JPH0718447B2 - Fluid oscillation element - Google Patents

Fluid oscillation element

Info

Publication number
JPH0718447B2
JPH0718447B2 JP30413686A JP30413686A JPH0718447B2 JP H0718447 B2 JPH0718447 B2 JP H0718447B2 JP 30413686 A JP30413686 A JP 30413686A JP 30413686 A JP30413686 A JP 30413686A JP H0718447 B2 JPH0718447 B2 JP H0718447B2
Authority
JP
Japan
Prior art keywords
vortex chamber
pressure
vortex
fluid
jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30413686A
Other languages
Japanese (ja)
Other versions
JPS63158305A (en
Inventor
豊 高橋
良一 古閑
啓次郎 国本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30413686A priority Critical patent/JPH0718447B2/en
Publication of JPS63158305A publication Critical patent/JPS63158305A/en
Publication of JPH0718447B2 publication Critical patent/JPH0718447B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、洗浄水の噴射により、食器や人体を洗浄する
洗浄装置や散水装置の噴射ノズルに利用される流体発振
素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid oscillating element used for a jetting nozzle of a washing device or a sprinkler for washing dishes and a human body by jetting washing water.

従来の技術 従来の発振素子を第8図に示す。この素子は供給流路2
1、供給ノズル22、前記供給ノズル22下流両側に側壁2
3、24、側壁端部に設けられたつめ25、26と上下の出力
路27、28とで構成されている。
2. Description of the Related Art A conventional oscillator is shown in FIG. This element is the supply channel 2
1, the supply nozzle 22, the side wall 2 on both the downstream side of the supply nozzle 22
3, 24, and claws 25, 26 provided at the end portions of the side walls and upper and lower output paths 27, 28.

上記構成に於て供給流路21より流入した流体は供給ノズ
ル22より噴出する。この噴流は、つめ25、26により分流
される。いま仮に噴流が下側に曲げられたとすると、噴
流の一部は、下側のつめ25によって分流され、下流の渦
室へ流入し、下側の渦の回転エネルギー、内圧などが増
す。一方上側の渦室内の流体はつめ26と噴流との隙間か
ら流出し、噴流と共に出力路28へ導かれる。従って、上
側の渦の回転エネルギー、内圧などが減少し、下側の渦
の回転エネルギー、内圧などの増加と相まって噴流は、
反対側の上側に曲げられて、出力路28から流出する。以
上の状態が交互に繰返され、発振を起こすことになる。
In the above structure, the fluid flowing from the supply channel 21 is ejected from the supply nozzle 22. This jet is split by the pawls 25 and 26. If the jet flow is bent downward, a part of the jet flow is split by the lower pawl 25 and flows into the downstream vortex chamber, and the rotational energy and internal pressure of the lower vortex increase. On the other hand, the fluid in the upper vortex chamber flows out from the gap between the claw 26 and the jet flow and is guided to the output path 28 together with the jet flow. Therefore, the rotational energy of the upper vortex, the internal pressure, etc. are reduced, and the jet flow is coupled with the rotational energy of the lower vortex, the internal pressure, etc.
It is bent upward on the opposite side and flows out from the output path 28. The above states are repeated alternately, and oscillation is caused.

発明が解決しようとする問題点 上記従来の発振素子では、発振周波数は基本的には渦室
の容積により決まる。液体等の非圧縮性流体の場合には
低周波発振を行なわすことがこんなんである。特に、洗
浄装置のノズル等に使用する小形発振素子での低周波発
振は非常にむずかしい。
Problems to be Solved by the Invention In the above conventional oscillation element, the oscillation frequency is basically determined by the volume of the vortex chamber. In the case of incompressible fluid such as liquid, low frequency oscillation is performed. Particularly, it is very difficult to oscillate at low frequency in a small oscillating element used for a nozzle of a cleaning device.

