JPH0718426A - Vapor-deposition device - Google Patents

Vapor-deposition device

Info

Publication number
JPH0718426A
JPH0718426A JP5187262A JP18726293A JPH0718426A JP H0718426 A JPH0718426 A JP H0718426A JP 5187262 A JP5187262 A JP 5187262A JP 18726293 A JP18726293 A JP 18726293A JP H0718426 A JPH0718426 A JP H0718426A
Authority
JP
Japan
Prior art keywords
magnetic field
vapor deposition
film
field generator
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5187262A
Other languages
Japanese (ja)
Inventor
Susumu Yanagisawa
享 柳澤
Junichi Shimizu
潤一 清水
Takuji Oyama
卓司 尾山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP5187262A priority Critical patent/JPH0718426A/en
Publication of JPH0718426A publication Critical patent/JPH0718426A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To move the position of a film thickness distribution on a substrate, to widen the film forming range and to widely form a uniformly distributed film on the entire large-area substrate by providing a second magnetic field generator having a means for reversing the direction of the magnetic field to a vapor-deposition device. CONSTITUTION:A rotating shaft 9 for simultaneously reversing the directions of the magnetic fields generated by a first magnetic field generator 7 and a second magnetic field generator 8, a motor 10 for rotating the shaft and a power source 11 having a magnetic field reversing mechanism are provided to reverse the magnetic field in a short time. Consequently, the position of the film thickness distribution on the substrate is moved to increase the film forming range with one plasma gun, and a uniformly distributed film is widely formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、イオンプレーティング
用の蒸着装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor deposition apparatus for ion plating.

【0002】[0002]

【従来の技術】従来より、光学薄膜、装飾用薄膜、ハー
ドコーティング用薄膜、フラットパネルディスプレイ用
薄膜等の成膜装置として蒸着装置が広く使われている。
また最近では、ホローカソード型ガンや、圧力勾配型プ
ラズマガンを備え、アーク放電により発生したプラズマ
流を原料まで導いて原料を加熱したり、該プラズマの高
い反応性を利用してイオンプレーティングを高速に行う
蒸着装置(以下、単に蒸着装置という)が開発されてい
る。
2. Description of the Related Art Conventionally, a vapor deposition apparatus has been widely used as a film forming apparatus for optical thin films, decorative thin films, hard coating thin films, flat panel display thin films and the like.
Further, recently, a hollow cathode type gun and a pressure gradient type plasma gun are provided to guide the plasma flow generated by arc discharge to the raw material to heat the raw material, and ion plating is performed by utilizing the high reactivity of the plasma. A high-speed vapor deposition device (hereinafter, simply referred to as vapor deposition device) has been developed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、この方
式の蒸着装置を用いて基体面に成膜する際、基体面の膜
厚の厚くなる部分がプラズマガンの中心の延長(以下、
中心と呼ぶ)に対して左右対象にならず、特定の方向に
ずれるという現象が起こる。特に平坦で大面積の基体面
に均一に成膜する際に上記の現象が重要な問題となる。
However, when a film is formed on the surface of the substrate by using this type of vapor deposition apparatus, the portion where the film thickness of the surface of the substrate becomes thicker extends the center of the plasma gun (hereinafter
It is not symmetrical with respect to the center), and a phenomenon occurs in which it shifts in a specific direction. The above-mentioned phenomenon becomes an important problem especially when a uniform film is formed on a flat and large-area substrate surface.

【0004】[0004]

【課題を解決するための手段】本発明は前述の課題を解
決すべくなされたものであり、基体面に真空蒸着により
薄膜を形成する成膜室と、薄膜の材料となる蒸着原料を
保持する蒸着原料容器と、成膜室内で蒸着原料を蒸発さ
せるためのプラズマ流を形成可能なプラズマガンと、プ
ラズマガンを陰極に、蒸着原料容器を陽極として放電を
行なうための電源と、プラズマガンから蒸着原料容器へ
プラズマ流を導くための磁場を作り出すためのプラズマ
ガン側の第1の磁場発生装置と、蒸着原料側の第2の磁
場発生装置と、を有する蒸着装置において、該第1およ
び対になる第2の磁場発生装置から作り出される磁場の
方向を同時に反転する手段を有することを特徴とする蒸
着装置を提供するものである。
The present invention has been made to solve the above-mentioned problems, and holds a film forming chamber for forming a thin film on the surface of a substrate by vacuum evaporation, and an evaporation raw material as a material for the thin film. A deposition material container, a plasma gun capable of forming a plasma flow for evaporating the deposition material in the film forming chamber, a power source for performing discharge using the plasma gun as a cathode and the deposition material container as an anode, and the deposition from the plasma gun. In a vapor deposition apparatus having a first magnetic field generator on the plasma gun side for producing a magnetic field for guiding a plasma flow to a raw material container and a second magnetic field generator on the vapor deposition raw material side, The present invention provides a vapor deposition device having means for simultaneously reversing the directions of magnetic fields produced by the second magnetic field generator.

