange 2a of the case 2 has a structure shown in FIG.
As shown in (A), burr escape recesses 6 and 7 facing the burr escape grooves 4 and 5 are provided. Flange 1a,
The joining margin excluding the widths of the flow groove 3, the burr escape grooves 4, 5 and the burr escape recesses 6, 7 in 2a is 2 mm or more, which is 10 times the fiber length of the glass fiber. The flow groove 3, the burr escape grooves 4 and 5, and the burr escape recesses 6 and 7 are shaped by the molding dies of the cases 1 and 2.

【0024】そして、図3(B)に示すように、フラン
ジ1a及びフランジ2aを加圧しつつ対面させ、流通溝
3を対面方向で閉塞させる。この状態でケース1、2を
挟持し、図示しない振動体としてのコンバータに接続す
る。かかる状態で開口3aに図示しないノズルを当接
し、図4に示すタイムチャートに従い、図3(B)に示
す開口3aからナイロン66の融点をやや超える120
〜190℃の熱風を10数秒間隔で段階的にガス圧を高
めながら圧送し、流通溝3内に流通させ、開口3bから
放出させる。このとき、熱風としては不活性ガスを採用
する。ここで、熱風の温度をあまり高くし過ぎると、ナ
イロン66の分解を生じるため、留意を要する。
Then, as shown in FIG. 3B, the flange 1a and the flange 2a are faced while being pressed, and the flow groove 3 is closed in the face-to-face direction. In this state, the cases 1 and 2 are sandwiched and connected to a converter (not shown) as a vibrating body. In this state, a nozzle (not shown) is brought into contact with the opening 3a, and the melting point of the nylon 66 is slightly exceeded from the opening 3a shown in FIG. 3 (B) according to the time chart shown in FIG.
Hot air at a temperature of up to 190 ° C. is pressure-fed at intervals of ten and a few seconds while gradually increasing the gas pressure, and is circulated in the flow groove 3 and discharged from the opening 3b. At this time, an inert gas is used as the hot air. Here, if the temperature of the hot air is set too high, the nylon 66 will be decomposed, so care must be taken.

【0025】同時に、10数秒間隔で段階的に振動速度
を低めながらフランジ1a、2a間に振動を与える。こ
のとき、初めは10Hzの振動数、2mmの楕円状振幅
及び1mmの縦振幅になるような振動速度、次いで5H
zの振動数、2mmの横振幅及び1mmの縦振幅になる
ような振動速度、さらに2Hzの振動数、2mmの横振
幅及び0.5mmの縦振幅になるような振動速度、ひき
続き1Hzの振動数、1mmの横振幅及び0.2mmの
縦振幅になるような振動速度とする。この間、フランジ
1a、2aの溶融は専ら熱風により行われる。このた
め、熱風によって溶融が進行し、同時に楕円状振動と縦
振動とによってガラス繊維がフランジ1a、2a間跨ぐ
形で強化する。この後、振動を停止し、空冷する。
At the same time, vibration is applied between the flanges 1a and 2a while gradually lowering the vibration speed at intervals of ten and several seconds. At this time, a vibration speed of 10 Hz, an oval amplitude of 2 mm, and a longitudinal amplitude of 1 mm, and then 5 H.
Vibration frequency of z, lateral amplitude of 2 mm and longitudinal amplitude of 1 mm, vibration frequency of 2 Hz, vibration speed of lateral frequency of 2 mm, longitudinal amplitude of 0.5 mm, continuous vibration of 1 Hz The vibration velocity is such that the number has a lateral amplitude of 1 mm and a longitudinal amplitude of 0.2 mm. During this time, the melting of the flanges 1a and 2a is performed exclusively by hot air. For this reason, melting is promoted by the hot air, and at the same time, the glass fiber is reinforced by the elliptical vibration and the longitudinal vibration so as to straddle the flanges 1a, 2a. After this, the vibration is stopped and air cooling is performed.

