JPS63152704A - Fluid oscillating element - Google Patents

Fluid oscillating element

Info

Publication number
JPS63152704A
JPS63152704A JP30091286A JP30091286A JPS63152704A JP S63152704 A JPS63152704 A JP S63152704A JP 30091286 A JP30091286 A JP 30091286A JP 30091286 A JP30091286 A JP 30091286A JP S63152704 A JPS63152704 A JP S63152704A
Authority
JP
Japan
Prior art keywords
jet
vortex
vortex chamber
oscillation
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30091286A
Other languages
Japanese (ja)
Inventor
Yutaka Takahashi
豊 高橋
Ryoichi Koga
良一 古閑
Keijiro Kunimoto
国本 啓次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30091286A priority Critical patent/JPS63152704A/en
Publication of JPS63152704A publication Critical patent/JPS63152704A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable oscillation to be securely produced, by causing an adhesion phenomenon of jet flow on the jet outlet side wall parts on the downstream side of a vortex chamber. CONSTITUTION:Gas introducing ports 10, 11 are provided in upper and lower vortex chambers 8, 9, and the downstream end of these chambers is made to be a throttle part 12. And, on both sides situated on the downstream side of the throttle part 12, side walls 13, 14 are provided, and at the downstream open end of the side walls 13, 14, a jet port 15 is formed. Further, the side walls 13, 14 are arranged so as to have some amount of setback 16, 17 to the throttle part 12, facilitating the occurrence of low-pressure vortexes between the side walls 13, 14 and jet flow. By this constitution, the deviation of flow becomes very strong, thus the oscillation can be securely produced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、洗浄水の噴射により、食器や人体を洗浄する
洗浄装置や散水装置の噴射ノズルに利用される流体発振
素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a fluid oscillation element used in a spray nozzle of a washing device or a water spray device that washes tableware or the human body by spraying washing water.

従来の技術 従来の発振素子を第6図に示す。この素子は供給流路1
8、供給ノズル19、前記供給ノズル19下流両側に側
壁20.21、側壁端部に設けられたつめ22.23と
上下の出力路24.25とで構成されている。
Prior Art A conventional oscillation element is shown in FIG. This element is the supply channel 1
8. The supply nozzle 19 is composed of side walls 20.21 on both sides downstream of the supply nozzle 19, pawls 22.23 provided at the ends of the side walls, and upper and lower output paths 24.25.

上記構成に放て供給流路18より流入した流体は供給ノ
ズル19より噴出する。この噴流は、つめ22.2aに
より分流される。いま仮に噴流が下側に曲げられたとす
ると、噴流の一部は、下側のつめ22によって分流され
、下側の渦室へ流入し、下側の渦の回転エネルギー、内
圧などが増す。
The fluid that flows into the above-mentioned configuration from the supply channel 18 is ejected from the supply nozzle 19. This jet is divided by a pawl 22.2a. If the jet is now bent downward, a portion of the jet is divided by the lower pawl 22 and flows into the lower vortex chamber, increasing the rotational energy, internal pressure, etc. of the lower vortex.

一方上側の渦室内の流体はつめ23と噴流との隙間から
流出し、噴流と共に出力路24へ専かれる。
On the other hand, the fluid in the upper vortex chamber flows out from the gap between the pawl 23 and the jet, and is directed to the output path 24 together with the jet.

従って、上側の渦の回転エネルギー、内圧などが減少し
、下側の渦の回転エネルギー、内圧などの増加と相まっ
て噴流は、反対側の上側に曲げられて、出力路25から
流出する。以上の状態が交互に繰返され、発振を起すこ
とになる。
Therefore, the rotational energy, internal pressure, etc. of the upper vortex are reduced, and combined with the increase in the rotational energy, internal pressure, etc. of the lower vortex, the jet is bent upward on the opposite side and flows out from the output path 25. The above conditions are repeated alternately, causing oscillation.

上記従来の発振素子では、供給ノズルから噴出し′fc
−流は、渦室部−で発生する渦によ′°す、エネlレギ
ー損失を伴うと共に、噴流が乱される。その結果、出力
路から噴出する噴流の収束性が弱まり、噴流の単位面積
当たりの運動量が低下する等の欠点を有していた。
In the above-mentioned conventional oscillation element, the ejection from the supply nozzle 'fc
The flow is accompanied by energy loss due to the vortices generated in the vortex chamber, and the jet stream is disturbed. As a result, the convergence of the jet flow ejected from the output path is weakened, resulting in disadvantages such as a decrease in momentum per unit area of the jet flow.