問題点を解決するための手段 上記問題点を解決するために、自己発振の圧力変化を決
定する渦室部の1部に圧力に応じ変位する変位壁面を設
け、発振時に渦室容積が変化する構成とし、この容積変
化により発振周期を長くし、低周波発振を可能にしよう
とするものである。
Means for Solving the Problems In order to solve the above problems, a displacement wall surface that is displaced according to pressure is provided in a part of the vortex chamber portion that determines the pressure change of self-oscillation, and the vortex chamber volume changes during oscillation. With this structure, the volume change lengthens the oscillation period to enable low-frequency oscillation.

作用 素子の供給ノズルから噴射する噴流は、渦室で発生する
噴流両側の渦の回転エネルギーや内圧の差により偏向さ
れ、更に、渦室下流の出力路の側壁に付着し、噴出口よ
り噴出される。この噴流偏向は、渦室部において噴流の
1部がフィードバックされ、噴流左右の渦の回転エネル
ギーや内圧の差が交互に変えられ、自己発振を起こすの
である。この時の内圧変化を圧力により変位壁の効果で
遅らせることにより、交互に切換る時間を長くして、自
己発振周期を長くさせるのである。
The jet flow injected from the supply nozzle of the action element is deflected by the rotational energy of the vortices generated in the vortex chamber on both sides of the vortex chamber and the difference in internal pressure. It In this jet flow deflection, a part of the jet flow is fed back in the vortex chamber portion, the rotational energy of the vortices on the left and right sides of the jet flow and the difference in internal pressure are alternately changed, and self-oscillation occurs. By delaying the internal pressure change at this time by the effect of the displacement wall due to the pressure, the time for switching alternately is lengthened and the self-oscillation cycle is lengthened.

実 施 例 以下本発明の流体発振素子の一実施例を第1図〜第7図
に基づいて説明する。
Example An example of the fluid oscillating device of the present invention will be described below with reference to FIGS. 1 to 7.

第1図において、流体発振素子1は、素子基盤2、上板
3、パッキン4の積層構造で、素子基盤2には供給流路
管5が取り付けてある。
In FIG. 1, the fluid oscillating device 1 has a laminated structure of an element substrate 2, an upper plate 3 and a packing 4, and a supply flow channel pipe 5 is attached to the element substrate 2.

第2図は素子基盤2に形成された流路パターンを示し、
6は供給流路、7は供給ノズル、供給流路6は供給ノズ
ルに対し、直角に取り付けてある。8、9は供給ノズル
7の下流に位置し、外部に連通する大気連通口10、11を
有した渦室であり、渦室8,9の下流端は流体流出口とな
る絞り部12を形成している。13、14は絞り部12の下流両
側に設けた左右の側壁、15は前記側壁13、14の下流開口
端で形成された噴出口である。側壁13、14は噴射流の利
用目的に応じある程度の広がり角を有している。
FIG. 2 shows a flow path pattern formed on the element substrate 2,
6 is a supply channel, 7 is a supply nozzle, and the supply channel 6 is attached at a right angle to the supply nozzle. Reference numerals 8 and 9 denote vortex chambers located downstream of the supply nozzle 7 and having atmosphere communication ports 10 and 11 communicating with the outside. The downstream ends of the vortex chambers 8 and 9 form a throttle portion 12 serving as a fluid outlet. is doing. Reference numerals 13 and 14 denote left and right side walls provided on both sides of the downstream side of the throttle portion 12, and reference numeral 15 denotes an ejection port formed at the downstream opening end of the side walls 13 and 14. The side walls 13 and 14 have a divergence angle to some extent according to the purpose of using the jet flow.

第3図は上板3の平面図でパッキン4のずれを防止する
溝部を形成する段差16を有している。
FIG. 3 is a plan view of the upper plate 3 having a step 16 which forms a groove portion for preventing the packing 4 from being displaced.

