JPH07183535A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH07183535A
JPH07183535A JP34671093A JP34671093A JPH07183535A JP H07183535 A JPH07183535 A JP H07183535A JP 34671093 A JP34671093 A JP 34671093A JP 34671093 A JP34671093 A JP 34671093A JP H07183535 A JPH07183535 A JP H07183535A
Authority
JP
Japan
Prior art keywords
region
silicon film
tft
substrate
peripheral circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34671093A
Other languages
Japanese (ja)
Other versions
JP2762218B2 (en
Inventor
Shoji Miyanaga
昭治 宮永
Hisashi Otani
久 大谷
Yasuhiko Takemura
保彦 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP34671093A priority Critical patent/JP2762218B2/en
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to KR1019940035849A priority patent/KR100319332B1/en
Publication of JPH07183535A publication Critical patent/JPH07183535A/en
Priority to US08/592,513 priority patent/US5705829A/en
Application granted granted Critical
Publication of JP2762218B2 publication Critical patent/JP2762218B2/en
Priority to KR1020000022831A priority patent/KR100315888B1/en
Priority to US10/135,773 priority patent/US6624445B2/en
Priority to US10/747,165 priority patent/US6955954B2/en
Priority to US11/250,635 priority patent/US7402471B2/en
Priority to US12/175,481 priority patent/US7700421B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To improve a crystalline silicon film of a TFT in crystallinity and to obtain TFTs used for a picture element region and other TFTs used for a peripheral circuit region through the same process by a method wherein the crystalline silicon film of a TFT arranged is a peripheral circuit region is irradiated with laser rays or string light rays. CONSTITUTION:A prime film 202 of silicon oxide and an amorphous silicon film 203 are formed on a substrate 201. Then, a silicon oxide film 205 is formed and then selectively etched, whereby a region 204 where amorphous silicon is exposed is formed. A nickel-containing acetate solution which promotes the crystallization of amorphous silicon is applied. Nickel contained in an acetate solution is 100ppm in concentration. Thereafter, the substrate 201 is annealed in a nitrogen atmosphere at a temperature of 550 deg.C for four hours to turn the silicon film 203 crystalline. The silicon film 203 starts crystallizing at a region 204 where nickel comes into contact with a silicon film, and the crystal grows along the direction of an arrow in parallel with the substrate 201. After a crystallization process is finished, the silicon film 203 is improved in crystallinity by irradiation with laser rays 216.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アクティブマトリクス
型の液晶表示装置の構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of an active matrix type liquid crystal display device.

【0002】[0002]

【従来の技術】画素電極にTFT(薄膜トランジスタ)
を配置し、画素電極のスイッチングを行なうアクティブ
マトリクス型の液晶表示装置が知られている。またさら
に画素電極に配置されたTFTを駆動するための周辺回
路領域をも同一基板上に形成する一体化された構成も提
案されている。
2. Description of the Related Art TFT (thin film transistor) is used for a pixel electrode.
There is known an active matrix type liquid crystal display device in which the pixel electrodes are arranged and the pixel electrodes are switched. Further, an integrated structure has also been proposed in which a peripheral circuit region for driving a TFT arranged in a pixel electrode is also formed on the same substrate.

【0003】このような画素領域と周辺回路領域とが一
体化されたアクティブマトリクス型の液晶表示装置にお
いては、それぞれの領域において必要とするTFTの特
性は異ならせる必要がある。
In such an active matrix type liquid crystal display device in which the pixel region and the peripheral circuit region are integrated, it is necessary to make the characteristics of the TFT different in each region.

【0004】各画素に配置されるTFTは、画素電極に
電荷を保持させる機能が必要とされる。従って大きな移
動度は要求されないが、OFF電流が小さいことが必要
とされる。
The TFT arranged in each pixel is required to have a function of retaining charges in the pixel electrode. Therefore, a large mobility is not required, but a small OFF current is required.

【0005】一方、周辺回路領域に配置されるTFT
は、画素領域に配置されたTFTをドライブするための
ものとなるので、大きなON電流を流すことができ、高
移動度を有することが必要とされる。、
On the other hand, TFTs arranged in the peripheral circuit area
Since it is for driving the TFT arranged in the pixel region, it is necessary to allow a large ON current to flow and to have high mobility. ,

【0006】[0006]

【発明が解決しようとする課題】本発明は、アクティブ
マトリクス型の液晶表示装置において、同一基板上に形
成される画素領域用のTFTと周辺回路領域用のTFT
とをその必要とする特性を同一工程で得ることを課題と
する。
SUMMARY OF THE INVENTION In an active matrix type liquid crystal display device, the present invention provides a pixel area TFT and a peripheral circuit area TFT formed on the same substrate.
The object is to obtain the required characteristics in the same step.

【0007】[0007]

【課題を解決するための手段】本発明は、アクティブマ
トリクス型の液晶表示装置において、画素領域と周辺回
路領域とに配置されるTFTとを異なる結晶状態の結晶
性珪素膜で構成したことを特徴とする。本発明は上記構
成を実現するために、周辺回路領域を構成する結晶性珪
素膜にレーザー光または強光を照射したものを用いるこ
とを特徴とする。
According to the present invention, in an active matrix type liquid crystal display device, TFTs arranged in a pixel region and a peripheral circuit region are formed of crystalline silicon films in different crystal states. And In order to realize the above structure, the present invention is characterized in that a crystalline silicon film forming a peripheral circuit region is irradiated with laser light or strong light.

