JPH07185234A - Method and apparatus for solid-liquid separation - Google Patents

Method and apparatus for solid-liquid separation

Info

Publication number
JPH07185234A
JPH07185234A JP5098714A JP9871493A JPH07185234A JP H07185234 A JPH07185234 A JP H07185234A JP 5098714 A JP5098714 A JP 5098714A JP 9871493 A JP9871493 A JP 9871493A JP H07185234 A JPH07185234 A JP H07185234A
Authority
JP
Japan
Prior art keywords
stock solution
raw liquid
primary
solid
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5098714A
Other languages
Japanese (ja)
Other versions
JP2691846B2 (en
Inventor
Yukihiko Nagao
幸彦 長尾
Takashi Ogawa
孝 小川
Toshiro Minami
俊郎 南
Yuji Yokoya
雄二 横谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP5098714A priority Critical patent/JP2691846B2/en
Publication of JPH07185234A publication Critical patent/JPH07185234A/en
Application granted granted Critical
Publication of JP2691846B2 publication Critical patent/JP2691846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the number of times of backwashing and to conduct efficiently stabilized separation by separating the raw liquid of primary loss removed of a high specific gravity portion into a small amount of the raw liquid of secondary concentration and a large amount of raw liquid of secondary loss by cross flow filtration carried out once. CONSTITUTION:The first electric valve 19, the first electromagnetic valve 29, and the fourth electromagnetic valve 38 are opened first, and raw liquid is fed to a cyclone 10 for liquid by driving a pump 17. The raw liquid is classified by centrifugal force so that the raw liquid of primary concentration containing a high specific gravity portion settles down. Besides, the raw liquid of primary loss containing a low specific gravity portion is led to an end of various passages 4 of a filtration module 1 from an overflow port 14 to be cross flow filtered. The raw liquid of secondary loss, associated with the cross flow filtration, is sent to relevant places from a filtrate chamber 7 through a raw liquid of secondary loss feed passage 31, and the raw liquid of secondary concentration is discharged through a raw liquid of secondary concentration discharge passage 39 into a bucket strainer 24, where the raw liquid and slurry are discharged respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、SS(Suspend
ed Solids;浮遊物質)を含む各種原液の分
離、精製、例えば洗浄に用いられた純水、加工機のクー
ラント又は地下水等のろ過、再生処理に使用される固液
分離方法及びその装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to SS (Suspend)
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-liquid separation method and apparatus used for separation and purification of various stock solutions containing ed Solids; suspended solids), for example, pure water used for cleaning, filtration of coolant or groundwater of a processing machine, and regeneration treatment.

【0002】[0002]

【従来の技術】従来、この種の固液分離方法としては、
分離プロセスの自動化等に対処するため、クロスフロー
ろ過が一般に行われている。クロスフローろ過は、非対
称構造等を有するセラミックスや高分子材料等からなる
筒状又はスパイラル状のフィルタを原液の循環経路に介
挿し、原液を膜面に沿って流動させながら、ろ過液(減
損原液)を膜面から垂直に流出させる固液分離方法であ
る。
2. Description of the Related Art Conventionally, as this type of solid-liquid separation method,
In order to cope with automation of the separation process and the like, cross flow filtration is generally performed. In cross-flow filtration, a cylindrical or spiral filter made of ceramics or polymer material having an asymmetric structure is inserted in the circulation path of the stock solution, and while the stock solution is flowing along the membrane surface, the filtrate (depleted stock solution) ) Is a solid-liquid separation method of vertically flowing out from the membrane surface.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
クロスフローろ過による固液分離方法では、SSによる
フィルタの目詰まりが生じるため、逆圧洗浄(逆洗)を
頻繁に行わなければならないと共に、濃縮倍率及びろ過
圧力が経時的に上昇する一方、ろ過流量が経時的に減少
する不具合があり、特にろ過最終時には、濃度等の異常
上昇を生じることがある。そこで、本発明は、逆洗回数
を低減し、かつ安定した分離を効率よく行い得る固液分
離方法及びその装置の提供を目的とする。
However, in the conventional solid-liquid separation method by cross-flow filtration, the filter is clogged by SS, so back pressure washing (back washing) must be performed frequently and the concentration is increased. While the magnification and the filtration pressure increase with time, there is a problem that the filtration flow rate decreases with time, and in particular, an abnormal increase in concentration or the like may occur at the final stage of filtration. Therefore, an object of the present invention is to provide a solid-liquid separation method and an apparatus therefor capable of reducing the number of backwashing steps and efficiently performing stable separation.