【0026】この実施例1では、熱風によりフランジ1
a、2aを溶融させると同時に、フランジ1a、2a間
に50Hz以下の楕円状振動及び縦振動を与えているた
め、フランジ1a、2a間で溶融されたナイロン66及
びガラス繊維の流動が深い範囲で生じ、フランジ1a、
2a間で繊維強化がより行われやすく、接合強度が高い
ものとなりやすい。
In the first embodiment, the flange 1 is heated by hot air.
Since the elliptical vibration and the longitudinal vibration of 50 Hz or less are applied between the flanges 1a and 2a at the same time that the a and 2a are melted, the flow of the nylon 66 and the glass fiber melted between the flanges 1a and 2a is deep Occurs, the flange 1a,
Fiber reinforcement is more likely to occur between 2a and the joint strength tends to be higher.

【0027】こうして、図5に示すように、ケース1、
2が融着される。このケース1、2では、フランジ1
a、2aが対面された状態で溶融が進行し、フランジ1
a、2a間で溶融したナイロン66及びガラス繊維の流
動が深い範囲で生じており、フランジ1a、2a間で繊
維強化が行われている。このため、接合されたフランジ
1a、2a間において応力緩和がなされ、接合前に存在
した歪や変形等が接合後のケース1、2には残留しにく
く、接合強度が十分に確保される。
Thus, as shown in FIG. 5, the case 1,
Two are fused together. In this case 1, 2, the flange 1
a and 2a face each other, melting progresses, and the flange 1
The flow of the nylon 66 and the glass fiber melted between a and 2a occurs in a deep range, and fiber reinforcement is performed between the flanges 1a and 2a. Therefore, stress is relaxed between the joined flanges 1a, 2a, strains and deformations existing before joining are less likely to remain in the cases 1, 2 after joining, and the joining strength is sufficiently secured.

【0028】また、ケース1、2に汚染、接触痕は生じ
ていない。そして、このとき、タイムラグは生じず、フ
ランジ1a、2aを必要以上に加熱することがないた
め、エネルギーロスが生じないとともに、接合後のケー
ス1、2は物性の低下が生じない。さらに、振動を溶融
時に行っても、熱風のエネルギーと振動のエネルギーと
で接合を行うため、比較的小さなエネルギーで足り、接
合コストの低廉化が実現される。
Further, the cases 1 and 2 are free from contamination and contact marks. At this time, no time lag occurs and the flanges 1a and 2a are not heated more than necessary, so that energy loss does not occur and the cases 1 and 2 after joining do not deteriorate in physical properties. Further, even if the vibration is performed at the time of melting, the energy of the hot air and the energy of the vibration are used for joining. Therefore, a relatively small amount of energy is sufficient, and the joining cost can be reduced.

【0029】また、流通溝3から熱が周囲に伝達され、
バリ逃がし溝4、5及びバリ逃がし凹部6、7により接
合時のバリが収容されるため、接合後のケース1、2に
はバリがほとんど存在せず、優れた外観を呈している。
さらに、横振動の振動数が250Hzを超えないことか
ら、熱風により溶融された一部を除く部分が摩擦熱によ
り過剰に溶融されることもなく、製品誤差が小さい。
Further, heat is transferred from the circulation groove 3 to the surroundings,
Since the burr at the time of joining is accommodated by the burr escape grooves 4 and 5 and the burr escape recesses 6 and 7, there is almost no burr in the cases 1 and 2 after the joining, and the case has excellent appearance.
Further, since the frequency of the lateral vibration does not exceed 250 Hz, the part except the part melted by the hot air is not excessively melted by the frictional heat, and the product error is small.

【0030】したがって、実施例1においては、ケース
1、2を高品質・高強度・安価に接合することが可能で
ある。また、この実施例1では、熱風による溶融と振動
とを同時期に行うため、作業時間を短縮することができ
る。 (試験)繊維未強化品のケースを図9に示す方法で融着
させた場合と、繊維強化品のケースを図9に示す方法で
融着させた場合と、繊維強化品のケースを実施例1の方
法で融着させた場合とで、母材強度及び融着強度を比較
した。結果を表1に示す。
Therefore, in the first embodiment, the cases 1 and 2 can be joined with high quality, high strength and low cost. In addition, in the first embodiment, since the melting and the vibration by the hot air are performed at the same time, the working time can be shortened. (Test) A case in which a fiber-unreinforced product case was fused by the method shown in FIG. 9, a case in which a fiber-reinforced product case was fused by the method shown in FIG. The base material strength and the fusion strength were compared between the case of fusion by the method of No. 1. The results are shown in Table 1.