【0008】結晶性珪素膜を得る方法としては、加熱に
よって非晶質珪素膜を結晶化させる方法が知られている
が、本発明においては、非晶質珪素の結晶化を助長する
元素を非晶質珪素膜に導入することによって、550
℃、4時間程度の加熱工程によって結晶化させる方法を
採用することを特徴とする。
As a method of obtaining a crystalline silicon film, a method of crystallizing an amorphous silicon film by heating is known. In the present invention, an element which promotes crystallization of amorphous silicon is not used. 550 by introducing into the crystalline silicon film
The method is characterized by adopting a method of crystallizing by a heating step at 4 ° C. for about 4 hours.

【0009】結晶化を助長する触媒元素としては、N
i、Pd、Pt、Cu、Ag、Au、In、Sn、Pd
P、As、Sbから選ばれた一種または複数種類の元素
を用いることができる。またVIII族、IIIb族、IVb族、
Vb族元素から選ばれた一種または複数種類の元素を用い
るこもできる。
As a catalyst element for promoting crystallization, N
i, Pd, Pt, Cu, Ag, Au, In, Sn, Pd
One or more kinds of elements selected from P, As and Sb can be used. Group VIII, IIIb, IVb,
It is also possible to use one or more kinds of elements selected from the Vb group elements.

【0010】また、本発明において、周辺回路領域に配
置されるTFTを構成する結晶性珪素膜をTFTにおけ
るキャリアの流れる方向に概略平行な方向に結晶成長し
た結晶性珪素膜として、画素領域に配置されるTFTを
構成する結晶性珪素膜をTFTにおけるキャリアの流れ
る方向に概略垂直な方向に結晶成長した結晶性珪素膜と
することは有効である。ここで、TFTにおけるキャリ
アの流れる方向というのは、ソースとドレインを結んだ
線の方向のことである。
Further, in the present invention, the crystalline silicon film forming the TFT arranged in the peripheral circuit region is arranged in the pixel region as a crystalline silicon film crystal-grown in a direction substantially parallel to the carrier flow direction in the TFT. It is effective to use a crystalline silicon film forming the TFT to be a crystalline silicon film which is crystal-grown in a direction substantially perpendicular to the carrier flow direction in the TFT. Here, the direction of carrier flow in the TFT is the direction of the line connecting the source and the drain.

【0011】キャリアの移動する方向と結晶成長方向と
が概略同一の場合には、キャリアが結晶粒界に沿った方
向に移動することになるので、その移動に際して結晶粒
界の影響を受けにくく、高移動度を有するTFTを得る
ことができる。このようなTFTは大きなON電流を流
す必要のある周辺回路領域に配置されるTFTには最適
なものとなる。
When the moving direction of the carrier and the crystal growth direction are substantially the same, the carrier moves in the direction along the crystal grain boundary, so that the movement is less affected by the crystal grain boundary, A TFT having high mobility can be obtained. Such a TFT is optimal for a TFT arranged in a peripheral circuit region that needs to flow a large ON current.

【0012】一方、キャリアの移動する方向と結晶成長
方向とが概略垂直の場合には、キャリアが結晶粒界を横
切って移動することになるので、ON電流が低くなるの
と同時にOFF電流を下げることができる。従って、小
さなOFF電流を有するTFTを得ることができる。
On the other hand, when the carrier moving direction and the crystal growth direction are substantially perpendicular, the carriers move across the crystal grain boundaries, so that the ON current decreases and the OFF current decreases at the same time. be able to. Therefore, a TFT having a small OFF current can be obtained.

【0013】[0013]

【実施例】【Example】

〔実施例1〕本実施例は、アクティブマトリクス型の液
晶表示装置において、周辺回路領域と画素領域に結晶性
珪素膜を用いたTFTを配置した構成に関する。上記周
辺回路領域および画素領域に形成されるTFTは、基板
に平行な方向に結晶成長した構成を有する。また、周辺
回路領域に形成された結晶性珪素膜はレーザー光または
強光の照射によって結晶化がさらに助長されており、よ
り大きなON電流を探すことができ、より大きな移動度
を有する構成となっている。
[Embodiment 1] This embodiment relates to a structure in which a TFT using a crystalline silicon film is arranged in a peripheral circuit region and a pixel region in an active matrix type liquid crystal display device. The TFTs formed in the peripheral circuit region and the pixel region have a structure in which crystals are grown in a direction parallel to the substrate. In addition, the crystalline silicon film formed in the peripheral circuit region is further promoted to be crystallized by irradiation with laser light or strong light, so that a larger ON current can be searched for and a larger mobility can be obtained. ing.

【0014】また本実施例においては、結晶の成長方向
とTFTにおけるキャリアの移動方向とが概略同一の方
向となるので、キャリアの移動が結晶粒界の影響を受け
にくく高移動度を有するTFTを実現することができ
る。
Further, in this embodiment, since the crystal growth direction and the carrier movement direction in the TFT are substantially the same, the movement of carriers is not affected by the crystal grain boundaries, and a TFT having high mobility is obtained. Can be realized.