【0005】図1は、本発明の装置の第1の実施例であ
る。排気ポンプ13などの真空排気手段により排気され
る成膜室1とその内部に成膜面を下に向けた状態の基体
2を配置する。成膜室側面にプラズマガン3を配置し、
プラズマ流4を成膜室内に引き出す。蒸着原料5はプラ
ズマガンに対し陽極電位とすることが可能な蒸着原料容
器6に収め、プラズマガン3から蒸着原料容器6に対
し、もしくは、その逆になるように磁場を作る第1の磁
場発生装置7と原料容器側に第2の磁場発生装置8を配
置する。ガンは電源12から供給を受ける。プラズマ4
流が、プラズマガン3から蒸着原料容器6に到着可能と
なるように第1の磁場発生装置7と第2の磁場発生装置
8の作る磁場を調整し、原料を蒸発、反応させ基体面に
成膜する。このときの磁場の方向は第2の磁場発生装置
8の磁場反転のための回転軸9、回転用モーター10と
磁場反転機構を伴う電源11を用いて反転することがで
きる。前記の第2の磁場発生装置8、回転軸9、回転用
モーター10からなる磁場の反転は、その機構を限定す
るものではなく、短時間に反転可することを特徴とする
ものである。
FIG. 1 is a first embodiment of the device of the present invention. A film forming chamber 1 that is evacuated by a vacuum evacuation unit such as an evacuation pump 13 and a substrate 2 with the film forming surface facing downward are arranged inside the chamber. Placing the plasma gun 3 on the side of the film forming chamber,
The plasma flow 4 is drawn into the film forming chamber. The vapor deposition raw material 5 is housed in a vapor deposition raw material container 6 capable of having an anode potential with respect to the plasma gun, and a magnetic field is generated from the plasma gun 3 to the vapor deposition raw material container 6 or vice versa. The second magnetic field generator 8 is arranged on the side of the apparatus 7 and the raw material container. The gun is powered by power supply 12. Plasma 4
The magnetic fields generated by the first magnetic field generator 7 and the second magnetic field generator 8 are adjusted so that the flow can reach the vapor deposition raw material container 6 from the plasma gun 3, and the raw materials are vaporized and reacted to form on the substrate surface. To film. The direction of the magnetic field at this time can be reversed by using the rotating shaft 9 for reversing the magnetic field of the second magnetic field generator 8, the rotating motor 10, and the power supply 11 with the magnetic field reversing mechanism. The reversal of the magnetic field composed of the second magnetic field generator 8, the rotary shaft 9 and the rotation motor 10 is not limited to the mechanism, and is characterized in that it can be reversed in a short time.

【0006】[0006]

【作用】図2は、本発明の蒸着装置を使う前の平坦な基
体面の膜厚分布である。図3は、本発明により磁場方向
を反転させた状態で平坦な基体面に蒸着した膜厚分布で
ある。図中において、縦軸は膜厚で横軸上の○印はプラ
ズマガン(以下、ガンという)の中心軸がある位置を示
す。以下の図においても同様である。図2および図3よ
り明らかなように、本発明の装置により、ガンの中心に
対して逆側に膜厚の最大値が移動できる。
FIG. 2 is a film thickness distribution on a flat substrate surface before using the vapor deposition device of the present invention. FIG. 3 shows a film thickness distribution deposited on a flat substrate surface in a state where the magnetic field direction is reversed according to the present invention. In the figure, the vertical axis indicates the film thickness, and the circle mark on the horizontal axis indicates the position where the central axis of the plasma gun (hereinafter referred to as the gun) is located. The same applies to the following figures. As is apparent from FIGS. 2 and 3, the apparatus of the present invention allows the maximum value of the film thickness to be moved to the side opposite to the center of the gun.