【0031】[0031]

【表1】 表1より、実施例1の方法ではプラスチック部材が繊維
強化品である場合にも高い接合強度が得られることがわ
かる。これは、実施例1の方法では、溶融樹脂の移動と
ともに繊維強化が行われやすいからである。したがっ
て、実施例1の方法を繊維未強化品に適用しても、高い
接合強度が得られることがわかる。 (実施例2)実施例2は請求項1、3を具体化したもの
である。この実施例2では、実施例1とタイムチャート
が異なる点を除いて同一の構成を採用しているため、同
一の構成については、同一符号を付し、同一の作用及び
効果は省略する。
[Table 1] From Table 1, it can be seen that the method of Example 1 can provide high bonding strength even when the plastic member is a fiber reinforced product. This is because the method of Example 1 facilitates fiber reinforcement as the molten resin moves. Therefore, it can be seen that high bonding strength can be obtained even when the method of Example 1 is applied to a fiber-unreinforced product. (Embodiment 2) Embodiment 2 is one in which claims 1 and 3 are embodied. The second embodiment has the same configuration as that of the first embodiment except that the time chart is different. Therefore, the same components are designated by the same reference numerals, and the same operation and effect are omitted.

【0032】すなわち、フランジ1a及びフランジ1a
を加圧しつつ対面させ、かつ振動体としてのコンバータ
に接続した状態で、図6に示すタイムチャートに従い、
熱風を約30秒間、所定のガス圧で圧送し、流通溝3内
に流通させ、開口3bから放出させる。これにより、フ
ランジ1a、2aは一部が溶融する。このとき、フラン
ジ1a、2aが加圧対面された状態において、流通溝3
から熱が周囲に伝達されるため、接合せんとするフラン
ジ1a、2aだけが溶融される。また、熱風として不活
性ガスを流通させているため、フランジ1a、2aの物
性が変化することはない。
That is, the flange 1a and the flange 1a
In the state where they are faced while being pressurized and connected to the converter as the vibrating body, according to the time chart shown in FIG.
The hot air is pressure-fed at a predetermined gas pressure for about 30 seconds, circulates in the flow groove 3, and is discharged from the opening 3b. As a result, the flanges 1a and 2a are partially melted. At this time, in the state where the flanges 1a, 2a are pressed against each other, the flow groove 3
Since the heat is transmitted from the inside to the surroundings, only the flanges 1a and 2a to be joined are melted. Further, since the inert gas is circulated as the hot air, the physical properties of the flanges 1a and 2a do not change.

【0033】引き続き、100〜250Hzの振動数、
2mmの横振幅になるような振動速度で、図1に示すう
ち、一次元の横振動のみを約2秒間、フランジ1a、2
a間に与える。このとき、熱風により溶融されたフラン
ジ1a、2aの一部の溶融樹脂が横振動の摩擦熱により
溶融する部分の材料と混合して、その結果その材料内の
フランジ1a、2a間を跨ぐ形で介在しやすくなる。こ
の後、振動を停止し、空冷する。
Subsequently, the frequency of 100 to 250 Hz,
At a vibration velocity such that a lateral amplitude of 2 mm is obtained, only one-dimensional lateral vibration of the flanges 1a, 2 shown in FIG.
Give between a. At this time, a part of the molten resin of the flanges 1a, 2a melted by the hot air is mixed with the material of the part melted by the frictional heat of the lateral vibration, and as a result, the flanges 1a, 2a in the material are crossed over. It becomes easier to intervene. After this, the vibration is stopped and air cooling is performed.

【0034】したがって、この実施例2においても、ケ
ース1、2を高品質・高強度・安価に接合することが可
能である。なお、流通溝としては、図7に示す断面U字
形状の流通溝8、図8に示すケース1及びケース2に刻
設した複数条の流通溝9a〜9cを採用することもでき
る。
Therefore, also in the second embodiment, the cases 1 and 2 can be joined with high quality, high strength and low cost. It should be noted that as the circulation groove, a circulation groove 8 having a U-shaped cross section shown in FIG. 7 and a plurality of circulation grooves 9a to 9c engraved in the case 1 and the case 2 shown in FIG. 8 can also be adopted.