【0004】前記課題を解決するため、本発明の固液分
離方法は、SSを含む原液を遠心力により重比重分を含
む1次濃縮原液と低比重分を含む1次減損原液とに分級
しながら、上記1次減損原液をクロスフローろ過により
2次濃縮原液の流出量が1次減損原液の流入量より格段
に少なくなるようにして2次濃縮液と2次減損原液とに
分離する方法である。又、固液分離装置は、上記方法の
実施に供するもので、SSを含む原液を重比重分を含む
1次濃縮原液と低比重分を含む1次減損原液とに分級す
る液体サイクロンと、該液体サイクロンによって分級さ
れた1次減損原液をその流入量より2次濃縮原液の流出
量が格段に少なくなるようにしてクロスフローろ過する
ろ過モジュールとを備えているものである。上記固液分
離装置は、ろ過モジュールの一次側及び液体サイクロン
の内容積以上の逆洗打込み水量を吐出し可能な逆洗手段
を備えていることが望ましい。又、固液分離装置は、液
体サイクロンによって分級された1次濃縮原液からSS
を分離するバケットストレーナを備えていることが望ま
しい。
In order to solve the above problems, the solid-liquid separation method of the present invention classifies a stock solution containing SS into a primary concentrated stock solution containing a heavy specific gravity content and a primary impaired stock solution containing a low specific gravity content by centrifugal force. However, the above primary impaired stock solution is separated into a secondary concentrated solution and a secondary impaired stock solution by cross-flow filtration so that the outflow amount of the secondary concentrated stock solution is significantly smaller than the inflow amount of the primary impaired stock solution. is there. The solid-liquid separation device is used for carrying out the above method, and comprises a liquid cyclone for classifying a stock solution containing SS into a primary concentrated stock solution containing a heavy specific gravity content and a primary depleted stock solution containing a low specific gravity content, It is provided with a filtration module for cross-flow filtering the primary depleted stock solution classified by the liquid cyclone such that the outflow rate of the secondary concentrated stock solution is significantly smaller than the inflow rate. It is preferable that the solid-liquid separation device includes a primary side of the filtration module and a backwashing device capable of discharging a backwashing water amount equal to or more than the internal volume of the liquid cyclone. In addition, the solid-liquid separator uses SS from the primary concentrated stock solution classified by the hydrocyclone.
It is desirable to have a bucket strainer to separate the.

【0005】[0005]

【作用】上記第1、第2の手段においては、重比重分を
除去された1次減損原液が1回のクロスフローろ過で少
量の2次濃縮原液と多量の2次減損原液とに分離され
る。又、第3の手段においては、ろ過モジュールの目詰
まり要因となるゲル及び1次濃縮原液の系外への払い出
しが可能となる。更に、第4の手段においては、1次濃
縮原液からのSSの分離が可能となる。
In the above first and second means, the primary depleted stock solution from which the specific gravity is removed is separated into a small amount of secondary concentrated stock solution and a large amount of secondary depleted stock solution by one cross flow filtration. It In the third means, the gel and the primary concentrated stock solution, which cause the clogging of the filtration module, can be discharged to the outside of the system. Furthermore, in the fourth means, SS can be separated from the primary concentrated stock solution.

【0006】以下、本発明の実施例について図面を参照
して説明する。図1は本発明の固液分離装置の一実施例
を示すフロー図である。図中1はろ過モジュールで、こ
のろ過モジュール1は、例えば図2、図3に示すよう
に、両端にフランジ2を備えた円筒状のステンレス鋼製
のケーシング3を有しており、このケーシング3内に
は、軸方向(図2においては上下方向)へ貫通した多数
の通路4を有する六角柱状のセラミックスフィルタ5
が、両端のフランジ2に取り付けたリング状の支持金具
6等を介してケーシング3の筒壁との間にろ過液室7を
形成するように同軸的に嵌装されている。セラミックフ
ィルタ5は、高純度のアルミナセラミックスからなるも
ので、ろ過面となる各通路4の内側面から外側に行くに
つれて順次開気孔径が大きくなるような非対称膜構造を
有しており、その内面側の細開気孔径は0.1μmであ
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a flow chart showing an embodiment of the solid-liquid separation device of the present invention. In the figure, 1 is a filtration module, and this filtration module 1 has a cylindrical stainless steel casing 3 having flanges 2 at both ends, as shown in FIGS. 2 and 3, for example. A hexagonal columnar ceramics filter 5 having a large number of passages 4 passing through in the axial direction (vertical direction in FIG. 2).
However, they are coaxially fitted so as to form a filtrate chamber 7 with the cylindrical wall of the casing 3 via ring-shaped support fittings 6 attached to the flanges 2 at both ends. The ceramic filter 5 is made of high-purity alumina ceramics and has an asymmetric membrane structure in which the open pore diameter gradually increases from the inner side surface of each passage 4 serving as a filtering surface to the outer side. The diameter of the open pores on the side is 0.1 μm.