【0015】図2および図3に本実施例の作製工程を示
す。図2に示すのは周辺回路用のTFTの作製工程図で
あり、図3に示すのは画素領域に形成されるTFTの作
製工程図である。それぞれの図において符号の同一なも
のは同一の箇所を示す。またそれぞれの作製工程は互い
に対応する。また図1は本実施例で作製するアクティブ
型の液晶表示装置を上面から見た概念図である。本実施
例で示す周辺領域用のTFTと画素領域用のTFTと
は、図1に示すような状態で同一基板上に形成される。
図1には、A、Bで示される周辺回路領域とA’、B’
で示される冗長回路が示されている。このA’、B’で
示される冗長回路は、周辺回路領域とA、Bに欠陥があ
る場合に利用される。
2 and 3 show the manufacturing process of this embodiment. FIG. 2 is a manufacturing process diagram of a TFT for a peripheral circuit, and FIG. 3 is a manufacturing process diagram of a TFT formed in a pixel region. In each figure, the same reference numerals indicate the same parts. Further, each manufacturing process corresponds to each other. Further, FIG. 1 is a conceptual view of the active type liquid crystal display device manufactured in this embodiment as viewed from above. The peripheral area TFT and the pixel area TFT shown in this embodiment are formed on the same substrate in the state shown in FIG.
In FIG. 1, peripheral circuit areas A and B and A ′ and B ′ are shown.
The redundant circuit indicated by is shown. The redundant circuit indicated by A'and B'is used when the peripheral circuit area and A and B are defective.

【0016】まず、基板201を洗浄し、TEOS(テ
トラ・エトキシ・シラン)と酸素を原料ガスとしてプラ
ズマCVD法によって厚さ2000Åの酸化珪素の下地
膜202を形成する。
First, the substrate 201 is cleaned, and a base film 202 of silicon oxide having a thickness of 2000 Å is formed by plasma CVD using TEOS (tetra-ethoxy-silane) and oxygen as source gases.

【0017】そして、プラズマCVD法によって、厚さ
500〜1500Å、例えば1000Åの真性(I型)
の非晶質珪素膜203を成膜する。次に連続的に厚さ5
00〜2000Å、例えば1000Åの酸化珪素膜20
5をプラズマCVD法によって成膜する。そして、酸化
珪素膜205を選択的にエッチングして、非晶質珪素の
露出した領域204を形成する。この領域204が後に
触媒元素としてニッケルが導入される領域となる。
Then, an intrinsic (I type) having a thickness of 500 to 1500 Å, for example, 1000 Å is formed by the plasma CVD method.
The amorphous silicon film 203 is formed. Then continuously thickness 5
00-2000Å, for example 1000Å silicon oxide film 20
5 is formed by the plasma CVD method. Then, the silicon oxide film 205 is selectively etched to form an exposed region 204 of amorphous silicon. This region 204 will be a region into which nickel will be introduced later as a catalytic element.

【0018】そして結晶化を助長する触媒元素であるニ
ッケル元素を含んだ溶液(ここでは酢酸塩溶液)塗布す
る。酢酸溶液中におけるニッケルの濃度は100ppm
である。なお、酢酸溶液の塗布前に極薄い酸化膜(数十
Å以下)を形成し、酢酸溶液の濡れ性を改善することは
効果的である。
Then, a solution (here, an acetate solution) containing nickel element which is a catalytic element for promoting crystallization is applied. Nickel concentration in acetic acid solution is 100ppm
Is. It is effective to improve the wettability of the acetic acid solution by forming an extremely thin oxide film (several tens of liters or less) before applying the acetic acid solution.

【0019】またプラズマ処理や蒸着法やスパッタ法や
CVD法によってニッケル膜またはニッケルを含有する
膜を形成するこによって、ニッケルを導入するのでもよ
い。
Further, nickel may be introduced by forming a nickel film or a film containing nickel by plasma treatment, vapor deposition method, sputtering method or CVD method.

【0020】この後、窒素雰囲気下で500〜620
℃、例えば550℃、4時間の加熱アニールを行い、珪
素膜203の結晶化を行う。結晶化は、ニッケルと珪素
膜が接触した領域204を出発点として、矢印で示され
るように基板に対して平行な方向に結晶成長が進行す
る。図においては領域204はニッケルが直接導入され
て結晶化した部分、領域203は横方向に結晶化した部
分を示す。この203で示される横方向への結晶は、2
5μm程度である。またその結晶成長方向は概略〈11
1〉軸方向であることが確認されている。(図2
(A)、図3(A))
After this, in a nitrogen atmosphere, 500-620
The silicon film 203 is crystallized by performing heat annealing at 4 ° C., for example, 550 ° C. for 4 hours. Crystallization proceeds from a region 204 where the nickel film and the silicon film are in contact with each other as a starting point, and crystal growth proceeds in a direction parallel to the substrate as shown by an arrow. In the figure, a region 204 shows a portion crystallized by direct introduction of nickel, and a region 203 shows a portion crystallized laterally. The crystal in the lateral direction indicated by 203 is 2
It is about 5 μm. The crystal growth direction is roughly <11.
It has been confirmed that the direction is 1> axial. (Fig. 2
(A), FIG. 3 (A))