発明が解決しようとする問題点 上記問題点を解決するために、渦室下流の噴出口側壁部
で噴流の付着現象を生じさせ、噴射流の拡散を抑えると
共に、噴流の揺動を断続的にし、噴出する噴流の単位面
積当たりの運動量を高めようとするものである。
Problems to be Solved by the Invention In order to solve the above-mentioned problems, an adhesion phenomenon of the jet flow is caused on the side wall of the jet outlet downstream of the vortex chamber, and the diffusion of the jet flow is suppressed, and the oscillation of the jet flow is made intermittent. , which aims to increase the momentum per unit area of the ejected jet.

作   用 素子の供給ノズルから噴射する噴流は、渦室で発生する
噴流両側の渦の回転エネルギーや内圧の差により偏向さ
れ、更に、渦室下流の噴出口側壁部で噴流の付着現象を
起し、噴出口より噴射される。この噴流の偏向は、渦峯
部において主噴流の一部がフィードバックされ、噴流左
右の渦の回転エネルギーや内圧の差が交互に変えられ、
自己発振を起すのである。
The jet stream ejected from the supply nozzle of the working element is deflected by the rotational energy and internal pressure difference between the vortices on both sides of the jet generated in the vortex chamber, and furthermore, the jet stream adheres to the side wall of the jet outlet downstream of the vortex chamber. , is injected from the nozzle. This jet deflection is achieved by feeding back a part of the main jet at the vortex ridge, alternating the difference in rotational energy and internal pressure between the vortices on the left and right sides of the jet.
This causes self-oscillation.

実施例 以下本発明の流体発振素子の一実施例を第1図−第5図
に基づいて説明する。
EXAMPLE An example of the fluid oscillation device of the present invention will be described below with reference to FIGS. 1 to 5.

第1図において、流体発振素子1は素子基盤2、上板3
、パツキン4の積層構造で、素子基盤2には供給流路管
5が取り付けである。
In FIG. 1, a fluid oscillation element 1 includes an element substrate 2, an upper plate 3,
, a packing 4, and a supply channel pipe 5 is attached to the element substrate 2.

第2図は素子基盤2に形成された流路パターンを示し、
6は供給流路、7は供給ノズル、供給流路6は、供給ノ
ズル7に対し、直角に取シ付けである。8.9は供給ノ
ズル7の下流に位置し外部に連通ずる気体導入口10.
11を有し下流端が絞り部12形状の上下の渦室、13
.14は絞り部12の下流両側に設けた側壁、15は前
記側壁13.14の下流開口端で形成された噴出口であ
る。又、側壁13.14は、絞り部12に対しセットバ
ック量16.17を有し配設され、側壁と噴流間での低
圧渦の発生を容易にしている。
FIG. 2 shows a flow path pattern formed on the element substrate 2,
6 is a supply channel, 7 is a supply nozzle, and the supply channel 6 is attached at right angles to the supply nozzle 7. 8.9 is a gas inlet 10.9 located downstream of the supply nozzle 7 and communicating with the outside.
11 and upper and lower vortex chambers having a downstream end shaped like a constriction part 12;
.. Reference numeral 14 indicates a side wall provided on both downstream sides of the throttle portion 12, and reference numeral 15 indicates an ejection port formed at the downstream opening end of the side wall 13.14. Furthermore, the side walls 13,14 are arranged with a setback amount of 16,17 with respect to the constriction portion 12, facilitating the generation of low pressure vortices between the side walls and the jet.

第3図、第4図、第5図は素子の作動状態を示し、Fは
主噴流、Fiは噴出流、VL% vuは主噴流によシ誘
引され渦室8.9内に発生する渦、AL、Au は噴流
の流体巻込み作用により噴流と付着壁13.14間に発
生する低圧渦である。
Figures 3, 4, and 5 show the operating states of the element, where F is the main jet flow, Fi is the jet flow, and VL% vu is the vortex generated in the vortex chamber 8.9 induced by the main jet flow. , AL, Au are low-pressure vortices generated between the jet and the attached wall 13, 14 due to the fluid entrainment action of the jet.

上記構成に基づく作動について説明する。The operation based on the above configuration will be explained.

供給流路6に流入した液体は供給流路から供給ノズル7
へ流入する。この噴射流は渦室8.9の上下の圧力差に
より偏向される。今仮に、下側の渦室8の圧力が低く、
上側の渦室9の圧力が高いと仮定する。主噴流Fiは下
側に傾き、下側の絞り部に当り、更に、セットバック部
で付着渦ALを形成し下側壁に付着し下側に偏向されて
、噴出口15から噴出する(第3図FO1)。この時、
絞り部に当たり分流した1部の流れは下側の渦室8の壁
に沿って流れ、渦VLを形成する。
The liquid flowing into the supply channel 6 is transferred from the supply channel to the supply nozzle 7.
flows into. This jet stream is deflected by the pressure difference above and below the vortex chamber 8.9. Now, suppose the pressure in the lower vortex chamber 8 is low,
Assume that the pressure in the upper vortex chamber 9 is high. The main jet flow Fi tilts downward, hits the lower constriction section, further forms an attached vortex AL at the setback section, adheres to the lower wall, is deflected downward, and is ejected from the ejection port 15 (third Figure FO1). At this time,
A portion of the flow that is split upon hitting the constriction portion flows along the wall of the lower vortex chamber 8, forming a vortex VL.

他方、上側の渦室9の空気は噴流に誘引され噴流と共に
排出され、渦室9の圧力は下る。この圧力低下が進み上
側の圧力が下側の圧力より低くなると渦室差圧は下側が
高く、上側は低くなる。この渦室間の差圧により、下側
に偏向されていた流れは上側に偏向され、第4図に示す
中間点を通り、更に、第5図に示すように、上側のセッ
トバック部17で付着渦Auを形成し、上側壁14に付
着して上側に偏向されて噴出口15から噴出する。
On the other hand, the air in the upper vortex chamber 9 is attracted by the jet and discharged together with the jet, and the pressure in the vortex chamber 9 decreases. As this pressure decrease progresses and the pressure on the upper side becomes lower than the pressure on the lower side, the vortex chamber differential pressure becomes higher on the lower side and lower on the upper side. Due to this pressure difference between the vortex chambers, the flow that had been deflected downward is deflected upward, passes through the midpoint shown in FIG. 4, and then reaches the upper setback section 17 as shown in FIG. An attached vortex Au is formed, which adheres to the upper wall 14, is deflected upward, and is ejected from the ejection port 15.

以下、下側偏向の場合に説明したと同じ動作が下側偏向
時にも起こる。このような偏向動作が繰返されて自己発
振が起こる。特に、上記作動では、渦室で発生した差圧
により偏向された噴流を更に、絞り部下流で低圧渦を発
生させ、噴流の偏向を拡大させると共に、偏向を強固な
ものにしている。
Hereinafter, the same operation as described in the case of lower deflection occurs also during lower deflection. Such deflection operations are repeated and self-oscillation occurs. Particularly, in the above operation, the jet flow deflected by the pressure difference generated in the vortex chamber further generates a low-pressure vortex downstream of the constriction part, thereby expanding the deflection of the jet flow and making the deflection stronger.

また、この発振の周波数、発振の安定性は、渦室と大気
との連通口10.11の特性により大きく影響される。
Further, the frequency of this oscillation and the stability of the oscillation are greatly influenced by the characteristics of the communication port 10.11 between the vortex chamber and the atmosphere.

この連通口の開口面積、渦室白描と開口位置との関係に
より、発振の周波数、安定性を制御することができる。
The frequency and stability of oscillation can be controlled by the relationship between the opening area of the communication port, the white outline of the vortex chamber, and the opening position.

発明の効果 1、以上のように、フィードバック流路等の信号路を有
しない流路構成であるため、流路がシングルとなる。そ
のため、信号路のつまりによるトラブルがなく、作動が
安定すると共に、素子製造が容易となる。
Effect 1 of the invention: As described above, since the flow path configuration does not have a signal path such as a feedback flow path, there is a single flow path. Therefore, there is no trouble caused by clogging of the signal path, the operation is stable, and the device manufacturing is facilitated.

2、渦室の偏向に加え、絞り部下流の低圧渦付着を利用
しているため、偏向が非常に強固なものになる。従って
、発振が確実となる。また、側壁の付着後の噴流飛散化
防止作用により、噴射流の衝突力低下が防止できる。
2. In addition to the deflection of the vortex chamber, the low-pressure vortex adhesion downstream of the constriction part is utilized, so the deflection is extremely strong. Therefore, oscillation is ensured. In addition, the effect of preventing jet flow from scattering after adhesion of the side wall makes it possible to prevent a drop in the collision force of the jet flow.

3、噴出流は誘引された空気の作用により、発振が安定
すると共に、主噴流の乱れ作用が加わり、流れの断続化
が促進され、粒子状に成長する。その結果、噴流の衝突
力が高まり洗浄効果が向上する。
3. The oscillation of the jet flow becomes stable due to the action of the attracted air, and the turbulent action of the main jet flow is added, promoting the discontinuation of the flow and growing into particles. As a result, the collision force of the jet stream increases and the cleaning effect improves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す流体発振素子の斜視図
、第2図は同流体発振素子の流路パターン図、第3図、
第4図、第5図は同流体発振素子の作動を示す作動状態
図、第6図は従来の発振素子の流路パターン図である。 6・・・・・・供給流路、7・・・・・・供給ノズル、
8.9・・・9.・渦室、10.It・・・・・・大気
連通口、12・・・・・・絞り部、13.14・・・・
・・側壁、15・・・・・・噴出口、16.17・・・
二・・セットバック。 乙−cI令弐路 7−−−イ只(号ノス゛ル 第2図 第3図   F1
FIG. 1 is a perspective view of a fluid oscillation element showing an embodiment of the present invention, FIG. 2 is a flow path pattern diagram of the same fluid oscillation element, and FIG.
4 and 5 are operating state diagrams showing the operation of the fluid oscillation element, and FIG. 6 is a flow path pattern diagram of a conventional oscillation element. 6... Supply channel, 7... Supply nozzle,
8.9...9.・Vortex chamber, 10. It... Atmospheric communication port, 12... Throttle part, 13.14...
...Side wall, 15... Spout, 16.17...
Second...Setback. Otsu-cI Rei 2nd Road 7--I only (No. No.2 Figure 2 Figure 3 F1

Claims (2)

【特許請求の範囲】[Claims] (1)供給流路、供給ノズル、供給ノズル下流に位置し
、下流端を絞り部形状とし、供給ノズルからの噴流によ
り渦流を生ずる渦室、及び前記絞り部下流に配設され下
流開口を噴出口とする側壁とよりなり、前記供給路より
流入する流体が渦室差圧により偏向された後、更に付着
渦で偏向されるよう前記側壁は、絞り部に対しセットバ
ック量を有して配設した流体発振素子。
(1) A supply flow path, a supply nozzle, a vortex chamber located downstream of the supply nozzle, whose downstream end is in the shape of a constriction part, and which generates a vortex by a jet flow from the supply nozzle; The side wall is arranged to have a setback amount with respect to the constriction portion so that the fluid flowing in from the supply path is deflected by the vortex chamber differential pressure and then further deflected by the attached vortex. A fluid oscillator was installed.
(2)渦室は、左右に大気への連通口を有した構成とし
、前記開口により渦室差圧を変え発振制御を可能にした
特許請求の範囲第1項記載の流体発振素子。
(2) The fluid oscillation element according to claim 1, wherein the vortex chamber is configured to have communication ports to the atmosphere on the left and right sides, and the openings enable oscillation control by changing the vortex chamber differential pressure.
JP30091286A 1986-12-17 1986-12-17 Fluid oscillating element Pending JPS63152704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30091286A JPS63152704A (en) 1986-12-17 1986-12-17 Fluid oscillating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30091286A JPS63152704A (en) 1986-12-17 1986-12-17 Fluid oscillating element

Publications (1)

Publication Number Publication Date
JPS63152704A true JPS63152704A (en) 1988-06-25

Family

ID=17890623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30091286A Pending JPS63152704A (en) 1986-12-17 1986-12-17 Fluid oscillating element

Country Status (1)

Country Link
JP (1) JPS63152704A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61121508A (en) * 1984-11-16 1986-06-09 Matsushita Electric Ind Co Ltd Clipping circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61121508A (en) * 1984-11-16 1986-06-09 Matsushita Electric Ind Co Ltd Clipping circuit

Similar Documents

Publication Publication Date Title
US4562867A (en) Fluid oscillator
EP0121035B1 (en) Improved device for spraying fluid
EP1121201B1 (en) Feedback-free fluidic oscillator and method
US7472848B2 (en) Cold-performance fluidic oscillator
US5213269A (en) Low cost, low pressure, feedback passage-free fluidic oscillator with interconnect
US5971301A (en) "Box" oscillator with slot interconnect
US20030127142A1 (en) Means for generating oscillating fluid jets having specified flow patterns
EP1827703B1 (en) Improved cold-performance fluidic oscillator
US7293722B1 (en) Method and apparatus for generation of low impact sprays
JPS63152704A (en) Fluid oscillating element
CA3158460A1 (en) Fluidic oscillator device with atomized output
EP1675686A1 (en) Fluidic oscillator comprising three power inlet nozzles and an obstruction creating vortices
JPS63152703A (en) Fluid oscillating element
JPH0535281B2 (en)
JP2906559B2 (en) Fluid oscillation nozzle
JPS63172006A (en) Fluid oscillation element
JPH06105084B2 (en) Two-phase fluid oscillator
JPS62278306A (en) Two-phase fluid oscillating element
JPH0535282B2 (en)
JPS63158305A (en) Fluid oscillation element
JPH0641766B2 (en) Two-phase fluid oscillator
CA2347665A1 (en) Reversing chamber oscillator
EP0044331A1 (en) Liquid oscillator device.
JPH0377660A (en) Self-vibrating spray nozzle with its outflow efficiency enhanced by changing shape of output port
JPS596257Y2 (en) liquid dispersion element