JPH0718350B2 - Integrated coal gasification combined cycle power plant - Google Patents

Integrated coal gasification combined cycle power plant

Info

Publication number
JPH0718350B2
JPH0718350B2 JP62119063A JP11906387A JPH0718350B2 JP H0718350 B2 JPH0718350 B2 JP H0718350B2 JP 62119063 A JP62119063 A JP 62119063A JP 11906387 A JP11906387 A JP 11906387A JP H0718350 B2 JPH0718350 B2 JP H0718350B2
Authority
JP
Japan
Prior art keywords
air
gas
compressor
coal gasification
combined cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62119063A
Other languages
Japanese (ja)
Other versions
JPS63285230A (en
Inventor
洋市 服部
芳樹 野口
建志 横須賀
伸男 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP62119063A priority Critical patent/JPH0718350B2/en
Publication of JPS63285230A publication Critical patent/JPS63285230A/en
Publication of JPH0718350B2 publication Critical patent/JPH0718350B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空気酸化石炭ガス化複合発電プラントに係
り、ガスタービンの圧縮機より抽気し、さらに昇圧圧縮
機にて加圧して石炭ガス化炉へ空気を供給するシステム
に関するものである。
Description: TECHNICAL FIELD The present invention relates to an air-oxidized coal gasification combined cycle power generation plant, which extracts gas from a compressor of a gas turbine and further pressurizes it with a boost compressor to produce coal gasification. The present invention relates to a system for supplying air to a furnace.

〔従来の技術〕[Conventional technology]

この種の複合発電プラントに関しては、特開昭57-59993
号に記載の技術で公知である。
Japanese Patent Application Laid-Open No. 57-59993 discloses this type of combined power plant.
It is well known in the art.

上記の公知技術を含めて、従来一般に石炭ガス化炉への
空気はガスタービンの圧縮機から抽気し、中間空気冷却
器で冷却された後、昇圧圧縮機で加圧されて石炭ガス化
炉へ供給されている。前記公知例ではガスタービンの圧
縮機からの抽気が保有する熱は中間空気冷却器において
系外へ捨てられており、プラントの熱損失となつてい
た。
Including the above-mentioned known technology, conventionally, air to a coal gasification furnace is generally extracted from a compressor of a gas turbine, cooled by an intermediate air cooler, and then pressurized by a boost compressor to a coal gasification furnace. Is being supplied. In the above-mentioned known example, the heat retained by the bleed air from the compressor of the gas turbine is wasted to the outside of the system in the intermediate air cooler, resulting in heat loss in the plant.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

加圧式空気酸化石炭ガス化炉と複合発電プラントとから
構成される石炭ガス化複合発電プラントでは、石炭ガス
化炉のガス化剤である空気は、ガスタービンの圧縮機か
ら抽気して昇圧圧縮機で昇圧した後に石炭ガス化炉へ供
給される。石炭ガス化炉へ供給する空気をガスタービン
の圧縮機から抽気せずに、別置の圧縮機から供給する事
も可能であるが、別置の小容量の圧縮機よりもガスター
ビンの圧縮機の方が、効率が良い(すなわち圧縮に要す
る動力が少ない)為、一般に石炭ガス化炉への空気はガ
スタービンの圧縮機から抽気して更に昇圧圧縮機により
昇圧するシステムによつて供給される。
In a coal gasification combined cycle power generation plant composed of a pressurized air oxidation coal gasification furnace and a combined cycle power generation plant, air which is a gasifying agent of the coal gasification furnace is extracted from a compressor of a gas turbine and boosted by a booster compressor. It is supplied to the coal gasifier after the pressure is raised by. It is possible to supply the air supplied to the coal gasification furnace from the compressor of the gas turbine without extracting it from the compressor of the gas turbine, but it is possible to use the compressor of the gas turbine rather than the compressor of a small capacity installed separately. Is more efficient (that is, less power is required for compression), the air to the coal gasification furnace is generally supplied by a system that bleeds air from the compressor of the gas turbine and further boosts the pressure by the boost compressor. .

昇圧圧縮機の動力は、圧縮機での圧力比・空気重量流量
が同一の場合、空気の体積流量が小さいほど動力は小さ
くなる。従つて、圧縮機入口の空気温度が高い場合は、
体積流量を減少させる為に、できる限り冷却した方がよ
いことになる。一方、ガスタービンの圧縮機出口の空気
は約390℃と、かなり高温である。この為、ガスタービ
ンの圧縮機から抽気を一度冷却して、空気の体積流量を
減少させた後、昇圧圧縮機へ送ることによつて昇圧圧縮
機の消費動力を低減させている。
When the pressure ratio and the air weight flow rate in the compressor are the same, the power of the booster compressor becomes smaller as the volume flow rate of air becomes smaller. Therefore, if the air temperature at the compressor inlet is high,
In order to reduce the volumetric flow, it is better to cool as much as possible. On the other hand, the air at the compressor outlet of the gas turbine is about 390 ° C, which is a fairly high temperature. Therefore, the bleed air from the compressor of the gas turbine is once cooled to reduce the volumetric flow rate of air and then sent to the boost compressor to reduce the power consumption of the boost compressor.