【0021】上記加熱処理による結晶化工程の後にさら
にレーザー光216の照射により珪素膜203の結晶性
を高める。この工程は、図2(B)に示すように周辺回
路領域のTFTを構成する珪素膜のみに対して行なう。
レーザー光は、KrFエキシマレーザー(波長248n
m、パルス幅20nsec)を用い、250mJ/cm
2 のエネルギー密度で2ショト行なう。またレーザー光
としては他のレーザー光を用いてもよい。このレーザー
光の照射は基板を400℃に加熱して行なったこれは、
レーザー光の照射によるアニール効果をさらに高めるた
めである。
After the crystallization step by the above heat treatment, the crystallinity of the silicon film 203 is further enhanced by irradiation with the laser beam 216. This step is performed only on the silicon film forming the TFT in the peripheral circuit region as shown in FIG.
The laser light is a KrF excimer laser (wavelength 248n
m, pulse width 20 nsec), and 250 mJ / cm
It performed 2 Shoto in second energy density. Other laser light may be used as the laser light. This laser irradiation was performed by heating the substrate to 400 ° C.
This is to further enhance the annealing effect due to laser light irradiation.

【0022】この工程は、強光の照射によるものでもよ
い。例えば波長1.2μmの赤外光を照射することによ
って行なうことができる。赤外光の照射は、数分間で高
温加熱処理したものと同等の効果を得ることができる。
This step may be performed by irradiation with strong light. For example, it can be performed by irradiating infrared light having a wavelength of 1.2 μm. Irradiation with infrared light can achieve the same effect as that obtained by heat treatment at high temperature for several minutes.

【0023】次に、酸化珪素膜205を除去する。この
際、領域204の表面に形成される酸化膜も同時に除去
する。そして、珪素膜203をパターニング後、ドライ
エッチングして、島状の活性層領域208を形成する。
この際、204で示された領域は、ニッケルが直接導入
された領域であり、ニッケルが高濃度に存在する領域で
ある。また、結晶成長の先端217にも、やはりニッケ
ルが高濃度に存在することが確認されている。これらの
領域では、その中間の領域に比較してニッケルの濃度が
高いことが判明している。したがって、本実施例におい
ては、活性層208において、これらのニッケル濃度の
高い領域がチャネル形成領域と重ならないようにした。
Next, the silicon oxide film 205 is removed. At this time, the oxide film formed on the surface of the region 204 is also removed at the same time. Then, after patterning the silicon film 203, dry etching is performed to form an island-shaped active layer region 208.
At this time, the region indicated by 204 is a region in which nickel is directly introduced, and is a region in which nickel is present at a high concentration. It has also been confirmed that nickel also exists at a high concentration at the crystal growth tip 217. It has been found that the nickel concentration in these regions is higher than that in the intermediate region. Therefore, in this embodiment, in the active layer 208, these regions having a high nickel concentration are prevented from overlapping the channel formation region.

【0024】その後、100体積%の水蒸気を含む10
気圧、500〜600℃の、代表的には550℃の雰囲
気中において、1時間放置することによって、活性層
(珪素膜)208の表面を酸化させ、酸化珪素膜209
を形成する。酸化珪素膜の厚さは1000Åとする。熱
酸化によって酸化珪素膜209を形成したのち、基板
を、アンモニア雰囲気(1気圧、100%)、400℃
に保持させる。そして、この状態で基板に対して、波長
0.6〜4μm、例えば、0.8〜1.4μmにピーク
をもつ赤外光を30〜180秒照射し、酸化珪素膜20
9に対して窒化処理を施す。なおこの際、雰囲気に0.
1〜10%のHClを混入してもよい。
Then, 10 containing 100% by volume of water vapor.
The surface of the active layer (silicon film) 208 is oxidized by leaving it in the atmosphere of 500 to 600 ° C., typically 550 ° C. for 1 hour to oxidize the surface of the silicon oxide film 209.
To form. The thickness of the silicon oxide film is 1000Å. After forming the silicon oxide film 209 by thermal oxidation, the substrate is placed in an ammonia atmosphere (1 atm, 100%) at 400 ° C.
To hold. Then, in this state, the substrate is irradiated with infrared light having a peak at a wavelength of 0.6 to 4 μm, for example, 0.8 to 1.4 μm for 30 to 180 seconds, and the silicon oxide film 20 is irradiated.
A nitriding process is performed on 9. At this time, the atmosphere was 0.
1-10% HCl may be mixed.

【0025】引き続いて、スパッタリング法によって、
厚さ3000〜8000Å、例えば6000Åのアルミ
ニウム(0.01〜0.2%のスカンジウムを含む)を
成膜する。そして、アルミニウム膜をパターニングし
て、ゲイト電極210を形成する。(図2(C)、図3
(C))
Subsequently, by the sputtering method,
A film of aluminum (containing 0.01 to 0.2% scandium) having a thickness of 3000 to 8000Å, for example, 6000Å is formed. Then, the aluminum film is patterned to form the gate electrode 210. (Fig. 2 (C), Fig. 3
(C))