第4図はパッキン4の平面図で、左右の渦室8、9部の
1部、又は全体に相当する位置に取付けられ、渦室の内
圧により変位する変位壁面17、18を有している。
FIG. 4 is a plan view of the packing 4, which has displacement wall surfaces 17 and 18 which are attached to a part of the left and right vortex chambers 8 and 9 or a position corresponding to the whole and are displaced by the internal pressure of the vortex chamber. .

第5図はパッキン4の変位壁面17、18の断面を示し、変
位壁面17、18はパッキン4の他の部分に対し薄肉構造に
なっている。
FIG. 5 shows a cross section of the displacement wall surfaces 17 and 18 of the packing 4, and the displacement wall surfaces 17 and 18 have a thin structure with respect to the other parts of the packing 4.

第6図、第7図は素子の作動状態を示し、Fiは主噴流、
Foは噴出流、VL.VRは主噴流により誘引され渦室8、9
内に発生する渦である。第7図19、20は変位壁面17、18
が渦室圧により変位したときの状態を示す。
6 and 7 show the operating state of the element, Fi is the main jet,
Fo is the jet flow and V L .V R is attracted by the main jet and the vortex chambers 8 and 9
It is a vortex that occurs inside. 7, 19 and 20 are the displacement wall surfaces 17 and 18.
Shows the state when is displaced by the vortex chamber pressure.

上記構成に基づく作動について説明する。The operation based on the above configuration will be described.

供給流路6に流入した流体は、供給ノズル7から渦室
8、9部へ噴出する。この噴射流は左右の渦室8、9の
圧力差により偏向される。今仮に、左側の渦室8の圧力
が低く、右側の渦室9の圧力が高いと仮定する。この場
合主噴流Fiは左側に偏向され、絞り部12の左側に当り、
更に、出力路の左側の側壁13に付着偏向されて、噴出口
15から噴出する(第6図Fo)。この時、絞り部に当たり
分流した1部の流れは左側渦室8の壁に沿って流れ渦VL
を形成する。この渦VLは渦室8の圧力を徐々に高める。
The fluid that has flowed into the supply passage 6 is ejected from the supply nozzle 7 into the vortex chambers 8 and 9. This jet flow is deflected by the pressure difference between the left and right vortex chambers 8 and 9. Suppose now that the pressure in the left vortex chamber 8 is low and the pressure in the right vortex chamber 9 is high. In this case, the main jet Fi is deflected to the left and hits the left side of the throttle unit 12,
Further, it is adhered and deflected to the left side wall 13 of the output passage,
Eject from 15 (Fig. 6 Fo). At this time, a part of the flow that splits into the narrowed portion flows along the wall of the left vortex chamber 8 and the vortex V L
To form. This vortex V L gradually increases the pressure in the vortex chamber 8.

他方、右側の渦室9の流体は噴流に誘引され噴流と共に
排出され、渦室内の圧力は低下する。この圧力低下が進
み右側の渦室圧が、左側の渦室圧より低くなると渦室差
圧として、右側が左側より低くなる。この渦室間の差圧
により、左側に偏向されていた流れは右側に偏向され
る。右側偏向が完了すると、前記左側偏向時に説明した
と同じ動作が右側偏向時にも起こる。このような偏向動
作が繰返されて自己発振が起こる。一方、パッキン4に
設けられた変位壁面は、左側偏向で左側渦室8の圧力が
低く、右側渦室9の圧力が高い場合は、左側変位壁が第
7図点線19の位置に、右側変位壁が第7図実線18の位置
となる。この結果、各渦室8、9の容積が変化したこと
になり、この変化に応じ渦室内の圧力変化時間が長くな
って、自己発振周期が長くなる。
On the other hand, the fluid in the vortex chamber 9 on the right side is attracted to the jet flow and discharged together with the jet flow, and the pressure in the vortex chamber drops. When this pressure drop progresses and the right vortex chamber pressure becomes lower than the left vortex chamber pressure, the right side becomes lower than the left side as a vortex chamber differential pressure. Due to the pressure difference between the vortex chambers, the flow deflected to the left is deflected to the right. When the right-side deflection is completed, the same operation as described for the left-side deflection also occurs during the right-side deflection. Such deflection operation is repeated and self-oscillation occurs. On the other hand, when the pressure in the left side vortex chamber 8 is low and the pressure in the right side vortex chamber 9 is high due to leftward deflection, the displacement wall surface provided on the packing 4 moves the left side displacement wall to the position of dotted line 19 in FIG. The wall is at the position shown by the solid line 18 in FIG. As a result, the volumes of the vortex chambers 8 and 9 are changed, and the change time of the pressure in the vortex chamber becomes longer in accordance with this change, and the self-oscillation cycle becomes longer.