【0035】[0035]

【発明の効果】【The invention's effect】

(1)以上詳述したように、請求項1のプラスチック部
材の接合方法では、請求項1記載の構成を採用している
ため、プラスチック部材を高品質・高強度・安価に接合
することができる。すなわち、接合後のプラスチック部
材の不良品が減少し、設備費が低くて足りるため、接合
コストの低廉化を実現することができる。
(1) As described in detail above, in the method for joining plastic members according to the first aspect, since the configuration according to the first aspect is adopted, the plastic members can be joined with high quality, high strength, and low cost. . That is, since the number of defective plastic members after joining is reduced and the equipment cost is low, the joining cost can be reduced.

【0036】また、接合強度が十分に確保できるため、
接合後のプラスチック部材の接合代を小さくすることに
より、製品の見栄えを向上させることができる。 (2)請求項2の接合方法では、第1、第2接合面間で
材料の流動が深い範囲で生じ、特にプラスチック部材が
繊維強化品である場合に、第1、第2接合面間で繊維強
化がより行われやすいため、高い接合強度を得ることが
できる。
Further, since sufficient bonding strength can be secured,
The appearance of the product can be improved by reducing the joining margin of the plastic member after joining. (2) In the joining method according to claim 2, the material flows between the first and second joining surfaces in a deep range, and particularly when the plastic member is a fiber reinforced product, the first and second joining surfaces are joined. Since the fiber reinforcement is more likely to be performed, high joint strength can be obtained.

【0037】また、熱風による溶融と振動とを同時期に
行うため、作業時間の短縮化により、さらなる接合コス
トの低廉化を実現することができる。 (3)請求項3の接合方法においても、第1、第2接合
面間で材料の流動が深い範囲で生じ、特にプラスチック
部材が繊維強化品である場合に、第1、第2接合面間で
繊維強化がより行われやすいため、高い接合強度を得る
ことができる。
Further, since the melting and the vibration by the hot air are performed at the same time, the working time can be shortened, so that the bonding cost can be further reduced. (3) Also in the joining method according to claim 3, the flow of material occurs between the first and second joining surfaces in a deep range, and particularly when the plastic member is a fiber reinforced product, the first and second joining surfaces are joined. Since fiber reinforcement is more likely to be carried out, high joint strength can be obtained.

【0038】(4)請求項4の接合方法では、プラスチ
ック部材が繊維強化品である場合に、より高い接合強度
を得ることができる。
(4) In the joining method according to the fourth aspect, higher joining strength can be obtained when the plastic member is a fiber reinforced product.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1、2において接合せんとする各ケース
の斜視図である。
FIG. 1 is a perspective view of each case used as a joint in Examples 1 and 2. FIG.

【図2】実施例1におけるケースのフランジを示す一部
断面図である。
FIG. 2 is a partial cross-sectional view showing the flange of the case in the first embodiment.

【図3】実施例1におけるケースのフランジに係り、
(A)は一部平面図、(B)は一部側面図である。
FIG. 3 relates to the flange of the case in the first embodiment,
(A) is a partial plan view and (B) is a partial side view.

【図4】実施例1における熱風ガス圧及び振動速度と時
間との関係を示すタイムチャートである。
FIG. 4 is a time chart showing the relationship between hot air gas pressure, vibration speed, and time in Example 1.

【図5】実施例1で接合したケースの一部断面図であ
る。
5 is a partial cross-sectional view of the case joined in Example 1. FIG.

【図6】実施例2における熱風ガス圧及び振動速度と時
間との関係を示すタイムチャートである。
FIG. 6 is a time chart showing the relationship between hot air gas pressure, vibration speed, and time in Example 2.

【図7】他の実施例におけるケースのフランジを示す一
部断面図である。
FIG. 7 is a partial cross-sectional view showing a flange of a case according to another embodiment.