【0007】[0007]

【実施例】【Example】

実施例1 図4は、本発明の装置の第1の実施例により、1つの平
面上の基体に磁場を反転しないで成膜し、次に磁場を反
転して成膜した膜厚分布である。膜厚分布は、ガンの中
心から左右にずれた膜厚分布の重ね合わせとなり、広範
囲に均一な膜厚分布となる。反転することにより、膜厚
の差が±10%の範囲に入る面積が約50%多くなっ
た。磁場の反転は放電中に行なっても、放電を止めてか
ら反転し再度成膜しても均一化の効果は同じである。ま
た、ここでは反転の回数は2回であるが、何回でもよ
い。
Example 1 FIG. 4 is a film thickness distribution obtained by forming a film on a substrate on one plane without inverting the magnetic field and then inverting the magnetic field according to the first example of the apparatus of the present invention. . The film thickness distribution is a superposition of the film thickness distributions that are offset from the center of the gun to the left and right, resulting in a uniform film thickness distribution over a wide range. By inverting, the area where the difference in film thickness falls within the range of ± 10% was increased by about 50%. Even if the reversal of the magnetic field is performed during the discharge, or if the discharge is stopped and then reversed and the film is formed again, the uniformizing effect is the same. Further, although the number of times of reversal is two here, it may be any number of times.

【0008】実施例2 図5は、本発明の装置の第2の実施例の一例である。2
個のガンを用いた場合の装置の上面図である。2個の磁
場発生装置の磁場方向は同じであり、図6に平面上の基
体に成膜した時の膜厚分布を実線と破線で示す。破線の
膜厚分布を持つ様に成膜したときの磁場方向を両ガンと
も変え成膜したのが実線の膜厚分布である。実線では各
ガンの中心より右側に膜厚分布ずらすことができ、破線
では左側にずらすことができる。ここでは2個のガンを
用いているが3個以上でも可能である。
Embodiment 2 FIG. 5 is an example of a second embodiment of the device of the present invention. Two
It is a top view of an apparatus when using one gun. The magnetic field directions of the two magnetic field generators are the same, and FIG. 6 shows a film thickness distribution when a film is formed on a flat substrate by a solid line and a broken line. The film thickness distribution indicated by the solid line is obtained by changing the magnetic field direction for both guns so as to have the film thickness distribution indicated by the broken line. The solid line can shift the film thickness distribution to the right of the center of each gun, and the broken line can shift it to the left. Two guns are used here, but three or more guns are also possible.

【0009】実施例3〜4 実施例3として、2個のガンを用いて、2個の磁場発生
装置の磁場方向が逆方向になるよう配置して、平面上の
基体に成膜した時の膜厚分布を図7に示す。図7の成膜
したときの磁場発生装置の磁場の方向を両方とも変えた
ものを実施例4として図8に示す。図7の場合では平面
上の基体中心部に厚く成膜することができる。図8の場
合では、平面上の基体の両端に厚く成膜することができ
る。ここでは2個のガンを用いているが3個以上でも可
能である。
Embodiments 3 to 4 As Embodiment 3, when two guns are used and two magnetic field generators are arranged so that the magnetic field directions are opposite to each other, a film is formed on a flat substrate. The film thickness distribution is shown in FIG. Example 4 is shown in FIG. 8 in which both the directions of the magnetic fields of the magnetic field generator at the time of film formation in FIG. 7 are changed. In the case of FIG. 7, a thick film can be formed at the center of the substrate on a plane. In the case of FIG. 8, a thick film can be formed on both ends of the flat substrate. Two guns are used here, but three or more guns are also possible.

【0010】実施例5 図9は、本発明の装置の2個のガンを用い、1度成膜後
に磁場発生装置の磁場を反転して2度目の成膜を行った
場合の平面上の基体に成膜した膜厚分布である。平面上
の基体の膜厚分布は中心が左右にずれた膜厚分布の重ね
合わせとなり、広範囲に膜厚を均一に成膜することがで
きる。ここでは2個のガンを用いて成膜しているが、2
個以上の3個以上のガンでの成膜を行う場合も可能であ
る。
Embodiment 5 FIG. 9 shows a substrate on a plane in which two guns of the apparatus of the present invention are used and the magnetic field of the magnetic field generator is reversed after the first film formation to perform the second film formation. It is the film thickness distribution of the film formed. The film thickness distribution of the substrate on the plane is a superposition of the film thickness distributions whose centers are shifted to the left and right, and the film thickness can be uniformly formed over a wide range. Here, the film is formed using two guns.
It is also possible to form a film with three or more guns.