【0026】さらに、このアルミニウムの電極の表面を
陽極酸化して、表面に酸化物層211を形成する。この
陽極酸化は、酒石酸が1〜5%含まれたエチレングリコ
ール溶液中で行う。得られる酸化物層211の厚さは2
000Åである。なお、この酸化物211は、後のイオ
ンドーピング工程において、オフセットゲイト領域を形
成する厚さとなるので、オフセットゲイト領域の長さを
上記陽極酸化工程で決めることができる。(図2
(D)、図3(D))
Further, the surface of the aluminum electrode is anodized to form an oxide layer 211 on the surface. This anodic oxidation is performed in an ethylene glycol solution containing 1-5% tartaric acid. The resulting oxide layer 211 has a thickness of 2
It is 000Å. Since the oxide 211 has a thickness to form the offset gate region in the subsequent ion doping process, the length of the offset gate region can be determined by the anodic oxidation process. (Fig. 2
(D), FIG. 3 (D))

【0027】次に、イオンドーピング法(プラズマドー
ピング法とも言う)によって、活性層領域(ソース/ド
レイン、チャネルを構成する)にゲイト電極部、すなわ
ちゲイト電極210とその周囲の酸化層211をマスク
として、自己整合的にN導電型を付与する不純物(ここ
では燐)を添加する。ドーピングガスとして、フォスフ
ィン(PH3 )を用い、加速電圧を60〜90kV、例
えば80kVとする。ドーズ量は1×1015〜8×10
15cm-2、例えば、4×1015cm-2とする。この結
果、N型の不純物領域212と213を形成することが
できる。図からも明らかなように不純物領域とゲイト電
極とは距離xだけ放れたオフセット状態となる。このよ
うなオフセット状態は、特にゲイト電極に逆電圧(Nチ
ャネルTFTの場合はマイナス)を印加した際のリーク
電流(オフ電流ともいう)を低減する上で有効である。
特に、本実施例のようにアクティブマトリクスの画素を
制御するTFTにおいては良好な画像を得るために画素
電極に蓄積された電荷が逃げないようにリーク電流が低
いことが望まれるので、オフセットを設けることは有効
である。
Next, the gate electrode portion, that is, the gate electrode 210 and the oxide layer 211 around the gate electrode portion 210 is used as a mask in the active layer region (which constitutes the source / drain and the channel) by the ion doping method (also called plasma doping method). An impurity (here, phosphorus) that imparts the N conductivity type is added in a self-aligning manner. Phosphine (PH 3 ) is used as the doping gas, and the acceleration voltage is set to 60 to 90 kV, for example, 80 kV. Dose amount is 1 × 10 15 to 8 × 10
It is set to 15 cm -2 , for example, 4 × 10 15 cm -2 . As a result, N-type impurity regions 212 and 213 can be formed. As is clear from the figure, the impurity region and the gate electrode are in an offset state separated by a distance x. Such an offset state is particularly effective in reducing a leak current (also referred to as an off current) when a reverse voltage (negative in the case of an N-channel TFT) is applied to the gate electrode.
In particular, in the TFT for controlling the pixels of the active matrix as in the present embodiment, it is desired that the leak current is low so that the charges accumulated in the pixel electrode do not escape in order to obtain a good image, and therefore an offset is provided. That is valid.

【0028】その後、レーザー光の照射によってアニー
ルを行う。レーザー光としては、KrFエキシマレーザ
ー(波長248nm、パルス幅20nsec)を用いる
が、他のレーザーであってもよい。レーザー光の照射条
件は、エネルギー密度が200〜400mJ/cm2
例えば250mJ/cm2 とし、一か所につき2〜10
ショット、例えば2ショット照射した。このレーザー光
の照射時に基板を200〜450℃程度に加熱すること
によって、効果を増大せしめてもよい。(図2(E)、
図3(E))
After that, annealing is performed by irradiation with laser light. As the laser light, a KrF excimer laser (wavelength 248 nm, pulse width 20 nsec) is used, but other laser may be used. The laser light irradiation conditions are energy density of 200 to 400 mJ / cm 2 ,
For example, 250 mJ / cm 2 and 2 to 10 per place
Shot, for example, 2 shots were irradiated. The effect may be increased by heating the substrate to about 200 to 450 ° C. during the irradiation of the laser light. (Fig. 2 (E),
(Fig. 3 (E))

【0029】続いて、厚さ6000Åの酸化珪素膜21
4を層間絶縁物としてプラズマCVD法によって形成す
る。さらに、スピンコーティング法によって透明なポリ
イミド膜215を形成し、表面を平坦化する。
Then, a silicon oxide film 21 having a thickness of 6000Å is formed.
4 as an interlayer insulator is formed by the plasma CVD method. Further, a transparent polyimide film 215 is formed by spin coating to flatten the surface.

【0030】そして、図3(F)に示すように画素領域
に形成されるTFTの出力の一端に連結されるITO電
極300を形成する。このITO電極300は画素電極
として機能する。
Then, as shown in FIG. 3F, an ITO electrode 300 connected to one end of the output of the TFT formed in the pixel region is formed. This ITO electrode 300 functions as a pixel electrode.

【0031】次に層間絶縁物214、215にコンタク
トホールを形成して、金属材料、例えば、窒化チタンと
アルミニウムの多層膜によってTFTの電極・配線21
7、218を形成する。この時図3(F)に示す如く画
素領域に形成されるTFTの一方の電極218を画素電
極であるITO電極300に接続させる。
Next, contact holes are formed in the interlayer insulators 214 and 215, and a TFT electrode / wiring 21 is formed by a metal material, for example, a multilayer film of titanium nitride and aluminum.
7 and 218 are formed. At this time, as shown in FIG. 3F, one electrode 218 of the TFT formed in the pixel region is connected to the ITO electrode 300 which is the pixel electrode.