【図8】他の実施例におけるケースのフランジを示す一
部断面図である。
FIG. 8 is a partial cross-sectional view showing a flange of a case according to another embodiment.

【図9】従来の熱融着接合方法における断面図である。FIG. 9 is a cross-sectional view of a conventional heat fusion bonding method.

【符号の説明】[Explanation of symbols]

1、2…ケース(プラスチック部材) 1a、2a…フランジ(第1、2接合面) 3、8、9a、9b、9c…流通溝 1, 2 ... Case (plastic member) 1a, 2a ... Flange (first and second joint surfaces) 3, 8, 9a, 9b, 9c ... Flow groove

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】熱可塑性プラスチックを含有するプラスチ
ック部材に形成された互いに対面可能な第1接合面と第
2接合面とを接合するプラスチック部材の接合方法であ
って、 前記第1接合面及び前記第2接合面の少なくとも一方に
流通溝を刻設し、該第1接合面及び該第2接合面を加圧
しつつ対面させることにより該流通溝を対面方向で閉塞
した状態とし、この状態で該流通溝に前記熱可塑性プラ
スチックの融点を超える温度の熱風を流通させて該第1
接合面及び該第2接合面を融着することを特徴とするプ
ラスチック部材の接合方法。
1. A method of joining a plastic member, comprising: joining a first joining surface and a second joining surface, which are formed on a plastic member containing a thermoplastic and can face each other, to the first joining surface and the second joining surface. A flow groove is engraved on at least one of the second joint surfaces, and the first joint surface and the second joint surface are made to face each other while being pressed, whereby the flow groove is closed in the facing direction, and in this state, The hot air having a temperature higher than the melting point of the thermoplastic is circulated through the flow groove so that the first
A method for joining plastic members, characterized in that the joining surface and the second joining surface are fused together.
【請求項2】熱風を流通させつつ、第1接合面及び第2
接合面間に振動数が50Hz以下であって該第1接合面
及び該第2接合面に平行な横振動を与えて該第1接合面
及び該第2接合面の全部を溶融することにより、該第1
接合面及び該第2接合面を融着することを特徴とする請
求項1記載のプラスチック部材の接合方法。
2. A first joint surface and a second joint surface while circulating hot air.
A frequency of 50 Hz or less is applied between the joint surfaces to give a transverse vibration parallel to the first joint surface and the second joint surface to melt all of the first joint surface and the second joint surface, The first
The method for joining plastic members according to claim 1, wherein the joining surface and the second joining surface are fused together.
【請求項3】熱風を流通させることにより第1接合面及
び第2接合面の一部を溶融した直後、該第1接合面及び
該第2接合面間に振動数が100〜250Hzであって
該第1接合面及び該第2接合面に平行な横振動を与える
ことにより、該第1接合面及び該第2接合面を融着する
ことを特徴とする請求項1記載のプラスチック部材の接
合方法。
3. Immediately after melting a part of the first joint surface and the second joint surface by circulating hot air, a frequency between the first joint surface and the second joint surface is 100 to 250 Hz. The joining of plastic members according to claim 1, wherein the first joining surface and the second joining surface are fused by applying a lateral vibration parallel to the first joining surface and the second joining surface. Method.
【請求項4】横振動と同時に振幅が溶融深さ以下であっ
て第1接合面及び第2接合面に垂直な50Hz以下の縦
振動も与えることを特徴とする請求項2記載のプラスチ
ック部材の接合方法。
4. The plastic member according to claim 2, wherein the transverse vibration is simultaneously applied with a longitudinal vibration of 50 Hz or less, the amplitude of which is less than the melting depth and which is perpendicular to the first and second joint surfaces. Joining method.
JP33510293A 1993-12-28 1993-12-28 How to join plastic members Expired - Fee Related JP3169153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33510293A JP3169153B2 (en) 1993-12-28 1993-12-28 How to join plastic members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33510293A JP3169153B2 (en) 1993-12-28 1993-12-28 How to join plastic members

Publications (2)

Publication Number Publication Date
JPH07186263A true JPH07186263A (en) 1995-07-25
JP3169153B2 JP3169153B2 (en) 2001-05-21