【0011】ここでは、磁場の反転は、すべてのガンに
ついて同時に行なっているが、時間的に差があってもよ
く、また磁場を反転する回数が異なるガン、もしくは磁
場を反転しないガンが含まれていてもよい。また、磁場
の反転は、放電を止めて行なっても、成膜中に行なって
も可能である。
Here, the reversal of the magnetic field is simultaneously performed for all the guns, but there may be a time difference, and a gun having a different number of times of reversing the magnetic field or a gun not reversing the magnetic field is included. May be. Further, the reversal of the magnetic field can be performed with the discharge stopped or during the film formation.

【0012】図10は、原料容器側の磁場発生手段にコ
イルを用いた場合である。15はコイル、16は磁場反
転機構を備えた電源である。
FIG. 10 shows a case where a coil is used as the magnetic field generating means on the raw material container side. Reference numeral 15 is a coil, and 16 is a power source having a magnetic field reversing mechanism.

【0013】[0013]

【発明の効果】本発明は、基体上の膜厚分布の位置を移
動させられるという効果を有し、また、1つのガンの成
膜可能な範囲を広げるという効果を有し、特に大面積の
基体全体に対し、広範囲に、均一な分布をもつ膜を成膜
できるという効果を有する。
INDUSTRIAL APPLICABILITY The present invention has an effect that the position of the film thickness distribution on the substrate can be moved, and has an effect that the film formation range of one gun can be widened. This has the effect that a film having a uniform distribution can be formed over a wide range on the entire substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる装置の第1の例の横から見た断
面図
1 is a cross-sectional side view of a first example of a device according to the invention.

【図2】図1の方向1から見た従来法による基体面の膜
厚を表した断面図
FIG. 2 is a cross-sectional view showing the film thickness of a substrate surface according to a conventional method viewed from the direction 1 in FIG.

【図3】図1の方向1から見た本発明の方法による基体
面の膜厚を表した断面図
FIG. 3 is a cross-sectional view showing the film thickness of a substrate surface according to the method of the present invention viewed from the direction 1 in FIG.

【図4】図1の方向1から見た実施例1の基体面の膜厚
を表した断面図
4 is a cross-sectional view showing the film thickness of the substrate surface of Example 1 viewed from the direction 1 in FIG.

【図5】本発明にかかる装置の第1の例の上から見た断
面図
FIG. 5 is a top sectional view of a first example of a device according to the present invention.

【図6】図1の方向1から見た実施例2の基体面の膜厚
を表した断面図
6 is a cross-sectional view showing the film thickness of the substrate surface of Example 2 viewed from the direction 1 in FIG.

【図7】図1の方向1から見た実施例3の基体面の膜厚
を表した断面図
7 is a cross-sectional view showing the film thickness of the substrate surface of Example 3 viewed from the direction 1 in FIG.

【図8】図1の方向1から見た実施例4の基体面の膜厚
を表した断面図
8 is a cross-sectional view showing the film thickness of the substrate surface of Example 4 viewed from the direction 1 in FIG.

【図9】図1の方向1から見た実施例5の基体面の膜厚
を表した断面図
9 is a cross-sectional view showing the film thickness of the substrate surface of Example 5 viewed from the direction 1 in FIG.

【図10】本発明にかかる装置の第3の例の横から見た
断面図
FIG. 10 is a side sectional view of a third example of a device according to the present invention.

【符号の説明】[Explanation of symbols]

1:真空成膜室 2:基体 3:プラズマガン 4:プラズマ流 5:蒸着原料 6:蒸着原料容器 7:第1の磁場発生装置 8:第2の磁場発生装置 9:回転軸 10:回転モーター 11、16:磁場反転機構を備えた電源 12:プラズマガンの電源 13:排気ポンプ 15:コイル 1: Vacuum deposition chamber 2: Substrate 3: Plasma gun 4: Plasma flow 5: Vapor deposition material 6: Vapor deposition material container 7: First magnetic field generator 8: Second magnetic field generator 9: Rotating shaft 10: Rotating motor 11, 16: Power supply equipped with magnetic field reversal mechanism 12: Plasma gun power supply 13: Exhaust pump 15: Coil