大気連通口10、11では、渦室の圧力が大気圧より低い場
合には大気が渦室に流入し、逆に渦室の圧力が大気圧よ
り高くなると、渦室内の気液混合流体が大気中へ流出す
る。従って、渦室の圧力変化速度は主噴流で誘引排出さ
れる液体流量と渦室に流入する大気流量との割合で決ま
る。上記現象による連通口からの大気の流入は噴流によ
る誘引排出作用による渦室圧低下を遅くすることになっ
て、発振周期が長くなる。
At the air communication ports 10 and 11, when the pressure in the vortex chamber is lower than atmospheric pressure, the air flows into the vortex chamber, and when the pressure in the vortex chamber becomes higher than atmospheric pressure, the gas-liquid mixed fluid in the vortex chamber becomes atmospheric. Drains into. Therefore, the pressure change speed of the vortex chamber is determined by the ratio of the flow rate of the liquid that is attracted and discharged by the main jet and the flow rate of the atmosphere that flows into the vortex chamber. The inflow of the atmosphere from the communication port due to the above phenomenon delays the decrease in the vortex chamber pressure due to the induced discharge action by the jet flow, and the oscillation cycle becomes longer.

この連通口の作用とパッキンの変位との相乗効果により
自己発振の安定性が促進される。
The stability of self-oscillation is promoted by the synergistic effect of the action of this communication port and the displacement of the packing.

発明の効果 1. 以上のように、フィードバック流路等の信号路を有
しない流路構成であるため、流路がシンプルとなる。そ
のため、信号路のつまりによるトラブルがなく、作動が
安定すると共に、素子製造が容易となる。
EFFECTS OF THE INVENTION 1. As described above, since the flow channel configuration does not have a signal path such as a feedback flow channel, the flow channel is simple. Therefore, there is no trouble due to the clogging of the signal path, the operation is stable, and the element is easily manufactured.

2. 噴流の発振周期が長い、低周波発振が可能になるこ
とにより、噴流の側壁への付着が確実となって、噴流の
拡散が少い発振噴流となる。この結果、洗浄等に使用し
た場合、洗浄効果が高まる。
2. Low-frequency oscillation with a long jet oscillation cycle ensures that the jet adheres to the side wall, resulting in an oscillating jet with less jet diffusion. As a result, when used for cleaning or the like, the cleaning effect is enhanced.