【0032】最後に、1気圧の水素雰囲気で350℃、
30分のアニールを行い、アクティブマトリクスの画素
回路と該画素回路を駆動する周辺駆動回路を同時に形成
させる。(図2(F)、図3(F))
Finally, in a hydrogen atmosphere at 1 atm, 350 ° C.,
Annealing is performed for 30 minutes to simultaneously form an active matrix pixel circuit and a peripheral drive circuit for driving the pixel circuit. (Figure 2 (F), Figure 3 (F))

【0033】〔実施例2〕本実施例は、図3に示す画素
領域に配置されるTFTをそのキャリアの流れの方向と
結晶成長方向とを概略垂直な方向となるように構成する
例である。このような構成とすると、画素領域に配置さ
れるTFTにおいては、キャリアの移動に際して結晶粒
界を横切るようにキャリアが移動することになるので、
OFF電流の値を小さくすることができる。また周辺回
路領域に配置されるTFTは図2に示すのと同様な構成
とすることによって、キャリアは結晶粒界に沿って移動
することができ、高移動度を有する。TFTとすること
ができる。
[Embodiment 2] This embodiment is an example in which the TFT arranged in the pixel region shown in FIG. 3 is configured such that the carrier flow direction and the crystal growth direction are substantially perpendicular to each other. . With such a structure, in the TFT arranged in the pixel region, the carriers move so as to cross the crystal grain boundaries when the carriers move.
The OFF current value can be reduced. Further, the TFT arranged in the peripheral circuit region has a structure similar to that shown in FIG. 2 so that the carriers can move along the crystal grain boundaries and have high mobility. It can be a TFT.

【0034】本実施例を実現するためには、図3に示す
工程において、204で示す触媒倍元素であるニッケル
が導入される領域をTFTの手前側、あるいは向う側と
すればよい。こうすることで、その領域から生じる結晶
成長がソース/ドレイン領域212/213を結ぶ線に
対して垂直な方向となるため、キャリアの移動が結晶粒
界を横切る構成とすることができる。その他の工程は実
施例1の場合と同様である。
In order to implement this embodiment, in the step shown in FIG. 3, the region 204 into which nickel, which is a catalytic element, is introduced may be set to the front side or the opposite side of the TFT. By doing so, the crystal growth generated in that region is in a direction perpendicular to the line connecting the source / drain regions 212/213, so that carrier movement can cross the crystal grain boundaries. The other steps are the same as those in the first embodiment.

【0035】[0035]

【発明の効果】本発明の如くアクティブマトリクス型の
液晶表示装置の画素領域と周辺回路領域とに形成される
TFTをそれぞれ基板に平行な方向に結晶成長した結晶
性珪素膜で構成し、しかも周辺回路領域に形成されるT
FTを構成する結晶性珪素膜に対してレーザー光または
強光を照射することによって、周辺回路領域に適したT
FTを構成することができる。
According to the present invention, the TFTs formed in the pixel region and the peripheral circuit region of the active matrix type liquid crystal display device are each formed of a crystalline silicon film crystal-grown in a direction parallel to the substrate, and the periphery of the TFT is formed. T formed in the circuit area
By irradiating the crystalline silicon film forming the FT with laser light or intense light, T suitable for the peripheral circuit region is obtained.
An FT can be constructed.

【図面の簡単な説明】[Brief description of drawings]

【図1】 アクティブマトリクス型の液晶表示装置の概
要を示す。
FIG. 1 shows an outline of an active matrix type liquid crystal display device.

【図2】 TFTの作製工程を示す。FIG. 2 shows a manufacturing process of a TFT.

【図3】 TFTの作製工程を示す。FIG. 3 shows a manufacturing process of a TFT.

【符号の説明】[Explanation of symbols]

201・・・・ガラス基板 202・・・・下地膜(酸化珪素膜) 203・・・・非晶質珪素膜 205・・・・酸化珪素膜 208・・・・活性層 209・・・・酸化珪素膜(ゲイト絶縁膜) 210・・・・ゲイト電極 211・・・・陽極酸化物層 212・・・・ソース/ドレイン領域 213・・・・ドレイン/ソース領域 201 ... Glass substrate 202 ... Base film (silicon oxide film) 203 ... Amorphous silicon film 205 ... Silicon oxide film 208 ... Active layer 209 ... Oxidation Silicon film (gate insulating film) 210 ... Gate electrode 211 ... Anodic oxide layer 212 ... Source / drain region 213 ... Drain / source region

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/20 8418−4M 21/268 Z 27/12 R ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01L 21/20 8418-4M 21/268 Z 27/12 R

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板に平行な方向に結晶成長が行なわれ
た結晶性珪素膜を用いたTFTがアクティブマトリクス
型の液晶表示装置の画素領域と周辺回路領域とに配置さ
れており、 前記周辺回路領域に配置されたTFTを構成する結晶性
珪素膜は、レーザー光または強光を照射することにより
その結晶性が高められていることを特徴とする半導体装
置。
1. A TFT using a crystalline silicon film in which crystal growth is performed in a direction parallel to a substrate is arranged in a pixel region and a peripheral circuit region of an active matrix type liquid crystal display device. A semiconductor device characterized in that a crystalline silicon film forming a TFT arranged in a region has its crystallinity enhanced by irradiation with laser light or strong light.
【請求項2】 アクティブマトリクス型の液晶表示装置
を構成する基板において、 前記基板の表面には、画素領域に配置されるTFTと周
辺回路領域に配置されるTFTとが形成されており、 前記画素領域に配置されるTFTと前記周辺回路領域に
配置されるTFTとは基板に平行な方向に結晶成長した
結晶性珪素膜を用いて構成されており、 前記周辺回路領域の結晶性珪素膜はレーザー光または強
光の照射によりその結晶性が高められていることを特徴
とする半導体装置。
2. A substrate constituting an active matrix type liquid crystal display device, wherein a TFT arranged in a pixel region and a TFT arranged in a peripheral circuit region are formed on a surface of the substrate, The TFT arranged in the region and the TFT arranged in the peripheral circuit region are configured by using a crystalline silicon film crystal-grown in a direction parallel to the substrate, and the crystalline silicon film in the peripheral circuit region is a laser. A semiconductor device whose crystallinity is enhanced by irradiation with light or strong light.
【請求項3】 絶縁表面を有する基板上に非晶質珪素膜
を形成する工程と、 前記非晶質珪素膜の結晶化を助長する触媒元素を前記非
晶質珪素膜に直接または間接的に接して設ける工程と、 前記非晶質珪素膜を加熱処理し、前記触媒元素が直接ま
たは間接的に接して設けられた領域から該領域の周辺部
に対して基板に平行な方向に結晶成長を行なわす工程
と、 該工程において結晶成長が行なわれた領域の一部にレー
ザー光または強光を照射する工程と、 該工程においてレーザー光が照射された領域の結晶性珪
素膜を用いてアクティブマトリクス型の液晶表示装置の
周辺回路部分に配置されるTFTを作製する工程と、 を有する半導体装置の作製方法。
3. A step of forming an amorphous silicon film on a substrate having an insulating surface, and a catalyst element for promoting crystallization of the amorphous silicon film directly or indirectly on the amorphous silicon film. And a step of heat-treating the amorphous silicon film so as to grow crystals in a direction parallel to the substrate from a region provided in direct or indirect contact with the catalytic element to a peripheral portion of the region. A step of performing, a step of irradiating a part of the region where crystal growth is performed with laser light or strong light, and an active matrix using the crystalline silicon film in the region irradiated with laser light in the step Of manufacturing a TFT arranged in a peripheral circuit portion of a mold type liquid crystal display device, and a manufacturing method of a semiconductor device.
【請求項4】 絶縁表面を有する基板上に配置された複
数のTFTを有し、 前記TFTは結晶化を助長する触媒元素が選択的に添加
され、基板に平行な方向に結晶成長した結晶性珪素膜で
構成されており、 前記TFTの一部はアクティブマトリクス型の液晶表示
装置の画素領域に配置され、 前記TFTの他の一部はアクティブマトリクス型の液晶
表示装置の周辺回路領域に配置され、 前記周辺回路領域に配置されたTFTを構成する結晶性
珪素膜はレーザー光または強光の照射によってその結晶
性が高められていることを特徴とする半導体装置。
4. A crystalline structure comprising a plurality of TFTs arranged on a substrate having an insulating surface, wherein the TFT is selectively added with a catalytic element for promoting crystallization, and is crystallized in a direction parallel to the substrate. A part of the TFT is arranged in a pixel region of an active matrix type liquid crystal display device, and another part of the TFT is arranged in a peripheral circuit region of the active matrix type liquid crystal display device. The semiconductor device characterized in that the crystalline silicon film forming the TFT arranged in the peripheral circuit region has its crystallinity enhanced by irradiation with laser light or strong light.
【請求項5】 基板に平行な方向に結晶成長が行なわれ
た結晶性珪素膜を用いたTFTがアクティブマトリクス
型の液晶表示装置の画素領域と周辺回路領域とに配置さ
れており、 前記周辺回路領域に配置されたTFTを構成する結晶性
珪素膜は、レーザー光または強光を照射することにより
その結晶性が高められているとともに、その結晶成長方
向がキャリアの移動する方向と概略同一の方向であり、 前記画素領域に配置されたTFTを構成する結晶性珪素
膜は、その結晶成長方向がキャリアの移動する方向と概
略垂直の方向であることを特徴とする半導体装置。
5. A TFT using a crystalline silicon film in which crystal growth is performed in a direction parallel to a substrate is arranged in a pixel region and a peripheral circuit region of an active matrix type liquid crystal display device. The crystalline silicon film constituting the TFT arranged in the region has its crystallinity enhanced by irradiation with laser light or strong light, and its crystal growth direction is substantially the same as the carrier movement direction. In the semiconductor device, the crystalline silicon film forming the TFT disposed in the pixel region has a crystal growth direction substantially perpendicular to a carrier moving direction.
JP34671093A 1993-12-22 1993-12-22 Semiconductor device and manufacturing method thereof Expired - Lifetime JP2762218B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP34671093A JP2762218B2 (en) 1993-12-22 1993-12-22 Semiconductor device and manufacturing method thereof
KR1019940035849A KR100319332B1 (en) 1993-12-22 1994-12-22 Semiconductor device and electro-optical device
US08/592,513 US5705829A (en) 1993-12-22 1996-01-26 Semiconductor device formed using a catalyst element capable of promoting crystallization
KR1020000022831A KR100315888B1 (en) 1993-12-22 2000-04-28 An active matrix display device and its manufacturing method
US10/135,773 US6624445B2 (en) 1993-12-22 2002-05-01 Semiconductor device and method of manufacturing the same
US10/747,165 US6955954B2 (en) 1993-12-22 2003-12-30 Semiconductor device and method for manufacturing the same
US11/250,635 US7402471B2 (en) 1993-12-22 2005-10-17 Semiconductor device and method for manufacturing the same
US12/175,481 US7700421B2 (en) 1993-12-22 2008-07-18 Semiconductor device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34671093A JP2762218B2 (en) 1993-12-22 1993-12-22 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH07183535A true JPH07183535A (en) 1995-07-21
JP2762218B2 JP2762218B2 (en) 1998-06-04

Family

ID=18385290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34671093A Expired - Lifetime JP2762218B2 (en) 1993-12-22 1993-12-22 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2762218B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008132862A1 (en) * 2007-04-25 2008-11-06 Sharp Kabushiki Kaisha Semiconductor device, and its manufacturing method
US7943968B1 (en) 1996-12-24 2011-05-17 Semiconductor Energy Laboratory Co., Ltd. Charge transfer semiconductor device and manufacturing method thereof
JP2011138979A (en) * 2009-12-29 2011-07-14 Sharp Corp Microcrystal silicon film for photoelectric conversion device, and photoelectric conversion device
US8455044B2 (en) 2010-11-26 2013-06-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film, method for manufacturing the same, and power storage device
US8896098B2 (en) 2010-05-28 2014-11-25 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US10141120B2 (en) 2010-02-26 2018-11-27 Semiconductor Energy Laboratory Co., Ltd. Power storage system and manufacturing method thereof and secondary battery and capacitor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445162A (en) * 1987-08-13 1989-02-17 Hitachi Ltd Manufacture of semiconductor device
JPH02140915A (en) * 1988-11-22 1990-05-30 Seiko Epson Corp Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445162A (en) * 1987-08-13 1989-02-17 Hitachi Ltd Manufacture of semiconductor device
JPH02140915A (en) * 1988-11-22 1990-05-30 Seiko Epson Corp Manufacture of semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7943968B1 (en) 1996-12-24 2011-05-17 Semiconductor Energy Laboratory Co., Ltd. Charge transfer semiconductor device and manufacturing method thereof
WO2008132862A1 (en) * 2007-04-25 2008-11-06 Sharp Kabushiki Kaisha Semiconductor device, and its manufacturing method
JPWO2008132862A1 (en) * 2007-04-25 2010-07-22 シャープ株式会社 Semiconductor device and manufacturing method thereof
US8575614B2 (en) 2007-04-25 2013-11-05 Sharp Kabushiki Kaisha Display device
JP2011138979A (en) * 2009-12-29 2011-07-14 Sharp Corp Microcrystal silicon film for photoelectric conversion device, and photoelectric conversion device
US10141120B2 (en) 2010-02-26 2018-11-27 Semiconductor Energy Laboratory Co., Ltd. Power storage system and manufacturing method thereof and secondary battery and capacitor
US8896098B2 (en) 2010-05-28 2014-11-25 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US8455044B2 (en) 2010-11-26 2013-06-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film, method for manufacturing the same, and power storage device
US8643182B2 (en) 2010-11-26 2014-02-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film, method for manufacturing the same, and power storage device

Also Published As

Publication number Publication date
JP2762218B2 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
JP2860869B2 (en) Semiconductor device and manufacturing method thereof
JP3562590B2 (en) Semiconductor device manufacturing method
KR0165140B1 (en) Method of fabricating semiconductor device and method of processing substrate
JP3464285B2 (en) Method for manufacturing semiconductor device
JP2649325B2 (en) Method for manufacturing semiconductor device
US7186601B2 (en) Method of fabricating a semiconductor device utilizing a catalyst material solution
JP2762218B2 (en) Semiconductor device and manufacturing method thereof
JP2762219B2 (en) Semiconductor device and manufacturing method thereof
JP2753955B2 (en) Glass substrate processing method
JP3202687B2 (en) Method for manufacturing semiconductor device
JP3488361B2 (en) Method for manufacturing semiconductor device
JPH0799323A (en) Manufacture of semiconductor device
JP3025814B2 (en) Semiconductor device
JP3202688B2 (en) Method for manufacturing semiconductor device
JP3488441B2 (en) Method for manufacturing active liquid crystal display device
JP3545289B2 (en) Semiconductor device manufacturing method
JP3618604B2 (en) Semiconductor device manufacturing method
JPH07193247A (en) Thin-film transistor and its manufacture
JP3435561B2 (en) Semiconductor device and manufacturing method thereof
JP3488440B2 (en) Method for manufacturing active liquid crystal display device
JP3408242B2 (en) Method for manufacturing semiconductor device
JP3488360B2 (en) Method for manufacturing semiconductor device
JP3950307B2 (en) Method for manufacturing semiconductor device
JP3600092B2 (en) Semiconductor device manufacturing method
JP3393863B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080327

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110327

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110327

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 16

EXPY Cancellation because of completion of term