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基体面に真空蒸着により薄膜を形成する成
膜室と、 薄膜の材料となる蒸着原料を保持する蒸着原料容器と、 成膜室内で蒸着原料を蒸発させるためのプラズマ流を形
成可能なプラズマガンと、 プラズマガンを陰極に、蒸着原料容器を陽極として放電
を行なうための電源と、 プラズマガンから蒸着原料容器へプラズマ流を導くため
の磁場を作り出すためのプラズマガン側の第1の磁場発
生装置と、 蒸着原料側の第2の磁場発生装置と、を有する蒸着装置
において、該第1および対になる第2の磁場発生装置か
ら作り出される磁場の方向を同時に反転する手段を有す
ることを特徴とする蒸着装置。
1. A film forming chamber for forming a thin film on a substrate surface by vacuum evaporation, an evaporation source container for holding an evaporation source as a material for the thin film, and a plasma flow for evaporating the evaporation source in the film forming chamber. A possible plasma gun, a power source for discharging with the plasma gun as the cathode and the vapor deposition source container as the anode, and the first on the plasma gun side for creating a magnetic field for guiding the plasma flow from the plasma gun to the vapor deposition source container. And a second magnetic field generator on the side of the vapor deposition raw material, and a means for simultaneously reversing the directions of the magnetic fields produced by the first and paired second magnetic field generators. A vapor deposition device characterized by the above.
【請求項2】前記蒸着装置は、複数個のプラズマガンと
第1および第2の磁場発生装置とを有し、少なくとも1
つの第1の磁場発生装置による磁場および対になる第2
の磁場発生装置による磁場が、他の第1の磁場発生装置
による磁場および対になる第2の磁場発生装置による磁
場に対して反転した状態で成膜を行えることを特徴とす
る請求項1記載の蒸着装置。
2. The vapor deposition apparatus comprises a plurality of plasma guns and first and second magnetic field generators, and at least 1
Magnetic field by two first magnetic field generators and second paired
2. The film formation can be performed in a state in which the magnetic field generated by the magnetic field generator of 1 is reversed with respect to the magnetic field generated by the other first magnetic field generator and the magnetic field generated by the second magnetic field generator that forms a pair. Vapor deposition equipment.
【請求項3】前記蒸着装置は、複数個の第1および第2
の磁場発生装置からなり、少なくとも1つの第1の磁場
発生装置による磁場および対になる第2の磁場発生装置
による磁場を、成膜中に少なくとも1回以上反転するこ
とができることを特徴とする請求項1または2に記載の
蒸着装置。
3. The vapor deposition apparatus comprises a plurality of first and second vapor deposition devices.
The magnetic field generated by at least one first magnetic field generator and the magnetic field generated by the second magnetic field generator that forms a pair can be reversed at least once during film formation. Item 3. The vapor deposition device according to Item 1 or 2.
JP5187262A 1993-06-30 1993-06-30 Vapor-deposition device Pending JPH0718426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5187262A JPH0718426A (en) 1993-06-30 1993-06-30 Vapor-deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5187262A JPH0718426A (en) 1993-06-30 1993-06-30 Vapor-deposition device

Publications (1)

Publication Number Publication Date
JPH0718426A true JPH0718426A (en) 1995-01-20

Family

ID=16202903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5187262A Pending JPH0718426A (en) 1993-06-30 1993-06-30 Vapor-deposition device

Country Status (1)

Country Link
JP (1) JPH0718426A (en)

Similar Documents

Publication Publication Date Title
EP0428358B1 (en) Geometries and configurations for magnetron sputtering apparatus
US6113752A (en) Method and device for coating substrate
US5626727A (en) Sputtering apparatus and method
JPH04124264A (en) Method and apparatus for building up substance layer on substrate
JP2002509988A (en) Method and apparatus for depositing a biaxially textured coating
KR20180049057A (en) Vacuum processing apparatus and vacuum processing substrate manufacturing method
JP2970317B2 (en) Sputtering apparatus and sputtering method
US8597479B2 (en) Sputtering system
WO1990013137A1 (en) Sputtering apparatus
JP4246546B2 (en) Sputtering source, sputtering apparatus, and sputtering method
JPH0718426A (en) Vapor-deposition device
JPH04221061A (en) Thin film forming device
JPH0352535B2 (en)
JP3281926B2 (en) Thin film forming equipment
EP0537012A1 (en) Sputtering processes and apparatus
GB2393321A (en) Plasma generation
JPS6361387B2 (en)
JP2002256429A (en) Sputtering apparatus
JP3038287B2 (en) Thin film production equipment
JP2755776B2 (en) High-speed deposition sputtering equipment
JPS6116346B2 (en)
JPH04116160A (en) Film forming device
WO2022009536A1 (en) Sputtering apparatus and sputtering film forming method
JPH07292468A (en) Sputtering device
JPH04183856A (en) Magnetron sputtering method and system