以上の理由により、上記従来技術においては昇圧圧縮機
の上流に空気冷却器を設置し、昇圧圧縮機の動力低減へ
の配慮はなされているが、ガスタービンの圧縮機からの
高温抽気が有する熱量の有効利用についての配慮はなさ
れておらず、プラントの熱損失が大きいという問題があ
つた。
For the above reasons, in the above-mentioned conventional technology, an air cooler is installed upstream of the booster compressor, and consideration is given to reducing the power of the booster compressor, but the heat quantity of the high-temperature bleed air from the compressor of the gas turbine is There was a problem that the heat loss of the plant was large because no consideration was given to the effective use of the plant.

本発明の目的はガスタービンの圧縮機からガス化炉へ空
気を供給する系統の熱損失を減少させることの出来る石
炭ガス化複合発電プラントを提供しようとするものであ
る。
An object of the present invention is to provide an integrated coal gasification combined cycle power plant that can reduce heat loss in a system that supplies air from a compressor of a gas turbine to a gasification furnace.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、加圧式空気酸化石炭ガス化炉、及び、ガス
タービン・排熱回収ボイラ・蒸気タービンを含む複合発
電設備、並びに昇圧圧縮機を設けた石炭ガス化複合発電
プラントにおいて、(a)ガスタービン圧縮機からの抽
気と、昇圧圧縮機から送出される空気との間に熱交換を
行わせるガス/ガス熱交換器を設けるとともに、(b)
昇圧圧縮機の吸入空気を冷却する空気冷却器であって排
熱回収ボイラへの給水を吸熱物質として用いる空気冷却
器を設けることで、達成される。
In the coal gasification combined cycle power generation plant provided with the pressurized air-oxidized coal gasification furnace, the gas turbine, the exhaust heat recovery boiler, and the steam turbine, and the step-up compressor, A gas / gas heat exchanger is provided for performing heat exchange between the bleed air from the turbine compressor and the air sent from the booster compressor, and (b)
This is achieved by providing an air cooler that cools the intake air of the booster compressor and that uses the water supplied to the exhaust heat recovery boiler as the heat absorbing substance.

〔作用〕[Action]

上記のように構成した複合発電プラントにおいて、ガス
タービンの圧縮機出口の約390℃の高温空気は、ガスタ
ービン圧縮機出口のガス/ガス熱交換器にて約190℃ま
で冷却されると同時に、昇圧圧縮機出口の空気を加熱す
ることにより、その顕熱を、ガス化炉へ供給する空気に
与えて熱回収される。更に、排熱回収ボイラへ供給され
る約30℃の給水による空気冷却器にて、約50℃まで冷却
されると同時に、該給水を加熱することにより、その顕
熱を排熱回収ボイラへの給水に与えて熱回収される。給
水を冷熱源とする空気冷却器を出た空気は、更に昇圧圧
縮機の入口に設置された外部冷却水による空気冷却器に
よつて約40℃まで冷却された後、昇圧圧縮機へ送られ
る。昇圧圧縮機へ送られた空気は、昇圧圧縮機にて昇圧
され、断熱圧縮によつて温度が上昇して約150℃の空気
となり、さらにガスタービンの圧縮機の抽気によりガス
/ガス熱交換器にて約350℃まで加熱された後、石炭ガ
ス化炉へ供給される。
In the combined cycle power plant configured as described above, the high temperature air of about 390 ° C at the compressor outlet of the gas turbine is cooled to about 190 ° C by the gas / gas heat exchanger at the outlet of the gas turbine compressor, and at the same time, By heating the air at the outlet of the booster compressor, its sensible heat is given to the air supplied to the gasification furnace to recover the heat. Further, the sensible heat is supplied to the exhaust heat recovery boiler by heating the supply water at the same time as it is cooled down to about 50 ° C. by the air cooler supplied with water at about 30 ° C. It is given to the water supply to recover heat. The air that exits the air cooler that uses the supply water as a cold heat source is further cooled to about 40 ° C by the air cooler using the external cooling water installed at the inlet of the boost compressor, and then sent to the boost compressor. . The air sent to the booster compressor is boosted by the booster compressor, the temperature rises due to adiabatic compression and becomes air at about 150 ° C, and the gas / gas heat exchanger is further extracted by the gas turbine compressor bleed air. After being heated to about 350 ℃, it is supplied to the coal gasification furnace.

上記のように、従来空気冷却器において外部へ捨てられ
ていた空気の顕熱が、石炭ガス化炉へ供給される空気及
び排熱回収ボイラへの給水に熱回収されることにより、
プラント熱効率の向上が図られる。
As described above, the sensible heat of the air conventionally discarded to the outside in the air cooler is recovered by the heat supplied to the air supplied to the coal gasification furnace and the waste heat recovery boiler,
The plant thermal efficiency is improved.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面を参照して説明する。 An embodiment of the present invention will be described below with reference to the drawings.

本発明の実施例を説明する前に、第1図を用い、本発明
の原理を説明する。
Before explaining the embodiment of the present invention, the principle of the present invention will be described with reference to FIG.

石炭ガス化炉1に石炭2と空気3が供給され、該石炭ガ
ス化炉1では石炭と空気とが反応し、高温の粗生成ガス
4が生成される。高温の粗生成ガス4はガス化炉熱回収
ボイラ5でガス精製6の要求する温度まで冷却されると
同時に、その顕熱を蒸気として熱回収される。
The coal 2 and the air 3 are supplied to the coal gasification furnace 1, and the coal and the air react in the coal gasification furnace 1 to generate a high-temperature crude product gas 4. The high-temperature crude product gas 4 is cooled to a temperature required by the gas refining 6 by a gasification furnace heat recovery boiler 5, and at the same time, its sensible heat is recovered as steam.