【0007】又、ケーシング3の両端部の筒壁には、前
記ろ過液室7と連通させたノズル8,9がそれぞれ取り
付けられている。上方のノズル8は、主としてろ過液の
出口として用いられ、下方のノズル8は、主として逆洗
のための洗浄液等の入口として用いられる。更に、ケー
シング3の一端(図2、図3においては下端)には、前
記支持金具6と一体に設けた液体サイクロン10が連設
されており、この液体サイクロン10は、円筒部11と
これに連ねた円錐部12とから構成されている。液体サ
イクロン10は、SSを含む原液を遠心力により、重比
重分を含んだ1次濃縮原液と低比重分を含んだ1次減損
原液とに分級するもので、円筒部11の筒壁に原液を接
線状に流入させる原液入口13が設けてあり、又、円筒
部11の上端開口部をオーバーフロー口14として前記
セラミックフィルタ5の各通路4の一端(図2において
は下端)と連通させている一方、円錐部12の下端開口
部をアンダーフロー口15としている。なお、セラミッ
クフィルタ5の各通路4の他端(図2において上端)と
連通したケーシング3の他端は、2次濃縮原液出口16
とされている。
Further, nozzles 8 and 9 communicating with the filtrate chamber 7 are attached to the cylindrical walls at both ends of the casing 3, respectively. The upper nozzle 8 is mainly used as an outlet for the filtrate, and the lower nozzle 8 is mainly used as an inlet for a cleaning liquid for backwashing. Further, at one end (lower end in FIG. 2 and FIG. 3) of the casing 3, a hydrocyclone 10 integrally provided with the support fitting 6 is continuously provided, and the hydrocyclone 10 is provided with a cylindrical portion 11 and this. It is composed of a conical portion 12 that is continuous. The hydrocyclone 10 classifies an undiluted solution containing SS by centrifugal force into a primary concentrated undiluted solution containing heavy specific gravity and a primary depleted undiluted solution containing low specific gravity. Is provided tangentially, and the upper end opening of the cylindrical part 11 is used as an overflow port 14 to communicate with one end (lower end in FIG. 2) of each passage 4 of the ceramic filter 5. On the other hand, the lower end opening of the conical portion 12 serves as an underflow port 15. The other end of the casing 3 that communicates with the other end (upper end in FIG. 2) of each passage 4 of the ceramic filter 5 has a secondary concentrated stock solution outlet 16
It is said that.

【0008】上記液体サイクロン10の原液入口13
は、原液を供給するポンプ17の吐出し口と原液供給路
18によって接続されており、原液供給路18には、第
1電動弁19が介挿されていると共に、第1電動弁19
の前後において圧力スイッチ20、第1圧力計21が分
岐接続されている。又、液体サイクロン10のアンダー
フロー口15は、第2電動弁22を介挿した1次濃縮原
液排出路23を介してバケットストレーナ24と接続さ
れている。バケットストレーナ24は、1次濃縮原液を
原液とスラリー分とに分離するためのもので、分離され
た原液、スラリー分を排出する原液出口25、ドレン口
26が設けられていると共に、スラリー分を搾り出して
バケットストレーナ24を洗浄するための、圧縮空気入
口27が設けられている。
The stock solution inlet 13 of the liquid cyclone 10
Is connected to the discharge port of the pump 17 for supplying the stock solution by the stock solution supply passage 18, and the stock solution supply passage 18 is provided with the first electric valve 19 and the first electric valve 19.
Before and after, the pressure switch 20 and the first pressure gauge 21 are branched and connected. Further, the underflow port 15 of the liquid cyclone 10 is connected to a bucket strainer 24 via a primary concentrated stock solution discharge passage 23 in which a second electric valve 22 is inserted. The bucket strainer 24 is for separating the primary concentrated stock solution into a stock solution and a slurry component. The separated stock solution, a stock solution outlet 25 for discharging the slurry content, and a drain port 26 are provided, and the slurry content is collected. A compressed air inlet 27 is provided for squeezing and cleaning the bucket strainer 24.