Family

ID=18284800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33510293A Expired - Fee Related JP3169153B2 (en) 1993-12-28 1993-12-28 How to join plastic members

Country Status (1)

Country Link
JP (1) JP3169153B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997017189A1 (en) * 1995-11-08 1997-05-15 Alliedsignal Inc. Improved performance of vibration welded thermoplastic joints
EP0816053A3 (en) * 1996-07-05 1998-03-04 Star Micronics Co., Ltd. A method of ultrasonic welding for a resin case
WO1998023435A1 (en) * 1996-11-29 1998-06-04 Norsk Hydro Asa Process for connecting two objects
WO2001047691A1 (en) * 1999-12-23 2001-07-05 Honeywell International Inc. Frictionally welded thermoplastic articles having improved strength
JP2004042692A (en) * 2002-07-09 2004-02-12 Kinugawa Rubber Ind Co Ltd Weather strip for vehicle
FR2866690A1 (en) * 2004-02-25 2005-08-26 Hutchinson Branch fitting procedure for pipe with plastic outer layer uses plastic connecting cover on branch end sealed to pipe by vibration welding
EP2153977A3 (en) * 2008-08-11 2011-12-28 ElringKlinger AG Assembly with plastic sections welded together and method for their manufacture
JP2012153008A (en) * 2011-01-26 2012-08-16 Teijin Ltd Resin component jointing structure body
WO2013058086A1 (en) * 2011-10-21 2013-04-25 日本軽金属株式会社 Method for manufacturing lidded container and joining method
JP2013099778A (en) * 2011-10-21 2013-05-23 Nippon Light Metal Co Ltd Method for manufacturing container with lid
WO2013084963A1 (en) * 2011-12-06 2013-06-13 帝人株式会社 Method for manufacturing joint member
JP2013158914A (en) * 2012-02-01 2013-08-19 Toyota Motor Corp Welding structure and welding method
KR20140035411A (en) * 2011-05-23 2014-03-21 바스프 에스이 Frictional weld joint for an article comprising a thermoplastic material
CN104044266A (en) * 2013-03-12 2014-09-17 本田技研工业株式会社 Resin composite structure and method for producing the same
US9539758B2 (en) 2012-05-23 2017-01-10 Basf Se Frictional weld joint for an article comprising a thermoplastic material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013113737A1 (en) 2013-12-10 2015-06-11 Trelleborgvibracoustic Gmbh Air suspension component
DE102015100281A1 (en) 2015-01-09 2016-07-14 Trelleborgvibracoustic Gmbh Composite component and air spring component with such a composite component