3. パッキンの1部を変位壁とするため、部品の共用化
ができ、信頼性が向上すると共に、低コストとなる。
3. Since a part of the packing is used as a displacement wall, parts can be shared, reliability is improved, and cost is reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す流体発振素子の外観斜
視図、第2図は同流体発振素子の流路パターン図、第3
図は同流体発振素子上板の平面図、第4図は同流体発振
素子パッキンの平面図、第5図は同発振素子パッキンの
断面図、第6図は同流体発振素子の作動を示す状態図、
第7図は同流体発振素子の作動状態を示すパッキンの断
面図、第8図は従来の発振素子の流路パターン図であ
る。 4……パッキン、6……供給流路、7……供給ノズル、
8、9……渦室、10、11……大気連通口、13、14……側
壁、15……噴出口、17、18……変位壁面。
FIG. 1 is an external perspective view of a fluid oscillating device showing an embodiment of the present invention, FIG. 2 is a flow path pattern diagram of the same fluid oscillating device, and FIG.
FIG. 4 is a plan view of the upper plate of the fluid oscillating device, FIG. 4 is a plan view of the packing of the fluid oscillating device, FIG. 5 is a sectional view of the packing of the oscillating device, and FIG. 6 is a state showing the operation of the fluid oscillating device. Figure,
FIG. 7 is a sectional view of a packing showing an operating state of the fluid oscillating device, and FIG. 8 is a flow path pattern diagram of a conventional oscillating device. 4 ... packing, 6 ... supply channel, 7 ... supply nozzle,
8, 9 ... Vortex chamber, 10, 11 ... Atmosphere communication port, 13, 14 ... Side wall, 15 ... Jet port, 17, 18 ... Displacement wall surface.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】上流から下流へ供給流路、供給ノズル、供
給ノズル下流に左右の渦室、前記左右の渦室に設けた外
部に連通する大気連通口、渦室の下流に位置し左右の側
壁よりなる出力路と、前記渦室の一部を圧力に応じ変位
する変位壁面とから構成した流体発振素子。
1. A supply flow path from upstream to downstream, a supply nozzle, left and right vortex chambers downstream of the supply nozzle, an atmosphere communication port communicating with the outside provided in the left and right vortex chambers, and a left and right vortex chambers located downstream of the vortex chambers. A fluid oscillating device comprising an output path formed of a side wall and a displacement wall surface that displaces a part of the vortex chamber according to pressure.
【請求項2】変位壁面はシール用パッキンの一部に薄肉
部を設けた特許請求の範囲第1項記載の流体発振素子。
2. The fluid oscillating device according to claim 1, wherein a thin wall portion is provided on a part of the packing for the displacement wall surface.
JP30413686A 1986-12-19 1986-12-19 Fluid oscillation element Expired - Lifetime JPH0718447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30413686A JPH0718447B2 (en) 1986-12-19 1986-12-19 Fluid oscillation element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30413686A JPH0718447B2 (en) 1986-12-19 1986-12-19 Fluid oscillation element

Publications (2)

Publication Number Publication Date
JPS63158305A JPS63158305A (en) 1988-07-01
JPH0718447B2 true JPH0718447B2 (en) 1995-03-06

Family

ID=17929473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30413686A Expired - Lifetime JPH0718447B2 (en) 1986-12-19 1986-12-19 Fluid oscillation element

Country Status (1)

Country Link
JP (1) JPH0718447B2 (en)

Also Published As

Publication number Publication date
JPS63158305A (en) 1988-07-01

Similar Documents

Publication Publication Date Title
US5971301A (en) "Box" oscillator with slot interconnect
US4838091A (en) Fludic oscillator flowmeters
JP2017529493A (en) Improved three-jet island fluid oscillator circuit, method and nozzle assembly
US3444879A (en) Fluid pulsed oscillator
JP2017108830A (en) Spout apparatus
JP2007112383A (en) Vehicular washer nozzle and vehicular washer device
JPH0718447B2 (en) Fluid oscillation element
JP2906559B2 (en) Fluid oscillation nozzle
JP6674632B2 (en) Water spouting device
EP3834947A1 (en) Alternating water delivery device
JPS63152703A (en) Fluid oscillating element
JPH0810003B2 (en) Fluid oscillation element
JPH06105084B2 (en) Two-phase fluid oscillator
JPH0535282B2 (en)
JPH0535281B2 (en)
JPH0641766B2 (en) Two-phase fluid oscillator
JPH0347905B2 (en)
JPH0463251B2 (en)
JPS63152704A (en) Fluid oscillating element
JPH0720564B2 (en) Fluid oscillation element nozzle
JPH0720563B2 (en) Fluid oscillation element nozzle
JPH03186603A (en) Fluid vibrating nozzle
CN218060607U (en) Water outlet mechanism and water outlet device
JPH038458A (en) Fluid oscillating element
JP2520188Y2 (en) Fluidic flow meter

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term