【0009】一方、ろ過モジュール1の一方のノズル8
には、第2圧力計28を分岐接続し、かつ第1電磁弁2
9及び流量計30をケーシング3側から順に介挿した第
2減損原液(ろ過液)送出路31が接続され、又、他方
のノズル9には、逆洗シリンダ32が接続されている。
逆洗シリンダ32は、セラミックフィルタ5の逆洗等の
ために第2減損原液を貯留するもので、ろ過モジュール
1の一次側、すなわち各通路4及び液体サイクロン10
の内容積以上の逆洗打込み水量を吐出し可能とする内容
積を有しており、第2電磁弁33を介挿した圧縮空気路
34によってコンプレッサ等の圧力源(図示せず)と接
続され、この圧縮空気路34には、第3電磁弁35を介
挿した排気路36が第2電磁弁33と逆洗シリンダ32
との間において分岐接続されている。そして、第2,第
3電磁弁33,35は、逆洗シリンダ32に付設したレ
ベルスイッチ37によって閉動作するように設けられて
いる。又、ろ過モジュール1の2次濃縮原液出口16
は、この2次濃縮原液出口16からの2次濃縮原液の流
出量が液体サイクロン10のオーバーフロー口14から
の1次減損原液の流入量より格段に少なくなるように制
限可能な第4電磁弁38を介挿した2次濃縮原液排出路
39によって前記バケットストレーナ24と接続されて
いる。なお、図1において40はろ過液室7と連通され
たバルブで、ろ過液室7の第2減損原液(ろ過液)をド
レンするためのものである。
On the other hand, one nozzle 8 of the filtration module 1
To the first solenoid valve 2
The second depleted stock solution (filtrate) delivery passage 31 in which the flowmeter 9 and the flowmeter 30 are inserted in this order from the casing 3 side is connected, and the backwash cylinder 32 is connected to the other nozzle 9.
The backwash cylinder 32 stores the second impaired stock solution for backwashing the ceramic filter 5 and the like, and is on the primary side of the filtration module 1, that is, each passage 4 and the hydrocyclone 10.
Has a volume capable of discharging the amount of backwashing water that is greater than or equal to the volume of the fluid of FIG. In the compressed air passage 34, an exhaust passage 36 having a third solenoid valve 35 interposed is provided with a second solenoid valve 33 and a backwash cylinder 32.
It is branched and connected between and. The second and third solenoid valves 33, 35 are provided so as to be closed by a level switch 37 attached to the backwash cylinder 32. In addition, the secondary concentrated stock solution outlet 16 of the filtration module 1
Is a fourth solenoid valve 38 that can be restricted so that the outflow amount of the secondary concentrated undiluted solution from the secondary concentrated undiluted solution outlet 16 is significantly smaller than the inflow amount of the primary depleted undiluted solution from the overflow port 14 of the hydrocyclone 10. It is connected to the bucket strainer 24 by a secondary concentrated stock solution discharge path 39 inserted through. In FIG. 1, reference numeral 40 denotes a valve communicating with the filtrate chamber 7 for draining the second undiluted stock solution (filtrate) in the filtrate chamber 7.

【0010】上記構成の固液分離装置を用いてSSを含
む原液を分離するには、先ず、第1電動弁19、第1電
磁弁29及び第4電磁弁38を開とし、ポンプ17を駆
動して原液を液体サイクロン10へ供給する。液体サイ
クロン10に流入した原液は、遠心力により分級されて
重比重分を含んだ1次濃縮原液がその下部に沈降される
一方、低比重分を含んだ1次減損原液がオーバーフロー
口14からろ過モジュール1の各種通路4の一端へ流入
されてクロスフローろ過される。このクロスフローろ過
に伴って、2次減損原液は、ろ過液室7から2次減損原
液送出路31を経て所要箇所へ送られる一方、2次濃縮
原液は、2次濃縮液排出路39を経てバケットストレー
ナ24へ排出され、ここで原液とスラリー分に分離され
て原液出口25及びドレーン口26からそれぞれ排出さ
れる。上記クロスフローろ過の経過により、ろ過モジュ
ール1のセラミックスフィルタ5のろ過効率が低下する
と、ポンプ17の駆動を停止し、第1電動弁19を閉と
し、かつ第2電動弁22を開とする共に、第2電磁弁3
3を開閉して圧力源から圧縮空気を逆洗シリンダ32に
供給し、逆洗シリンダ32内の2次減損原液をろ過液室
7へ流入させてろ過モジュール1の2次側へ脈圧をかけ
ることにより、セラミックフィルタ5を逆洗する。この
セラミックフィルタ5の逆洗によって、各通路4の内面
から剥離したゲルや液体サイクロン10内の1次濃縮原
液がバケットストレーナ24へ排出され、2次濃縮原液
の場合と同様に原液とスラリー分とに分離されて原液出
口25及びドレン口26から排出される。なお、バケッ
トストレーナ24は、その目詰まりを防止するため、メ
ンテナンス時等に圧縮空気入口27から圧縮空気を供給
し、SS等を搾り出して洗浄される。又、逆洗シリンダ
32への2次減損原液の流入は、ろ過モジュール1によ
るろ過操作時に行われるものである。
In order to separate an undiluted solution containing SS using the solid-liquid separation device having the above structure, first, the first electric valve 19, the first electromagnetic valve 29 and the fourth electromagnetic valve 38 are opened to drive the pump 17. Then, the stock solution is supplied to the liquid cyclone 10. The stock solution that has flowed into the hydrocyclone 10 is classified by centrifugal force, and the primary concentrated stock solution containing the heavy specific gravity is settled at the bottom of the stock solution, while the primary depleted stock solution containing the low specific gravity is filtered from the overflow port 14. It is introduced into one end of various passages 4 of the module 1 and is cross-flow filtered. Along with this cross-flow filtration, the secondary depleted stock solution is sent from the filtrate chamber 7 to the required location via the secondary depleted stock solution delivery path 31, while the secondary concentrated stock solution is passed through the secondary concentrated solution discharge path 39. It is discharged to the bucket strainer 24, where it is separated into the undiluted solution and the slurry, and is ejected from the undiluted solution outlet 25 and the drain port 26, respectively. When the filtration efficiency of the ceramics filter 5 of the filtration module 1 decreases due to the progress of the above cross-flow filtration, the driving of the pump 17 is stopped, the first electric valve 19 is closed, and the second electric valve 22 is opened. , Second solenoid valve 3
3 is opened and closed to supply compressed air from the pressure source to the backwash cylinder 32, the secondary depleted stock solution in the backwash cylinder 32 is caused to flow into the filtrate chamber 7, and pulse pressure is applied to the secondary side of the filtration module 1. By doing so, the ceramic filter 5 is backwashed. By backwashing the ceramic filter 5, the gel separated from the inner surface of each passage 4 and the primary concentrated undiluted solution in the hydrocyclone 10 are discharged to the bucket strainer 24, and the undiluted solution and the slurry are separated as in the case of the secondary concentrated undiluted solution. And is discharged from the stock solution outlet 25 and the drain port 26. Note that the bucket strainer 24 is cleaned by supplying compressed air from the compressed air inlet 27 and squeezing SS or the like at the time of maintenance or the like in order to prevent clogging of the bucket strainer 24. Further, the inflow of the secondary depleted stock solution into the backwash cylinder 32 is performed during the filtration operation by the filtration module 1.

【0011】ここで、上記固液分離装置(膜面積0.6
2 )を用い、20分サイクルの逆洗(圧縮空気圧5k
gf/cm2 、逆洗打込み水量2l)を行う共に、2次
濃縮原液量が1次減損原液量の1/5となるようにして
放電加工液の固液分離を約8時間行う一方、液体サイク
ロンを有しない従来のクロスフローろ過方式の固液分離
装置(膜面積0.6m2 )を用い、20分サイクルで逆
洗(パルス逆洗、圧縮空気圧5kgf/cm2 、逆洗打
込み水量0.2l)を行って同様の原液の固液分離を約
8時間行ったところ、それぞれの濃縮倍率は、図4に示
すようになり、又、ろ過圧力及びろ過流量は、図5に示
すようになった。従って、本発明に係る固液分離装置に
よれば、クロスフローの循環量に相当する量が1次濃縮
原液と1次減損原液の合計となり、減少し、ランニング
コストが1/9以下となった。また、従来のもののよう
に経時的な大きな変化はなく、濃縮倍率、ろ過圧力及び
ろ過流量を長時間に亘って安定化し得ることがわかる。
又、同様に固液分離装置(膜面積0.6m2 )を用い、
20分サイクルの逆洗(圧縮空気圧5kgf/cm2
逆洗打込み水量2l)を行うと共に、2次濃縮原液量が
1次減損原液量の1/5となるようにして放電加工液の
固液分離を約8時間行う一方、液体サイクロン10を有
しない上記固液分離装置を用い、同様の条件で放電加工
液の固液分離を約8時間行ったところ、ろ過圧力及びろ
過流量は、図6に示すようになった。従って、本発明に
係る固液分離装置のように、液体サイクロンを備えるこ
とにより、ろ過モジュール1での選択ろ過が可能とな
り、ろ過圧力及びろ過液量を長時間に亘って安定化し得
ることがわかる。更に、同様に固液分離装置(膜面積
0.6m2 )を用い、20分サイクルの逆洗(圧縮空気
圧5kgf/cm2 、逆洗打込み水量2l)を行うと共
に、2次濃縮原液量が1次減損原液の1/5となるよう
に放電加工液の固液分離を約8時間行う一方、2次濃縮
原液量が零となるように、すなわち第4電磁弁38を閉
として上記固液分離装置を用い、同様の逆洗サイクルで
放電加工液の固液分離を行ったところ、ろ過圧力及びろ
過流量は、図7に示すようになった。従って、本発明に
係る固液分離装置のように、2次濃縮原液の一部をバケ
ットストレーナ24へ排出することにより、逆洗インタ
ーバルを長くとることができ、又、濃縮率の調整が可能
となり(1サイクルでの濃縮率は、2次濃縮原液の流出
量と1次減損原液の流入量と相関関係がある。)、かつ
ろ過圧力及びろ過流量を長時間に亘って安定化し得るこ
とがわかる。
Here, the solid-liquid separation device (membrane area 0.6
m 2 ), backwashing for 20 minutes cycle (compressed air pressure 5 k
While performing gf / cm 2 and backwashing water amount 2l), solid-liquid separation of the electrical discharge machining liquid is performed for about 8 hours while the secondary concentrated stock solution amount is 1/5 of the primary depleted stock solution amount, while Using a conventional cross-flow filtration type solid-liquid separator (membrane area 0.6 m 2 ) without a cyclone, backwashing was carried out in a cycle of 20 minutes (pulse backwashing, compressed air pressure 5 kgf / cm 2 , backwashing injection water amount 0. When 2 l) was carried out and solid-liquid separation of the same stock solution was carried out for about 8 hours, the respective concentration ratios were as shown in FIG. 4, and the filtration pressure and the filtration flow rate were as shown in FIG. It was Therefore, according to the solid-liquid separation device of the present invention, the amount corresponding to the cross-flow circulation amount is the total of the primary concentrated stock solution and the primary impaired stock solution, and the running cost is reduced to 1/9 or less . Further, it can be understood that the concentration ratio, the filtration pressure and the filtration flow rate can be stabilized over a long period of time without causing a large change with time as in the conventional one.
Similarly, using a solid-liquid separator (membrane area 0.6 m 2 )
20 minutes cycle backwash (compressed air pressure 5 kgf / cm 2 ,
While performing backwashing water amount 2 l) and performing solid-liquid separation of the electric discharge machining liquid for about 8 hours so that the secondary concentrated stock solution amount becomes 1/5 of the primary depleted stock solution amount, the liquid cyclone 10 is not provided. When the solid-liquid separation of the electric discharge machining liquid was performed for about 8 hours using the above-mentioned solid-liquid separation device under the same conditions, the filtration pressure and the filtration flow rate were as shown in FIG. Therefore, as in the solid-liquid separation device according to the present invention, by providing a liquid cyclone, it becomes possible to perform selective filtration in the filtration module 1, and it is possible to stabilize the filtration pressure and the amount of filtrate over a long period of time. . Further, similarly, a solid-liquid separator (membrane area: 0.6 m 2 ) was used to perform backwashing in a 20-minute cycle (compressed air pressure: 5 kgf / cm 2 , backwashing water amount: 2 l) and the secondary concentrated stock solution amount was 1 The solid-liquid separation of the electric discharge machining liquid is performed for about 8 hours so as to be ⅕ of the next-depleted stock solution, while the secondary concentrated stock solution amount becomes zero, that is, the fourth solenoid valve 38 is closed to perform the solid-liquid separation. When the electric discharge machining liquid was subjected to solid-liquid separation in the same backwash cycle using the apparatus, the filtration pressure and the filtration flow rate were as shown in FIG. 7. Therefore, by discharging a part of the secondary concentrated stock solution to the bucket strainer 24 as in the solid-liquid separation device according to the present invention, the backwash interval can be extended and the concentration rate can be adjusted. (The concentration rate in one cycle has a correlation with the outflow amount of the secondary concentrated stock solution and the inflow amount of the primary depleted stock solution.) It can be seen that the filtration pressure and the filtration flow rate can be stabilized over a long period of time. .