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997017189A1 (en) * 1995-11-08 1997-05-15 Alliedsignal Inc. Improved performance of vibration welded thermoplastic joints
EP0816053A3 (en) * 1996-07-05 1998-03-04 Star Micronics Co., Ltd. A method of ultrasonic welding for a resin case
WO1998023435A1 (en) * 1996-11-29 1998-06-04 Norsk Hydro Asa Process for connecting two objects
US6447866B1 (en) 1999-12-23 2002-09-10 Honeywell International Inc. Frictionally welded thermoplastic articles having improved strength
US6726790B2 (en) 1999-12-23 2004-04-27 Basf Aktiengesellschaft Frictionally welded thermoplastic articles having improved strength
WO2001047691A1 (en) * 1999-12-23 2001-07-05 Honeywell International Inc. Frictionally welded thermoplastic articles having improved strength
JP2004042692A (en) * 2002-07-09 2004-02-12 Kinugawa Rubber Ind Co Ltd Weather strip for vehicle
FR2866690A1 (en) * 2004-02-25 2005-08-26 Hutchinson Branch fitting procedure for pipe with plastic outer layer uses plastic connecting cover on branch end sealed to pipe by vibration welding
EP1568469A3 (en) * 2004-02-25 2007-01-03 Hutchinson Method for branching a pipe on a conduit for transfering fluid and branched conduit
EP2153977A3 (en) * 2008-08-11 2011-12-28 ElringKlinger AG Assembly with plastic sections welded together and method for their manufacture
JP2012153008A (en) * 2011-01-26 2012-08-16 Teijin Ltd Resin component jointing structure body
JP2014516838A (en) * 2011-05-23 2014-07-17 ビーエーエスエフ ソシエタス・ヨーロピア Friction weld joints for articles made of thermoplastic materials
US9550348B2 (en) 2011-05-23 2017-01-24 Basf Se Frictional weld joint for an article comprising a thermoplastic material
EP2714401A4 (en) * 2011-05-23 2015-07-29 Basf Se Frictional weld joint for an article comprising a thermoplastic material
CN104093545A (en) * 2011-05-23 2014-10-08 巴斯夫欧洲公司 Frictional weld joint for an article comprising a thermoplastic material
KR20140035411A (en) * 2011-05-23 2014-03-21 바스프 에스이 Frictional weld joint for an article comprising a thermoplastic material
JP2013099778A (en) * 2011-10-21 2013-05-23 Nippon Light Metal Co Ltd Method for manufacturing container with lid
WO2013058086A1 (en) * 2011-10-21 2013-04-25 日本軽金属株式会社 Method for manufacturing lidded container and joining method
JPWO2013084963A1 (en) * 2011-12-06 2015-04-27 帝人株式会社 Manufacturing method of joining member, joining method of carbon fiber composite material, and joining member
WO2013084963A1 (en) * 2011-12-06 2013-06-13 帝人株式会社 Method for manufacturing joint member
JP2013158914A (en) * 2012-02-01 2013-08-19 Toyota Motor Corp Welding structure and welding method
US9539758B2 (en) 2012-05-23 2017-01-10 Basf Se Frictional weld joint for an article comprising a thermoplastic material
CN104044266A (en) * 2013-03-12 2014-09-17 本田技研工业株式会社 Resin composite structure and method for producing the same
JP2014172334A (en) * 2013-03-12 2014-09-22 Honda Motor Co Ltd Resin composite structure and method for manufacturing the same
CN104044266B (en) * 2013-03-12 2016-08-17 本田技研工业株式会社 Resin compounded structure and the method being used for manufacturing resin compounded structure

Also Published As

Publication number Publication date
JP3169153B2 (en) 2001-05-21

Similar Documents

Publication Publication Date Title
JP3169153B2 (en) How to join plastic members
EP2196303B1 (en) Process for producing fusion-bonded material
Troughton Handbook of plastics joining: a practical guide
Tsiangou et al. On the sensitivity of ultrasonic welding of epoxy-to polyetheretherketone (PEEK)-based composites to the heating time during the welding process
EP1240002B1 (en) Frictionally welded thermoplastic article and method for welding two thermoplastic workpieces
US9925717B2 (en) Method for connecting a surface-structured workpiece and a plastic workpiece
JPS60214931A (en) Bonding of different synthetic resin materials
JP2007313778A (en) Joining method of fiber-reinforced thermoplastic resin composite material
US9770863B2 (en) Systems and methods to reduce air pocket formation during welding
CN105745058A (en) Method for joining fibre-reinforced plastic material
US7200915B2 (en) Method for continuously joining a handrail for an escalator or moving walkway
US8399084B2 (en) Resistive implant welding for assemblies of plastic components
JP5827505B2 (en) Joining method of fiber reinforced thermoplastic resin
JPH09314669A (en) Bonding of resin parts
KR101804661B1 (en) Resin joined body, method of producing resin joined body, and vehicular structural body
CN113518699A (en) Method for producing fiber-reinforced resin product and core
JPS6153943B2 (en)
KR20180094891A (en) Method and apparatus for connecting fiber-reinforced webs
JP2018094778A (en) Method for producing composite molding
JPH03297629A (en) Manufacture of thermoplastic composite material structure
JPS6246621A (en) Joint of synthetic resin material
JPS63302023A (en) Welding method for long fiber reinforced thermoplastic resin component
DE69613992T2 (en) INCREASED RELIABILITY OF VIBRATION-WELDED THERMOPLASTIC CONNECTIONS
Jandali et al. Vibration welding of continuous-fiber thermoplastic matrix composites
JP2017100408A (en) Manufacturing method for bonded body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees