JPH0641766B2 - Two-phase fluid oscillator - Google Patents

Two-phase fluid oscillator

Info

Publication number
JPH0641766B2
JPH0641766B2 JP59153519A JP15351984A JPH0641766B2 JP H0641766 B2 JPH0641766 B2 JP H0641766B2 JP 59153519 A JP59153519 A JP 59153519A JP 15351984 A JP15351984 A JP 15351984A JP H0641766 B2 JPH0641766 B2 JP H0641766B2
Authority
JP
Japan
Prior art keywords
jet
supply nozzle
flow
gas introduction
jet flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59153519A
Other languages
Japanese (ja)
Other versions
JPS6131709A (en
Inventor
豊 ▲高▼橋
良一 古閑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59153519A priority Critical patent/JPH0641766B2/en
Publication of JPS6131709A publication Critical patent/JPS6131709A/en
Publication of JPH0641766B2 publication Critical patent/JPH0641766B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15CFLUID-CIRCUIT ELEMENTS PREDOMINANTLY USED FOR COMPUTING OR CONTROL PURPOSES
    • F15C1/00Circuit elements having no moving parts
    • F15C1/22Oscillators

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Nozzles (AREA)
  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、洗浄水の噴射により食器や人体を洗浄する洗
浄装置や散水装置等の噴射ノズルに利用される流体発振
素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid oscillating element used for a jet nozzle of a washing device, a sprinkler, or the like for washing dishes and human bodies by jetting washing water.

従来例の構成とその問題点 従来の発振素子を第1図に示す。この素子は、流入口
1、供給ノズル2、前記供給ノズル下流両側に噴流付着
壁3,4と、供給ノズル2と噴流付着壁3,4間には制
御口5,6を有すると共に、この各制御口5,6は噴流
付着壁3,4に設けたフィードバック口7,8とフィー
ドバック流路9,10を介して連通された構成となって
いる。
Configuration of Conventional Example and Problems Thereof A conventional oscillator is shown in FIG. This element has an inlet 1, a feed nozzle 2, jet adhering walls 3 and 4 on both sides downstream of the feed nozzle, and control ports 5 and 6 between the feed nozzle 2 and the jet adhering walls 3 and 4, respectively. The control ports 5 and 6 are configured to communicate with feedback ports 7 and 8 provided in the jet flow adhering walls 3 and 4 via feedback flow paths 9 and 10.

上記構成において流入口1より流入した液体は、供給ノ
ズル2より噴出する。この噴流はコアンダ効果により一
方の付着壁に付着する。まず噴流付着壁3に付着したと
仮定する。付着した噴流は付着壁3に沿って出口11か
ら大気中に噴出される。噴流の1部はフィードバック口
7に入り、フィードバック流路9を通り制御口5に戻
る。この制御口5に入った流れは噴流を付着壁3から付
着壁4側に切変える。以後噴流は、上記作動を繰返す。
この結果、供給ノズル2からの噴流は付着壁3,4を交
互に付着して噴出し、噴流は発振する。
In the above configuration, the liquid flowing in from the inflow port 1 is ejected from the supply nozzle 2. This jet adheres to one of the adhering walls due to the Coanda effect. First, it is assumed that the jet flow adhering wall 3 is attached. The attached jet is ejected along the attachment wall 3 from the outlet 11 into the atmosphere. A part of the jet flows into the feedback port 7, passes through the feedback channel 9 and returns to the control port 5. The flow entering the control port 5 switches the jet flow from the attachment wall 3 to the attachment wall 4 side. Thereafter, the jet stream repeats the above operation.
As a result, the jet flow from the supply nozzle 2 is ejected by alternately attaching the adhering walls 3 and 4, and the jet flow oscillates.

上記従来の発振素子はフィードバック流路等の信号伝達
流路を設けるため、この流路が塞がれ動作不良を起こし
たり、また、発振、停止の制御をおこなうためには別途
外部への信号流路を設けなければならない等の欠点を有
していた。
Since the above-mentioned conventional oscillating element is provided with a signal transmission flow path such as a feedback flow path, the flow path is blocked to cause a malfunction, and in order to control oscillation and stop, a signal flow to the outside is separately provided. It had the drawback of having to provide a road.

発明の目的 本発明は洗浄装置、散水装置等の噴射流パターンを発振
噴流と非発振噴流とに容易に選択できる二相流体発振素
子の提供を目的とする。
It is an object of the present invention to provide a two-phase fluid oscillating device capable of easily selecting an oscillating jet flow and a non-oscillating jet flow as a jet flow pattern of a cleaning device, a sprinkler, or the like.

発明の構成 上記目的を達成するために、本発明は供給ノズル、付着
壁、流出口とからなる純流体素子の前記流出口に絞り部
を設け、且つ、前記供給ノズルのスロート部あるいはノ
ズル部上流側に気体導入手段を設けた構成としたもので
ある。この構成にて、前記気体導入手段からの気体流入
を制御することにより純流体素子の発振と非発振との切
換えを可能にしたものである。
To achieve the above object, the present invention provides a narrowed portion at the outlet of a pure fluid element consisting of a supply nozzle, an adhering wall, and an outlet, and a throat portion or a nozzle upstream of the supply nozzle. The gas introducing means is provided on the side. With this configuration, it is possible to switch the oscillation and non-oscillation of the pure fluid element by controlling the gas inflow from the gas introduction means.

実施例の説明 以下本発明の一実施例について第2図〜第6図に基づい
て説明する。
Description of Embodiments One embodiment of the present invention will be described below with reference to FIGS.

第2図において、二相流体発振素子12は素子基盤1
3、上板14、パッキン15の積層構造で、素子基盤1
3には主流路管16、気体導入管17が取付けてある。
In FIG. 2, the two-phase fluid oscillation element 12 is an element substrate 1
3, the upper plate 14 and the packing 15 have a laminated structure, and the device substrate 1
3, a main flow pipe 16 and a gas introduction pipe 17 are attached.

第3図は素子基盤13に形成された流路パターンを示
し、18は供給路、19は供給ノズル、20,21は供
給ノズル19の下流両側に設けた付着壁、22は噴流流
出口で付着壁20,21の開口端部で絞り部23を有し
ている。供給路18には気体導入口24が設けられ、前
記気体導入口24は気体導入手段を示す気体導入管17
を介し大気と連通している。
FIG. 3 shows a flow path pattern formed on the element substrate 13. Reference numeral 18 is a supply path, 19 is a supply nozzle, 20 and 21 are adhesion walls provided on both sides of the supply nozzle 19, and 22 is a jet outlet. A narrowed portion 23 is provided at the open ends of the walls 20 and 21. The supply path 18 is provided with a gas introduction port 24, and the gas introduction port 24 is a gas introduction pipe 17 showing a gas introduction means.
Through the atmosphere.

第4図、第5図、第6図は素子の作動状態を示し、F1
F2,F3は噴射流、V1,V2,V3は噴流の流体まき込み作用
により噴流と付着壁間に発生する低圧渦、B1,B2,B3
空気加圧装置等から空気導入手段に送られ、液体内に混
入した気泡を示す。また、W1,W2は絞り部23における
噴流と絞り部先端との隙間を示す。
4, 5 and 6 show the operating state of the element, F 1 ,
F 2 , F 3 are jet flows, V 1 , V 2 , V 3 are low-pressure vortices generated between the jet and the adhering wall due to the fluid entrainment action of the jet, B 1 , B 2 , B 3 are air pressurizing devices, etc. The air bubbles sent from the air to the air introduction means and mixed in the liquid are shown. Further, W 1 and W 2 represent the gap between the jet flow in the throttle portion 23 and the tip of the throttle portion.

上記構成に基づく作動について説明する。The operation based on the above configuration will be described.

まず気体導入手段を示す気体導入管17からの気泡導入
がない場合には、主流路16から供給路18に流入した
液体は供給ノズル19から噴出する(第4図F1)。この
噴流F1はコアンダ効果により付着壁20,21のいずれ
か一方に付着する。本実施例では第4図に示すごとく低
圧渦V1を形成し付着壁20に付着する。噴流付着の方向
は素子形状を意図的に非対称とすることにより、一方向
に設定することができる。付着噴流F1は流出口22から
大気中に流出する。付着噴流F1と非付着壁21間は絞り
部23先端と噴流F1との隙間W1から大気が流入し、コア
ンダ効果による低圧渦が発生しない。そのため付着噴流
F1は外部から信号を与えない限り付着は維持され、流出
口22から噴出し続ける。
First, when there is no bubble introduction from the gas introduction pipe 17 showing the gas introduction means, the liquid flowing into the supply passage 18 from the main passage 16 is ejected from the supply nozzle 19 (F 1 in FIG. 4). The jet F 1 adheres to either one of the adhering walls 20 and 21 due to the Coanda effect. In this embodiment, a low pressure vortex V 1 is formed as shown in FIG. The direction of jet attachment can be set in one direction by intentionally making the element shape asymmetric. The adhering jet F 1 flows out into the atmosphere from the outlet 22. Atmosphere flows in between the adhering jet flow F 1 and the non-adhering wall 21 through the gap W 1 between the tip of the throttle portion 23 and the jet F 1, and low pressure vortices due to the Coanda effect do not occur. Therefore, the attached jet
Unless F 1 gives a signal from the outside, F 1 is kept attached and continues to be ejected from the outflow port 22.