【0012】なお、上記実施例において、非対称膜構造
のセラミックフィルタ5を有するろ過モジュール1を備
える場合について述べたが、ろ過モジュールは、セラミ
ックフィルタ5を有するものに限定されるものではな
く、例えば非対称膜又は復合膜構造の高分子フィルタを
有するものとしてもよい。又、液体サイクロンの前に、
カートリッジフィルタや活性炭フィルタを併設すいるよ
うにしてもよい。更に、2次減損原液送出路に、イオン
交換樹脂カートリッジを介挿するようにしてもよく、こ
のようにすることにより純水の再生用途を一層拡大する
ことができる。
In the above embodiment, the case where the filtration module 1 having the ceramic filter 5 having the asymmetric membrane structure is provided has been described, but the filtration module is not limited to the one having the ceramic filter 5, and for example, the asymmetrical structure is possible. It may have a polymer filter having a membrane or a composite membrane structure. Also, before the liquid cyclone,
A cartridge filter or an activated carbon filter may be installed together. Further, an ion-exchange resin cartridge may be inserted in the secondary depleted stock solution delivery path, which makes it possible to further expand the use of pure water for regeneration.

【0013】[0013]

【発明の効果】以上説明したように、本発明の固液分離
方法及びその装置によれば、重比重分を除去された1次
減損原液が1回のクロスフローろ過で少量の2次濃縮原
液と多量の2次減損原液とに分離されるので、逆洗回数
を低減してランニングコストを大幅に減少できると共
に、安定した分離を効率よく行うことができる。又、ろ
過モジュールの一次側及び液体サイクロンの内容積以上
の逆洗打込み水量を吐出し可能な逆洗手段を備えること
により、ろ過モジュールの目詰まり要因となるゲル及び
1次濃縮原液の払い出しが可能となるので、ろ過圧力及
びろ過流量を一層安定化することができる。更に、液体
サイクロンによって分級された1次濃縮原液からSSを
分離するバケットストレーナを備えることにより、1次
濃縮原液からのSSの分離が可能となるので、従来のよ
うに原液循環タンク等の洗浄を不要とすることができ
る。
As described above, according to the solid-liquid separation method and the apparatus thereof of the present invention, the primary depleted stock solution from which the specific gravity is removed is a small amount of the secondary concentrated stock solution by one cross-flow filtration. Since a large amount of secondary depleted stock solution is separated, the number of times of backwashing can be reduced, running costs can be greatly reduced, and stable separation can be efficiently performed. In addition, it is possible to discharge the gel and the primary concentrated stock solution, which cause the clogging of the filtration module, by providing the backwashing means that can discharge the backwashing water amount exceeding the inner volume of the filtration module and the liquid cyclone. Therefore, the filtration pressure and the filtration flow rate can be further stabilized. Furthermore, by providing a bucket strainer that separates SS from the primary concentrated stock solution that has been classified by the liquid cyclone, it is possible to separate SS from the primary concentrated stock solution. It can be unnecessary.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の固液分離装置の一実施例を示すフロー
図である。
FIG. 1 is a flow chart showing an embodiment of a solid-liquid separation device of the present invention.

【図2】図1に示す固液分離装置の要部の半断面正面図
である。
FIG. 2 is a front view, in half cross-section, of a main part of the solid-liquid separation device shown in FIG.

【図3】図1に示す固液分離装置の要部の側面図であ
る。
FIG. 3 is a side view of a main part of the solid-liquid separation device shown in FIG.

【図4】図1に示す固液分離装置の濃縮倍率の変化を従
来のものと比較して表わした説明図である。
FIG. 4 is an explanatory diagram showing a change in concentration ratio of the solid-liquid separator shown in FIG. 1 in comparison with a conventional one.

【図5】図1に示す固液分離装置と逆洗方法と異なる従
来のものとのろ過圧力とろ過流量を比較して表わした説
明図である。
FIG. 5 is an explanatory diagram showing a comparison of a filtration pressure and a filtration flow rate between the solid-liquid separation apparatus shown in FIG. 1 and a conventional one different from the backwashing method.

【図6】図1に示す固液分離装置と液体サイクロンの無
いものとのろ過圧力とろ過流量を比較して表わした説明
図である。