400℃程度まで冷却された粗生成ガスは、ガス精製6に
送られ、除塵・脱硫されてクリーンな燃料ガス7とな
る。
The crude product gas cooled to about 400 ° C. is sent to the gas refining 6, where it is dusted and desulfurized to become a clean fuel gas 7.

燃料ガス7はガスタービン8の燃焼器9へ送られ、圧縮
機10からの空気により燃焼した高温高圧のガスを発生す
る。燃焼器9で発生した高温高圧のガスはガスタービン
11を駆動し、このガスタービンに接続されている発電機
12で電気出力を発生する。
The fuel gas 7 is sent to the combustor 9 of the gas turbine 8 and generates high-temperature and high-pressure gas burned by the air from the compressor 10. The high temperature and high pressure gas generated in the combustor 9 is a gas turbine.
Generator that drives 11 and is connected to this gas turbine
Generates electrical output at 12.

ガスタービン8の高温の排ガス13は排熱回収ボイラ14へ
送られ、ガスの保有する顕熱を蒸気として熱回収された
後、比較的低温のガス(約100℃)として系外へ放出さ
れる。
The high-temperature exhaust gas 13 of the gas turbine 8 is sent to the exhaust heat recovery boiler 14, where the sensible heat of the gas is recovered as steam, and then discharged as a relatively low temperature gas (about 100 ° C.) to the outside of the system. .

排熱回収ボイラ14は過熱器15,蒸発器16,節炭器17より構
成される。排熱回収ボイラ14への給水18はまず節炭器17
へ送られて高温水となり、蒸発器16及びガス化炉熱回収
ボイラ5へ供給される。蒸発器16では飽和蒸気が発生
し、ガス化炉熱回収ボイラ5で発生した飽和蒸気と共
に、過熱器15へ送られて過熱蒸気となり、蒸気タービン
19へ供給される。蒸気タービン19は発電機20を駆動して
電気出力を発生させる。
The exhaust heat recovery boiler 14 includes a superheater 15, an evaporator 16 and a economizer 17. Water supply 18 to the exhaust heat recovery boiler 14 is first a economizer 17
Is supplied to the evaporator 16 and the gasification furnace heat recovery boiler 5. Saturated steam is generated in the evaporator 16, and is sent to the superheater 15 together with the saturated steam generated in the gasification furnace heat recovery boiler 5 to become superheated steam.
Supplied to 19. The steam turbine 19 drives a generator 20 to generate an electric output.

一方、蒸気タービン19で仕事をした蒸気は、復水器21へ
送られ、冷却水によつて冷却されて凝縮し、復水とな
る。復水器21の復水は給水ポンプ22によつて排熱回収ボ
イラ14への給水18として供給される。
On the other hand, the steam that has worked in the steam turbine 19 is sent to the condenser 21, cooled by the cooling water, condensed, and becomes condensed water. Condensed water of the condenser 21 is supplied as a water supply 18 to the exhaust heat recovery boiler 14 by a water supply pump 22.

石炭ガス化炉1へ供給される空気3は、ガスタービン8
の圧縮機10により圧縮された空気の一部を抽気して、昇
圧圧縮機23にて昇圧された後、石炭ガス化炉1への供給
される。
The air 3 supplied to the coal gasifier 1 is a gas turbine 8
Part of the air compressed by the compressor 10 is extracted, pressurized by the boost compressor 23, and then supplied to the coal gasification furnace 1.

本実施例では、昇圧圧縮機23へ送られる空気の冷却の為
に、ガス/ガス熱交換器24及び空気冷却器25が設置され
る。ガス/ガス熱交換器24はガスタービン8の圧縮機10
の出口空気と昇圧圧縮機23の出口空気との熱交換を行う
ように設置され、空気冷却器25は昇圧圧縮機23の入口に
設置される。
In this embodiment, a gas / gas heat exchanger 24 and an air cooler 25 are installed to cool the air sent to the boost compressor 23. The gas / gas heat exchanger 24 is the compressor 10 of the gas turbine 8.
The air cooler 25 is installed so as to exchange heat between the outlet air of the booster compressor 23 and the outlet air of the booster compressor 23, and the air cooler 25 is installed at the inlet of the booster compressor 23.

ガスタービン8の圧縮機10からの抽気は約390℃と高温
であるが、ガス/ガス熱交換器24にて昇圧圧縮機23から
の約150℃の空気と熱交換し、約190℃程度まで冷却され
る。ガス/ガス熱交換器24を出た空気は、更に空気冷却
器25にて外部冷却水により冷却される。空気冷却器25出
口の空気温度をどの程度まで下げられるかは外部冷却水
の温度に依存するが、20℃程度の海水を外部冷却水に使
用する場合は、空気冷却器25出口の空気温度は40℃程度
となる。昇圧圧縮機23へ送られた空気は、昇圧圧縮機に
て断熱圧縮される為、昇圧圧縮機出口の空気温度は約15
0℃程度となる。昇圧圧縮機を出た空気は、ガス/ガス
熱交換器24にてガスタービンの抽気により加熱されて約
350℃となり石炭ガス化炉1へ供給される。
Although the extraction air from the compressor 10 of the gas turbine 8 is as high as about 390 ° C, the gas / gas heat exchanger 24 exchanges heat with the air of about 150 ° C from the step-up compressor 23 to about 190 ° C. To be cooled. The air exiting the gas / gas heat exchanger 24 is further cooled in the air cooler 25 by external cooling water. How much the air temperature at the outlet of the air cooler 25 can be lowered depends on the temperature of the external cooling water, but when using seawater of about 20 ° C for the external cooling water, the air temperature at the outlet of the air cooler 25 is It will be about 40 ℃. Since the air sent to the boost compressor 23 is adiabatically compressed by the boost compressor, the air temperature at the exit of the boost compressor is about 15
It will be about 0 ° C. The air exiting the booster compressor is heated by the gas turbine gas extraction in the gas / gas heat exchanger 24,
It reaches 350 ° C and is supplied to the coal gasifier 1.