次に、空気加圧装置等を用い気体導入手段を示す気体導
入管17より気体を供給路18に導入する。導入された
気体は液体流中に混入し気泡B1を形成する。気泡B1の1
部は低圧渦V2部に流入し(第5図B2)、低圧渦V2の圧力
を上昇させる。この低圧渦の圧力上昇は連続的に流入す
る気泡B1により更に助長される。低圧渦V2の圧力上昇に
より噴流は離れる(第5図F2)。そのため噴流F2と絞り
部23との隙間W2が狭くなり、噴流F2と非付着側壁21
間への大気流入が少なくなって、噴流F2と付着壁21間
の圧力が低下する。この結果、噴流と付着壁21間にコ
アンダ効果が発生し、噴流は付着壁21に付着する(第
6図F3)。以後、上記作動が付着壁21側で発生し、噴
流は付着壁20,21間を交互に付着する発振流とな
る。
Next, a gas is introduced into the supply path 18 from the gas introduction pipe 17 which shows a gas introduction means using an air pressurizing device or the like. The introduced gas mixes in the liquid flow to form bubbles B 1 . Bubble B 1 of 1
Part flows into the low-pressure vortex V 2 part (B 2 in FIG. 5), and raises the pressure of the low-pressure vortex V 2 . The pressure rise of this low-pressure vortex is further promoted by the continuously flowing bubbles B 1 . The jet flow separates due to the pressure rise of the low-pressure vortex V 2 (Fig. 5, F 2 ). Therefore, the gap W 2 between the jet F 2 and the throttle portion 23 becomes narrower, and the jet F 2 and the non-attached side wall 21
The air inflow into the space decreases, and the pressure between the jet F 2 and the adhering wall 21 decreases. As a result, the Coanda effect occurs between the jet flow and the adhesion wall 21, and the jet flow adheres to the adhesion wall 21 (F 3 in FIG. 6). After that, the above operation occurs on the side of the adhering wall 21, and the jet flow becomes an oscillating flow that alternately adheres between the adhering walls 20 and 21.

本実施例は流出口22に絞り部23を設けているため、
気体流入による低圧渦の圧力上昇で生ずる噴流付着はく
離と共に、非付着壁側でのコアンダ効果の発生が促進さ
れ、付着噴流の切換え、即ち噴流の自己発振が安定する
効果を有している。
In this embodiment, since the outlet portion 22 is provided with the throttle portion 23,
In addition to the jet adhering delamination caused by the pressure rise of the low-pressure vortex due to the gas inflow, the Coanda effect on the non-adhesive wall side is promoted, and the adhering jet flow is switched, that is, the self-oscillation of the jet flow is stabilized.

本発明の他の実施例について第7図、第8図に基づいて
説明する。
Another embodiment of the present invention will be described with reference to FIGS. 7 and 8.

第7図において、二相流体発振素子25は素子基盤2
6、上板27、パッキン28の積層構造で、素子基盤2
6には主流路管29、気体導入手段を示す気体導入管3
0が取付けてある。
In FIG. 7, the two-phase fluid oscillation element 25 is an element substrate 2
6, the upper plate 27, the packing 28 laminated structure, the element substrate 2
6 is a main flow path pipe 29, and a gas introduction pipe 3 showing a gas introduction means.
0 is attached.

第8図は素子基盤26に形成された流路パターンを示
し、31は供給路、32は供給ノズル、33,34は供
給ノズル下流に設けた付着壁、35は噴流流出口で絞り
部36を有している。供給ノズル32のスロート部37
には気体導入口38が設けられ、前記導入口38は気体
導入管30を介し大気と連通している。39は気体導入
管30の開口を開閉する信号板である。
FIG. 8 shows a flow path pattern formed on the element substrate 26. Reference numeral 31 is a supply path, 32 is a supply nozzle, 33 and 34 are attachment walls provided downstream of the supply nozzle, and 35 is a jet flow outlet, which is a throttle portion 36. Have Throat portion 37 of the supply nozzle 32
A gas introducing port 38 is provided in the gas introducing port 38, and the introducing port 38 communicates with the atmosphere via a gas introducing pipe 30. Reference numeral 39 is a signal plate that opens and closes the opening of the gas introduction pipe 30.

上記構成に基づく作動について説明する。The operation based on the above configuration will be described.

気体導入手段を示す気体導入管30から空気を導入し、
噴出流の自己発振をさせる場合は、信号板39を気体導
入管30から離し、気体導入管30の開口を開く。供給
路31に流入した液体は供給ノズル32から噴出する。
この時、ノズルスロート37では高速流となるため、静
圧が低下し気体導入口38の圧力は大気圧以下になる。
この結果、空気が噴流内に流入し、液体中で気泡が形成
され、前記実施例にて説明した気泡の低圧渦破壊現象に
基づく噴流の自己発振がおこなわれる。
Air is introduced from a gas introduction pipe 30 showing a gas introduction means,
When the jet flow is caused to self-oscillate, the signal plate 39 is separated from the gas introduction pipe 30 and the opening of the gas introduction pipe 30 is opened. The liquid that has flowed into the supply passage 31 is ejected from the supply nozzle 32.
At this time, since the nozzle throat 37 has a high-speed flow, the static pressure decreases, and the pressure of the gas introduction port 38 becomes equal to or lower than the atmospheric pressure.
As a result, air flows into the jet flow, bubbles are formed in the liquid, and the jet self-oscillation is performed based on the low-pressure vortex breakdown phenomenon of the bubbles described in the above embodiment.

以上、本実施例は、噴流自己発振用信号用の空気流が素
子の噴流によって発生する負圧誘引によるため外部空気
源を必要としない。そのため噴流の発振、停止の制御が
容易で、作動の安定性も向上する等の特徴を有してい
る。
As described above, the present embodiment does not require an external air source because the air flow for the jet self-oscillation signal is induced by the negative pressure generated by the jet flow of the element. Therefore, the jet flow can be easily controlled to oscillate and stop, and the stability of the operation can be improved.

発明の効果 本発明によれば (1) 流体素子の流路パターンが制御流路を有しないた
め非常にシンプルとなる。そのため噴射流付着が確実と
なり作動が安定するとともに素子設計が容易となる。
EFFECTS OF THE INVENTION According to the present invention, (1) the flow path pattern of the fluid element has no control flow path, which makes it very simple. Therefore, the attachment of the jet flow is reliable, the operation is stable, and the element design is easy.

(2) 流出口の絞り部を設けているため、低圧渦の破壊
と、非付着側壁での低圧渦発生とのタイミング、及び低
圧力のバランスが最適化され噴流の自己発振動作が安定
する。
(2) Since the throttle part at the outlet is provided, the timing of the breakdown of the low pressure vortex and the generation of the low pressure vortex on the non-adhesive side wall, and the balance of the low pressure are optimized, and the self-oscillation operation of the jet flow is stabilized.

【図面の簡単な説明】 第1図は従来の発振素子の断面図、第2図は本発明の一
実施例を示す二相流体発振素子の斜視図、第3図は同素
子の断面図、第4図は同素子の噴流付着状態を示す断面
図、第5図は同素子の気泡流入時の噴流付着状態を示す
断面図、第6図は同素子の気泡流入時の噴流付着状態を
示す断面図、第7図は本発明の他の実施例を示す二相流
体発振素子の斜視図、第8図は同素子の断面図である。 19……供給ノズル、20,21……付着壁、22……
噴流流出口、23……絞り部、24……気体導入口、3
7……スロート。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of a conventional oscillator, FIG. 2 is a perspective view of a two-phase fluid oscillator showing an embodiment of the present invention, and FIG. 3 is a sectional view of the same. FIG. 4 is a sectional view showing a jet flow adhering state of the same element, FIG. 5 is a sectional view showing a jet flow adhering state of the same element when bubbles enter, and FIG. 6 shows a jet flow adhering state of the same element when bubbles enter. A sectional view, FIG. 7 is a perspective view of a two-phase fluid oscillation device showing another embodiment of the present invention, and FIG. 8 is a sectional view of the same device. 19 ... Supply nozzle, 20, 21 ... Adhesive wall, 22 ...
Jet outlet, 23 ... throttle part, 24 ... gas inlet, 3
7 ... Throat.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】供給ノズル、供給ノズル下流両側に設けた
付着壁、付着壁下流に設けた噴流流出口よりなる液体素
子の前記噴流流出口に絞り部を設け、且つ前記供給ノズ
ル上流の供給路あるいは供給ノズル部に気体導入手段を
設けた二相流体発振素子。
1. A supply path upstream of the supply nozzle, wherein a narrowed portion is provided at the jet flow outlet of a liquid element including a supply nozzle, an attachment wall provided on both sides of the supply nozzle downstream, and a jet flow outlet provided downstream of the attachment wall. Alternatively, a two-phase fluid oscillating device in which gas supply means is provided in the supply nozzle portion.
【請求項2】供給ノズルは流れと平行なスロート部を有
し、前記気体導入手段は、供給ノズルスロート部に気体
導入口を設け、供給ノズルスロートの液体流の静圧低下
により気体が導入される構成とした特許請求の範囲第1
項記載の二相流体発振素子。
2. The supply nozzle has a throat portion parallel to the flow, and the gas introduction means is provided with a gas introduction port in the supply nozzle throat portion, and gas is introduced by the static pressure reduction of the liquid flow of the supply nozzle throat. Claim 1 with the structure
A two-phase fluid oscillating device according to the item.
JP59153519A 1984-07-24 1984-07-24 Two-phase fluid oscillator Expired - Lifetime JPH0641766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59153519A JPH0641766B2 (en) 1984-07-24 1984-07-24 Two-phase fluid oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59153519A JPH0641766B2 (en) 1984-07-24 1984-07-24 Two-phase fluid oscillator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP16674291A Division JPH04341605A (en) 1991-07-08 1991-07-08 Fluid oscillation element

Publications (2)

Publication Number Publication Date
JPS6131709A JPS6131709A (en) 1986-02-14
JPH0641766B2 true JPH0641766B2 (en) 1994-06-01

Family

ID=15564306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59153519A Expired - Lifetime JPH0641766B2 (en) 1984-07-24 1984-07-24 Two-phase fluid oscillator

Country Status (1)

Country Link
JP (1) JPH0641766B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833520U (en) * 1971-08-26 1973-04-23
JPS57108A (en) * 1980-06-03 1982-01-05 Nippon Paint Co Ltd Production of acetylene/conjugated diene copolymer

Also Published As

Publication number Publication date
JPS6131709A (en) 1986-02-14

Similar Documents

Publication Publication Date Title
US4562867A (en) Fluid oscillator
JP3977991B2 (en) Fluid element
US6497375B1 (en) Fluidic nozzle with multiple operating modes
US3247861A (en) Fluid device
IT1194617B (en) FLUID OSCILLATOR WITH RESONANT INTERTANCE AND DYNAMIC ELASTICITY CIRCUIT
DE3480831D1 (en) VIBRATOR WITH A HIGH FLOW RATE.
Tesař Taxonomic trees of fluidic oscillators
US7293722B1 (en) Method and apparatus for generation of low impact sprays
JPH0641766B2 (en) Two-phase fluid oscillator
JPH0535281B2 (en)
EP3834947A1 (en) Alternating water delivery device
JPH0463251B2 (en)
JPH0535282B2 (en)
JPH06105084B2 (en) Two-phase fluid oscillator
JP2906559B2 (en) Fluid oscillation nozzle
JPH0631994Y2 (en) Shower nozzle
JP2017064394A (en) Water discharge device
JPH0718447B2 (en) Fluid oscillation element
JPH0720563B2 (en) Fluid oscillation element nozzle
JPS62278306A (en) Two-phase fluid oscillating element
JPH0810003B2 (en) Fluid oscillation element
JPH038458A (en) Fluid oscillating element
JP2002235700A (en) Jet liquid flow nozzle
JPH05567B2 (en)
JPH03186603A (en) Fluid vibrating nozzle

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term