FIG. 6 is an explanatory diagram showing a comparison between the filtration pressure and the filtration flow rate of the solid-liquid separation device shown in FIG. 1 and one without a liquid cyclone.

【図7】図1に示す固液分離装置とこれを用いて全量ろ
過するものとの過圧力とろ過流量を比較して表わした説
明図である。
FIG. 7 is an explanatory diagram showing a comparison of the overpressure and the filtration flow rate of the solid-liquid separation device shown in FIG. 1 and a device for totally filtering using the solid-liquid separation device.

【符号の説明】[Explanation of symbols]

1 ろ過モジュール 10 液体サイクロン 19 第1電動弁 22 第2電動弁 24 バケットストレーナ 32 逆洗シリンダ 33 第2電磁弁 35 第3電磁弁 38 第4電磁弁 1 Filtration Module 10 Hydrocyclone 19 1st Motorized Valve 22 2nd Motorized Valve 24 Bucket Strainer 32 Backwash Cylinder 33 2nd Solenoid Valve 35 3rd Solenoid Valve 38 4th Solenoid Valve

フロントページの続き (72)発明者 横谷 雄二 愛知県刈谷市小垣江町南藤1番地 東芝セ ラミックス株式会社刈谷製造所内Front Page Continuation (72) Inventor Yuji Yokotani No. 1 Minamifuji, Ogakie-cho, Kariya city, Aichi Toshiba Ceramics Co., Ltd. Kariya factory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 SSを含む原液を遠心力により重比重分
を含む1次濃縮原液と低比重分を含む1次減損原液とに
分級しながら、上記1次減損原液をクロスフローろ過に
より2次濃縮原液の流出量が1次減損原液の流入量より
格段に少なくなるようにして2次濃縮原液と2次減損原
液とに分離することを特徴とする固液分離方法。
1. The primary depleted stock solution is subjected to secondary filtration by cross-flow filtration while classifying the stock solution containing SS into a primary concentrated stock solution containing a heavy specific gravity content and a primary depleted stock solution containing a low specific gravity content by centrifugal force. A solid-liquid separation method comprising separating a secondary concentrated stock solution and a secondary depleted stock solution such that the outflow rate of the concentrated stock solution is significantly smaller than the inflow rate of the primary depleted stock solution.
【請求項2】 SSを含む原液を重比重分を含む1次濃
縮原液と低比重分を含む1次減損原液とに分級する液体
サイクロンと、該液体サイクロンによって分級された1
次減損原液をその流入量より2次濃度原液の流出量が格
段に少なくなるようにしてクロスフローろ過するろ過モ
ジュールとを備えることを特徴とする固液分離装置。
2. A liquid cyclone for classifying an undiluted solution containing SS into a primary concentrated undiluted solution containing a heavy specific gravity and a primary depleted undiluted solution containing a low specific gravity, and 1 classified by the hydrocyclone.
A solid-liquid separation device, comprising: a filtration module for performing cross-flow filtration of the secondary-depleted stock solution so that the outflow rate of the secondary-concentrated stock solution is significantly smaller than the inflow rate thereof.
【請求項3】 前記ろ過モジュールの一次側及び液体サ
イクロンの内容積以上の逆洗打込み水量を吐出し可能な
逆洗手段を備えることを特徴とする請求項2記載の固液
分離装置。
3. The solid-liquid separation device according to claim 2, further comprising a backwashing device capable of discharging a backwashing-injected water amount equal to or more than the inner volume of the primary side of the filtration module and the liquid cyclone.
【請求項4】 前記液体サイクロンによって分級された
1次濃縮原液からSSを分離するバケットストレーナを
備えることを特徴とする請求項2又は3記載の固液分離
装置。
4. The solid-liquid separator according to claim 2, further comprising a bucket strainer for separating SS from the primary concentrated stock solution classified by the liquid cyclone.
JP5098714A 1993-04-01 1993-04-01 Solid-liquid separation method and apparatus Expired - Fee Related JP2691846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5098714A JP2691846B2 (en) 1993-04-01 1993-04-01 Solid-liquid separation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5098714A JP2691846B2 (en) 1993-04-01 1993-04-01 Solid-liquid separation method and apparatus