この第1図の原理的構成によれば、従来外部へ捨てられ
ていた空気の顕熱を、石炭ガス化炉1へ供給するガス化
用空気3及び排熱回収ボイラ5への給水に熱回収できる
のでプラント熱効率向上の効果がある。
According to the principle configuration of FIG. 1, the sensible heat of the air, which has been conventionally discarded to the outside, is recovered as the feed water to the gasification air 3 and the exhaust heat recovery boiler 5 which are supplied to the coal gasification furnace 1. As a result, the plant thermal efficiency can be improved.

ガスタービン圧縮機10から昇圧圧縮機23へ送る空気は、
該昇圧圧縮機23の動力低減の為に本例では、約390℃か
ら約40℃まで冷却しているが、この空気の冷却顕熱はプ
ラントへの燃料入熱すなわち石炭入熱の約5.3%に相当
する。従来技術においてはこの約5.3%の熱量が外部へ
捨てられて熱損失となつていたが、第1図においては前
述の如く、空気の冷却顕熱をガス化用空気及び給水へ熱
回収することによりプラント熱効率が向上する。プラン
ト熱効率向上のメカニズムについて、以下各要因毎に具
体的に説明する。
The air sent from the gas turbine compressor 10 to the step-up compressor 23 is
In this example, in order to reduce the power of the step-up compressor 23, the temperature is cooled from about 390 ° C to about 40 ° C. The sensible heat for cooling the air is about 5.3% of the fuel heat input to the plant, that is, the coal heat input. Equivalent to. In the prior art, about 5.3% of this amount of heat was discarded to the outside, resulting in heat loss. However, in FIG. 1, as described above, the cooling sensible heat of the air must be recovered to the gasification air and the feed water. Improves plant thermal efficiency. The mechanism for improving the plant thermal efficiency will be specifically described below for each factor.

まず第1に、空気の冷却顕熱を昇圧圧縮機23の出口の空
気に熱回収することにより、石炭ガス化炉へ送る空気の
温度を150℃から350℃へ高めて、プラント熱効率の向上
を図つている。石炭ガス化炉1では石炭と空気とにより
ガス化反応が行なわれ、粗生成ガス4が生成されるが、
石炭ガス化炉1内の温度は例えば噴流層方式ガス化炉で
は1500〜1700℃と、かなり高温にしている。これは、石
炭ガス化炉の灰を溶融状態のスラグで外部へ排出するた
めに石炭ガス化炉内の温度を灰の溶融点以上にする必要
があるからである。石炭ガス化炉1内のガス化反応は、
燃焼部分燃焼(不完全燃焼)・水性ガス反応・シフト反
応等が複雑に行なわれているが、ガス化空気の供給温度
が低くなると燃焼の比率が大きくなる。例えば空気の温
度が150℃の場合と350℃の場合とを想定すると、供給さ
れた空気を同じガス化温度まで上昇させる為に150℃の
空気の方がより多くの熱量を必要とする。従つて、150
℃の空気のケースの方が、より多くの熱量を供給する為
に、供給する空気量を増加し、ガス化反応の中の燃焼反
応の比率を増加させる必要がある。この為、石炭ガス化
炉へ供給される石炭の持つ発熱量の中のガスへ転換する
熱量が減少し、粗生成ガスの発熱量は減少する。又、空
気量が増加すると生成する粗生成ガス量が増加する。一
方、粗生成ガスの温度はガス化炉内で1500〜1700℃、ガ
ス化炉熱回収ボイラ出口で約400℃とガス量によらず一
定である為、ガス量が増加するとガス化炉熱回収ボイラ
で熱回収する熱量が増加し、熱回収ボイラの蒸気量は増
加する。
First of all, by recovering the cooling sensible heat of air to the air at the outlet of the step-up compressor 23, the temperature of the air sent to the coal gasification furnace is increased from 150 ° C to 350 ° C to improve the plant thermal efficiency. I'm drawing. In the coal gasification furnace 1, a gasification reaction is performed with coal and air to generate a crude product gas 4,
The temperature in the coal gasification furnace 1 is considerably high, for example, 1500 to 1700 ° C. in the spouted bed type gasification furnace. This is because the temperature in the coal gasification furnace must be set to the melting point of the ash or higher in order to discharge the ash in the coal gasification furnace to the outside as molten slag. The gasification reaction in the coal gasifier 1
Combustion Partial combustion (incomplete combustion), water-gas reaction, shift reaction, etc. are performed in a complicated manner, but the rate of combustion increases as the supply temperature of gasified air decreases. For example, assuming that the air temperature is 150 ° C. and 350 ° C., 150 ° C. air requires a larger amount of heat to raise the supplied air to the same gasification temperature. Therefore, 150
In the case of air at 0 ° C., in order to supply a larger amount of heat, it is necessary to increase the amount of supplied air and increase the ratio of combustion reaction in the gasification reaction. Therefore, the amount of heat converted to gas in the calorific value of coal supplied to the coal gasifier is reduced, and the calorific value of the crude product gas is reduced. Further, when the amount of air increases, the amount of crude product gas generated increases. On the other hand, the temperature of the crude product gas is 1500 to 1700 ℃ in the gasifier, and about 400 ℃ at the gasifier heat recovery boiler outlet, which is constant regardless of the gas amount. The amount of heat recovered in the boiler increases, and the amount of steam in the heat recovery boiler increases.

従つて、複合発電設備(ガスタービン・排熱回収ボイラ
・蒸気タービンより構成される)へ供給される燃料ガス
と蒸気の熱量との比率は、ガス化用空気の温度が高いほ
ど上昇する。複合発電設備では、燃料ガスはガスタービ
ンで仕事をし、更にその排ガスが蒸気を発生させ、蒸気
タービンで仕事をするのに対し、蒸気は蒸気タービンの
みで仕事をする為、複合発電設備へ供給される総熱量の
中で燃料ガスの熱量の比率が高いほど複合発電設備の熱
効率は高くなる。ゆえに、ガス化用空気の温度が高いほ
ど燃料ガスの比率は高くなり、プラント熱効率は高くな
る。
Therefore, the ratio of the heat quantity of the fuel gas and the steam supplied to the combined cycle power generation facility (which is composed of the gas turbine, the exhaust heat recovery boiler, and the steam turbine) increases as the temperature of the gasification air increases. In the combined cycle power generation facility, the fuel gas works in the gas turbine, and the exhaust gas generates steam to work in the steam turbine, whereas the steam works only in the steam turbine, so it is supplied to the combined cycle power generation facility. The higher the ratio of the heat quantity of the fuel gas to the total heat quantity, the higher the thermal efficiency of the combined cycle power generation facility. Therefore, the higher the temperature of the gasification air, the higher the proportion of fuel gas, and the higher the plant thermal efficiency.

一方、ガス化用空気の温度が高いと、複合発電設備へ入
る総熱量自体も増加する為、複合発電設備の出力が増加
し、プラント熱効率は向上する。
On the other hand, when the temperature of the gasification air is high, the total amount of heat entering the combined cycle power generation facility also increases, so the output of the combined cycle power generation facility increases and the plant thermal efficiency improves.

以上のように、ガス化用空気の温度が高くなると、複合
発電設備への総熱量の増加による効果及び燃料ガス熱量
の比率の増加による効果により、プラント熱効率は向上
する。
As described above, when the temperature of the gasification air rises, the thermal efficiency of the plant is improved due to the effect of increasing the total heat quantity to the combined cycle power generation facility and the effect of increasing the ratio of the fuel gas heat quantity.

ガス化用空気の温度とプラント熱効率との関係を第4図
に示す。横軸は石炭ガス化炉供給空気温度を示し、縦軸
はプラント熱効率の偏差を示している。
The relationship between the temperature of the gasification air and the plant thermal efficiency is shown in FIG. The horizontal axis represents the temperature of air supplied to the coal gasifier, and the vertical axis represents the deviation in plant thermal efficiency.

従来技術により、ガス化用空気を約150℃で供給してい
る場合に比べて、第1図により、ガス化用空気を約350
℃で供給する場合は、プラント熱効率が約4.2%(相対
値)向上する。
Compared to the case where gasification air is supplied at about 150 ° C according to the conventional technique, the gasification air is about 350
When it is supplied at ° C, the plant thermal efficiency is improved by about 4.2% (relative value).

次に、本発明の第1の実施例について、第2図を参照し
つつ説明する。但し、石炭ガス化炉1からガスタービン
8に至る燃料系及び排熱回収ボイラ14の蒸気系について
は第1図と同様の構成である為、説明を省略し、空気系
について次に説明する。
Next, a first embodiment of the present invention will be described with reference to FIG. However, since the fuel system from the coal gasification furnace 1 to the gas turbine 8 and the steam system of the exhaust heat recovery boiler 14 have the same configurations as those in FIG. 1, description thereof will be omitted, and the air system will be described next.

本実施例では、ガスタービン8の圧縮機10の抽気と昇圧
圧縮機23出口の空気と熱交換するガス/ガス熱交換器24
と、排熱回収ボイラ14への給水による空気冷却器26とが
設置される。第1図に比して、空気冷却器26の冷却に排
熱回収ボイラ14への給水18を用いている点が異なる。ガ
スタービン8の圧縮機10から石炭ガス化炉1へ送られる
空気の各部の温度は、第1図と同様である。本実施例で
は、空気冷却器26において外部冷却水を用いる代りに排
熱回収ボイラ14への給水を用いている為、第1図では外
部へ捨てられていた空気の顕熱を給水に与えて熱回収で
きるので、排熱回収ボイラ5の蒸発量が増加する。した
がつて、第1図に比べて、蒸気タービン19への蒸気量が
増加して蒸気タービン出力が増え、プラント熱効率が向
上する。
In the present embodiment, the gas / gas heat exchanger 24 that exchanges heat with the extraction air of the compressor 10 of the gas turbine 8 and the air at the outlet of the booster compressor 23.
And an air cooler 26 for supplying water to the exhaust heat recovery boiler 14. Compared with FIG. 1, the point that the feed water 18 to the exhaust heat recovery boiler 14 is used for cooling the air cooler 26 is different. The temperature of each part of the air sent from the compressor 10 of the gas turbine 8 to the coal gasification furnace 1 is the same as that in FIG. In the present embodiment, instead of using the external cooling water in the air cooler 26, the water is supplied to the exhaust heat recovery boiler 14. Therefore, the sensible heat of the air that has been discarded to the outside in FIG. Since heat can be recovered, the amount of evaporation of the exhaust heat recovery boiler 5 increases. Therefore, compared with FIG. 1, the amount of steam to the steam turbine 19 increases, the steam turbine output increases, and the plant thermal efficiency improves.

次に、上述した第1の実施例(第2図)において空気の
冷却顕熱を排熱回収ボイラ5への給水に熱回収すること
による効果を説明する。
Next, the effect of recovering the cooling sensible heat of the air to the water supply to the exhaust heat recovery boiler 5 in the above-described first embodiment (FIG. 2) will be described.

前述の公知技術に示されているように、従来技術におい
ては、排熱回収ボイラへの給水は復水器を出た後に給水
加熱器で加熱され排熱回収ボイラへ供給される。上記給
水加熱器の熱源は蒸気タービンからの抽気であり、給水
加熱用の抽気を蒸気タービンから取ることにより蒸気タ
ービン出力は低下する。本実施例においては、給水の加
熱に蒸気タービンの抽気を用いず、空気の冷却顕熱を用
いている為、蒸気タービンの抽気をなくし、蒸気タービ
ンの出力増加を図ることができる。従つて、プラント出
力が増加し、プラント熱効率は向上する。
As shown in the above-mentioned known art, in the prior art, the feed water to the exhaust heat recovery boiler is heated by the feed water heater after leaving the condenser and is supplied to the exhaust heat recovery boiler. The heat source of the feed water heater is bleed air from the steam turbine, and the steam turbine output is reduced by taking bleed air for heating the feed water from the steam turbine. In the present embodiment, the extraction of the steam turbine is not used for heating the feed water, but the sensible heat for cooling the air is used. Therefore, the extraction of the steam turbine can be eliminated and the output of the steam turbine can be increased. Therefore, the plant output is increased and the plant thermal efficiency is improved.

空気冷却器出口給水温度とプラント熱効率の関係を第5
図に示す。空気冷却器出口給水温度が復水器出口温度で
ある約33℃(すなわち空気冷却器での熱回収が0の場
合)から約60℃まで給水温度60℃でプラント熱効率向上
量は約0.6%となるが60℃以上ではプラント熱効率向上
量は増加しない。
The relationship between the outlet water temperature of the air cooler and the plant thermal efficiency
Shown in the figure. The air-cooler outlet feed water temperature is about 33 ° C which is the condenser outlet temperature (that is, when the heat recovery in the air-cooler is 0) to about 60 ° C. At the feed water temperature of 60 ° C, the plant thermal efficiency improvement is about 0.6%. However, the plant thermal efficiency improvement amount does not increase above 60 ° C.

排熱回収ボイラでは、節炭器での結露防止及び煙突の白
煙防止の為、節炭器入口の給水温度を一般に約60℃以上
にする必要があり、給水加熱器による給水の加熱等の対
策を行なつている。したがつて給水温度60℃までは空気
の冷却顕熱を給水に熱回収することによるプラント熱効
率向上の効果があるが、給水温度を60℃以上にしてもプ
ラント熱効率向上量は増加しない。
In the waste heat recovery boiler, in order to prevent condensation in the economizer and white smoke in the chimney, the feed water temperature at the inlet of the economizer needs to be generally about 60 ° C or higher. We are taking measures. Therefore, up to the feed water temperature of 60 ° C, there is an effect of improving the plant thermal efficiency by recovering the cooling sensible heat of air to the feed water, but the plant thermal efficiency improvement amount does not increase even if the feed water temperature is 60 ° C or higher.

以上のことから、第1図に示した原理構成では空気の冷
却顕熱の約55%をガス化用空気へ熱回収することにより
約4.2%のプラント熱効率向上が図れる。また、第2図
に示した実施例では空気の冷却顕熱をガス化用空気及び
給水の両方に熱回収することにより、ガス化用空気の温
度上昇分で約4.2%のプラント熱効率向上を、また給水
の加熱分で約0.6%のプラント熱効率向上が図れ、この
両者をあわせて約4.8%のプラント熱効率向上が図れ
る。
From the above, in the principle configuration shown in Fig. 1, about 55% of the cooling sensible heat of the air is recovered to the gasification air to improve the plant thermal efficiency by about 4.2%. Further, in the embodiment shown in FIG. 2, by recovering the cooling sensible heat of air to both the gasification air and the feed water, the plant thermal efficiency improvement of about 4.2% by the temperature rise of the gasification air, In addition, the plant thermal efficiency can be improved by about 0.6% by heating the supply water, and the plant thermal efficiency can be improved by about 4.8% by combining the two.

次に、本発明の第2の実施例について、第3図を参照し
つつ説明する。
Next, a second embodiment of the present invention will be described with reference to FIG.

本実施例では、ガスタービン8の圧縮機10の抽気と昇圧
圧縮機23出口の空気とを熱交換するガス/ガス熱交換器
24と、排熱回収ボイラ14への給水による空気冷却器26
と、外部冷却水による空気冷却器25とが設置される。第
1図の原理構成及び第2図の実施例では、ガス/ガス熱
交換器24の他に給水による空気冷却器26又は外部冷却水
による空気冷却器25のいずれか一方が設置されているの
に対し、第3図の実施例ではガス/ガス熱交換器の他に
給水による空気冷却器26と外部冷却水による空気冷却器
25との両方が設置されている点が異なる。
In this embodiment, a gas / gas heat exchanger for exchanging heat between the extraction air of the compressor 10 of the gas turbine 8 and the air at the outlet of the booster compressor 23.
24 and an air cooler 26 by supplying water to the exhaust heat recovery boiler 14
And an air cooler 25 using external cooling water. In the principle configuration of FIG. 1 and the embodiment of FIG. 2, in addition to the gas / gas heat exchanger 24, either one of the air cooler 26 by the water supply or the air cooler 25 by the external cooling water is installed. On the other hand, in the embodiment of FIG. 3, in addition to the gas / gas heat exchanger, the air cooler 26 by the water supply and the air cooler by the external cooling water are used.
The difference is that both 25 and 25 are installed.

ガスタービン8の圧縮機10からの約390℃の抽気は、ガ
ス/ガス熱交換器24にて昇圧圧縮機23からの約150℃の
空気と熱交換し、約190℃程度まて冷却される。ガス/
ガス熱交換器24を出た空気は、更に空気冷却器26にて給
水により約50℃程度まで冷却されると同時に給水を加熱
し、その顕熱を給水に熱回収される。空気冷却器26を出
た空気は、更に空気冷却器25にて外部冷却水により40℃
程度まで冷却され、昇圧圧縮機23へ送られる。昇圧圧縮
機23では空気が昇圧され、昇圧圧縮機出口の空気は約15
0℃となり、更にガス/ガス熱交換器24にて約350℃まで
加熱された後、石炭ガス化炉1へ供給される。
The extracted air of about 390 ° C. from the compressor 10 of the gas turbine 8 exchanges heat with the air of about 150 ° C. from the step-up compressor 23 in the gas / gas heat exchanger 24 and is cooled to about 190 ° C. . gas/
The air exiting the gas heat exchanger 24 is further cooled to about 50 ° C. by the feed water in the air cooler 26, and at the same time, the feed water is heated, and the sensible heat is recovered by the feed water. The air discharged from the air cooler 26 is further cooled by the air cooler 25 to 40 ° C. by the external cooling water.
It is cooled to some extent and sent to the boost compressor 23. Air is boosted in the booster compressor 23, and the air at the outlet of the booster compressor is about 15
After reaching 0 ° C. and further heated to about 350 ° C. by the gas / gas heat exchanger 24, it is supplied to the coal gasification furnace 1.

〔発明の効果〕〔The invention's effect〕

以上詳述したように、本発明の石炭ガス化複合発電プラ
ントによれば、ガスタービンの圧縮機からガス化炉へ送
給される空気系統の熱損失を減少せしめ得るという優れ
た実用的効果を奏し、石炭ガス化複合発電プラント全体
としての熱効率向上に貢献するところ多大である。
As described above in detail, according to the integrated coal gasification combined cycle power plant of the present invention, it is possible to reduce the heat loss of the air system fed from the compressor of the gas turbine to the gasification furnace. It contributes to the improvement of the thermal efficiency of the integrated coal gasification combined cycle power plant as a whole.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の原理を説明する系統図、第2図,第3
図は本発明の第1,第2実施例を示す系統図、第4図は第
1図に示す原理により作用効果を示すグラフ、第5図は
第2図に示す実施例の作用効果を示すグラフである。 1……石炭ガス化炉、2……石炭、3……空気、4……
粗生成ガス、5……ガス化炉熱回収ボイラ、6……ガス
精製、7……燃料ガス、8……ガスタービン、9……燃
焼器、10……圧縮機、11……ガスタービン、12……発電
機、13……排ガス、14……排熱回収ボイラ、15……過熱
器、16……蒸発器、17……節炭器、18……給水、19……
蒸気タービン、20……発電機、21……復水器、22……給
水ポンプ、23……昇圧圧縮機、24……ガス/ガス熱交換
器、25……空気冷却器、26……空気冷却器。
FIG. 1 is a system diagram for explaining the principle of the present invention, FIG. 2, FIG.
FIG. 4 is a system diagram showing the first and second embodiments of the present invention, FIG. 4 is a graph showing the action and effect according to the principle shown in FIG. 1, and FIG. 5 is a diagram showing the action and effect of the embodiment shown in FIG. It is a graph. 1 ... Coal gasifier, 2 ... Coal, 3 ... Air, 4 ...
Crude gas, 5 ... Gasifier heat recovery boiler, 6 ... Gas refining, 7 ... Fuel gas, 8 ... Gas turbine, 9 ... Combustor, 10 ... Compressor, 11 ... Gas turbine, 12 ... Generator, 13 ... Exhaust gas, 14 ... Exhaust heat recovery boiler, 15 ... Superheater, 16 ... Evaporator, 17 ... Economizer, 18 ... Water supply, 19 ...
Steam turbine, 20 ... Generator, 21 ... Condenser, 22 ... Water pump, 23 ... Boost compressor, 24 ... Gas / gas heat exchanger, 25 ... Air cooler, 26 ... Air Cooler.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 横須賀 建志 東京都千代田区神田駿河台4丁目6番地 株式会社日立製作所内 (72)発明者 長崎 伸男 茨城県日立市幸町3丁目2番1号 日立エ ンジニアリング株式会社内 (56)参考文献 特開 昭62−186018(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Takeshi Yokosuka Kenshi Yokosuka 4-6 Kanda Surugadai, Chiyoda-ku, Tokyo Inside Hitachi, Ltd. (72) Inventor Nobuo Nagasaki 3-2-1, Saiwaicho, Hitachi, Ibaraki Engineering Co., Ltd. (56) Reference JP-A-62-186018 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】加圧式空気酸化石炭ガス化炉、及び、ガス
タービン・排熱回収ボイラ・蒸気タービンを含む複合発
電設備、並びに昇圧圧縮機を設けた石炭ガス化複合発電
プラントにおいて、 (a)ガスタービン圧縮機からの抽気と、昇圧圧縮機か
ら送出される空気との間に熱交換を行わせるガス/ガス
熱交換器を設けるとともに、 (b)昇圧圧縮機の吸入空気を冷却する空気冷却器であ
って排熱回収ボイラへの給水を吸熱物質として用いる空
気冷却器を設け たことを特徴とする石炭ガス化複合発電プラント。
Claims: 1. A coal gasification combined cycle power plant provided with a pressurized air-oxidized coal gasification furnace, a gas turbine, an exhaust heat recovery boiler, and a steam turbine, and a coal gasification combined cycle power plant provided with a booster compressor. A gas / gas heat exchanger for exchanging heat between the extracted air from the gas turbine compressor and the air sent from the booster compressor is provided, and (b) air cooling for cooling the intake air of the booster compressor. An integrated coal gasification combined cycle power plant, which is provided with an air cooler that uses water supplied to an exhaust heat recovery boiler as an endothermic substance.
【請求項2】特許請求の範囲第1項において、前記空気
冷却器で冷却された空気を外部冷却水で更に冷却して昇
圧圧縮機に送る第2の空気冷却器を設けたことを特徴と
する石炭ガス化複合発電プラント。
2. A second air cooler according to claim 1, further comprising: a second air cooler for further cooling the air cooled by the air cooler with external cooling water and sending the booster compressor. Integrated coal gasification combined cycle power plant.
JP62119063A 1987-05-18 1987-05-18 Integrated coal gasification combined cycle power plant Expired - Lifetime JPH0718350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62119063A JPH0718350B2 (en) 1987-05-18 1987-05-18 Integrated coal gasification combined cycle power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62119063A JPH0718350B2 (en) 1987-05-18 1987-05-18 Integrated coal gasification combined cycle power plant

Publications (2)

Publication Number Publication Date
JPS63285230A JPS63285230A (en) 1988-11-22
JPH0718350B2 true JPH0718350B2 (en) 1995-03-01

Family

ID=14751983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62119063A Expired - Lifetime JPH0718350B2 (en) 1987-05-18 1987-05-18 Integrated coal gasification combined cycle power plant

Country Status (1)

Country Link
JP (1) JPH0718350B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2954972B2 (en) * 1990-04-18 1999-09-27 三菱重工業株式会社 Gasification gas combustion gas turbine power plant
WO1994016210A1 (en) * 1992-12-30 1994-07-21 Combustion Engineering, Inc. Control system for integrated gasification combined cycle system
DE19941685C1 (en) 1999-09-01 2000-07-20 Siemens Ag Method of increasing pressure of gas supplied from compressor in power station with booster pump
JP2010241957A (en) * 2009-04-06 2010-10-28 Mitsubishi Heavy Ind Ltd Coal gasification combined power generation facility

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4677829A (en) * 1986-02-07 1987-07-07 Westinghouse Electric Corp. Method for increasing the efficiency of gas turbine generator systems using low BTU gaseous fuels

Also Published As

Publication number Publication date
JPS63285230A (en) 1988-11-22

Similar Documents

Publication Publication Date Title
US6824575B1 (en) Integrated coal gasification combined cycle power generator
US5265410A (en) Power generation system
EP1982053B1 (en) Method for increasing the efficiency of an integrated gasification combined cycle
RU2433339C2 (en) Method to generate power in power plant by burning carbon-containing fuel in substantially pure oxygen, power plant to generate power by burning carbon-containing fuel in substantially pure oxygen, method to modify process of power generation by burning carbon-containing fuel from fuel burning in air to fuel burning in substantially pure oxygen
US4261166A (en) Process for operating a combined gas turbine/steam turbine installation with an integrated partial fuel-combustion process
JPH07151460A (en) Method for integration of air separation and gas turbine power generation
JPH02248605A (en) Method for generating power from carboneseoud fuel
CN102186956B (en) Methods and systems for integrated boiler feed water heating
JP3462222B2 (en) Syngas expander located just upstream of the gas turbine
JPS61155493A (en) Synthetic composite cycle system
US5349810A (en) Humid air turbine (HAT) cycle power process
JP2870232B2 (en) Coal gasification power plant
JPH05248260A (en) Coal gasified compound power generating plant
US8268023B2 (en) Water gas shift reactor system for integrated gasification combined cycle power generation systems
JP2011231320A5 (en)
JPH0718350B2 (en) Integrated coal gasification combined cycle power plant
JP3709669B2 (en) Gasification integrated combined power plant
JP3787820B2 (en) Gasification combined power generation facility
JPS59101512A (en) Composite power generation plant by coal gassification
JPH0131012B2 (en)
JPH07279621A (en) Coal burning compound power generation facility
JPH0835434A (en) Gasification combined power generating plant
JPS6069221A (en) Combined power plant utilizing gasified coal
Long III et al. Development and Analysis of an Integrated Mild-Partial Gasification Combined (IMPGC) Cycle: Part 2—Comparison With Other Power Generation Systems
JPS61233084A (en) Compound generating device by coal gasification