Publications (2)

Publication Number Publication Date
JPH07185234A true JPH07185234A (en) 1995-07-25
JP2691846B2 JP2691846B2 (en) 1997-12-17

Family

ID=14227193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5098714A Expired - Fee Related JP2691846B2 (en) 1993-04-01 1993-04-01 Solid-liquid separation method and apparatus

Country Status (1)

Country Link
JP (1) JP2691846B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011131191A (en) * 2009-12-25 2011-07-07 Toshiba Corp Membrane filtration system
CN104162308A (en) * 2014-06-30 2014-11-26 杭州恒力机械厂 A solid-liquid separator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62234515A (en) * 1986-04-01 1987-10-14 Kurita Water Ind Ltd Operating method for precoating type parallel flow filter device
JPS62294410A (en) * 1986-04-04 1987-12-21 ソシエテ テクニ−ク プ−ル レネルギ− アトミ−ク テクニカト−ム Method and device for treating fluid containing floating or suspended particle
JPS6443305A (en) * 1987-08-10 1989-02-15 Fuji Photo Film Co Ltd Cross flow type filtration process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62234515A (en) * 1986-04-01 1987-10-14 Kurita Water Ind Ltd Operating method for precoating type parallel flow filter device
JPS62294410A (en) * 1986-04-04 1987-12-21 ソシエテ テクニ−ク プ−ル レネルギ− アトミ−ク テクニカト−ム Method and device for treating fluid containing floating or suspended particle
JPS6443305A (en) * 1987-08-10 1989-02-15 Fuji Photo Film Co Ltd Cross flow type filtration process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011131191A (en) * 2009-12-25 2011-07-07 Toshiba Corp Membrane filtration system
CN104162308A (en) * 2014-06-30 2014-11-26 杭州恒力机械厂 A solid-liquid separator

Also Published As

Publication number Publication date
JP2691846B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
US4863617A (en) Process and apparatus for separating solid-liquid compositions
JPH07112185A (en) Waste water treating device and washing method therefor
US5500134A (en) Microfiltration system with swirling flow around filter medium
CA1272138A (en) Method and apparatus for enhancing the flux rate of cross-flow filtration systems
US5591347A (en) Single cell gas flotation separator with filter media
KR101402399B1 (en) Lower water collecting assembly of pressured membrane module water-purifying apparatus
JP2002336615A (en) Filtration equipment
JPH06190251A (en) Method and apparatus for treatment of water containing turbid component
JP2691846B2 (en) Solid-liquid separation method and apparatus
KR101392755B1 (en) Wastewater disposal plant using tubular membrane
JP2000317224A (en) Filter device, maintenance method thereof and filter
JPH07251041A (en) Membrane separation apparatus and washing method therefor
JPH08332327A (en) Solid-liquid separation method for slurry
JP2689065B2 (en) Separation module
JP3953673B2 (en) Membrane separator
JP4277589B2 (en) Upflow filter
CN214808891U (en) Filter assembly
KR100338525B1 (en) Underdrain mat system for rapid filtration
JP3282781B2 (en) Hollow fiber membrane filtration device
EP0121785A2 (en) Method and apparatus for enhancing the flux rate of cross-flow filtration systems
CN207957966U (en) A kind of used filter of infant industry water process
JPS61212308A (en) Filter device
JP2521350B2 (en) Cross flow filtration device
SU1161189A1 (en) Installation for purifying natural and effluent water
JPH026824A (en) Method and apparatus for filtration

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees