JPH0835434A - Gasification combined power generating plant - Google Patents

Gasification combined power generating plant

Info

Publication number
JPH0835434A
JPH0835434A JP17229194A JP17229194A JPH0835434A JP H0835434 A JPH0835434 A JP H0835434A JP 17229194 A JP17229194 A JP 17229194A JP 17229194 A JP17229194 A JP 17229194A JP H0835434 A JPH0835434 A JP H0835434A
Authority
JP
Japan
Prior art keywords
fuel
gas
cooling water
temperature
secondary cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17229194A
Other languages
Japanese (ja)
Inventor
Narihisa Sugita
成久 杉田
Shinya Enjima
信也 圓島
Toshihiko Sasaki
俊彦 佐々木
Zensuke Tamura
善助 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17229194A priority Critical patent/JPH0835434A/en
Publication of JPH0835434A publication Critical patent/JPH0835434A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To decrease the quick cooling water amount and to improve efficiency of a power generating plant by providing a secondary cooling water system for indirectly exchanging heat for primary cooling water to be brought in contact with high-temperature gasifying fuel in a quick gas cooling device for cooling the high-temperature gasifying fuel through a process of bringing the high-temperature gasifying fuel in direct contact with cooling water. CONSTITUTION:Fuel gasified in a coal gasifying furnace 5 is supplied into a combustion chamber 2 of a gas turbine, and a gas quick cooling device 6 into which high-temperature fuel gas from the gasifying furnace 5 is to be guided is provided, and fuel gas cooled in the quick gas cooling device is sequentially supplied into a gas washing device 7 or a gas purifying device 8 through a crude fuel gas piping 44, and purified fuel gas is supplied into a combustor 2 through a fuel heating device 23. In this case, a quick cooling water injection nozzle 33 is provided inside the quick gas cooling device 6, and a secondary cooling water heat exchanger 25 is provided, and secondary cooling water from the secondary cooling water heat exchanger 25 is circulated through a fuel heating device 23 and a discharge water cooling device 22, thereby the efficient cooling of the high-temperature fuel gas is realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガス化複合発電プラン
トに係り、ガス化炉で原燃料をガス化し、ガスタービン
に供給するガス化複合発電プラントに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gasification combined cycle power plant, and more particularly to a gasification combined cycle power plant that gasifies raw fuel in a gasification furnace and supplies the gas fuel to a gas turbine.

【0002】[0002]

【従来の技術】従来の酸素酸化方式の石炭ガス化炉を用
いた石炭ガス化複合発電プラントの構成については、例
えば特開平5−86897号公報に記載されている。この例で
は、ガス化炉内に蒸発器を設置し、ガス化炉出口に顕熱
を回収する粗製燃料ガス熱回収ボイラーを設けている。
この粗製燃料ガス熱回収ボイラーには、給水加熱器,蒸
発器および過熱器が設置され、過熱された蒸気は蒸気タ
ービンに供給されている。
2. Description of the Related Art The structure of a combined coal gasification combined cycle power plant using a conventional oxygen oxidation type coal gasification furnace is described in, for example, JP-A-5-86897. In this example, an evaporator is installed in the gasification furnace, and a crude fuel gas heat recovery boiler for recovering sensible heat is installed at the gasification furnace outlet.
A feed water heater, an evaporator, and a superheater are installed in this crude fuel gas heat recovery boiler, and superheated steam is supplied to a steam turbine.

【0003】[0003]

【発明が解決しようとする課題】従来の技術では腐食が
高温で生じるため、扱う原燃料成分によってはガス化炉
出口の粗製燃料ガス熱回収ボイラーで高価な耐腐食性材
料を用いる必要が生じることとなる。
In the prior art, since corrosion occurs at a high temperature, it may be necessary to use an expensive corrosion-resistant material in the crude fuel gas heat recovery boiler at the gasifier outlet depending on the raw fuel components to be handled. Becomes

【0004】本発明の目的は、急冷方式を採用したガス
化複合発電プラントにおいて発電プラントの効率向上の
ため、ガス化燃料顕熱を有効に回収するためのシステム
を提供することにある。
An object of the present invention is to provide a system for effectively recovering sensible heat of gasified fuel in a gasification combined cycle power plant employing a quenching system in order to improve the efficiency of the power plant.

【0005】また、本発明の目的は、ガス化燃料温度を
低下させる急冷水量を低減させるシステムを提供するこ
とにある。
Another object of the present invention is to provide a system for reducing the amount of quench water that lowers the temperature of gasified fuel.

【0006】[0006]

【課題を解決するための手段】本発明は、ガス化炉出口
に燃料ガス急冷装置を設置し、冷却水を直接接触させ燃
料を急冷するとともに、高温の燃料ガスと直接した一次
冷却水と接触する新たな二次冷却水系統を設置し、この
二次冷却水系統により高温燃焼ガスの顕熱を回収かつ輸
送しプラント内部の低温部にて利用する。
According to the present invention, a fuel gas quenching device is installed at the exit of a gasification furnace, and cooling water is brought into direct contact with the fuel to quench the fuel, and at the same time, the primary cooling water is brought into direct contact with high-temperature fuel gas. A new secondary cooling water system will be installed to collect and transport the sensible heat of the high temperature combustion gas for use in the low temperature part inside the plant.

【0007】また、酸素製造プラントで発生する余剰の
窒素ガスを燃料ガス急冷装置に供給する。
Further, the surplus nitrogen gas generated in the oxygen production plant is supplied to the fuel gas quenching device.

【0008】本発明のガス化複合発電機プラントの具体
的な構成は、ガス化された高温のガス化燃料と冷却水と
を直接接触させ高温ガス化燃料を冷却させるガス急冷装
置を備えたものであって、ガス急冷装置内で高温ガス化
燃料と接触する一次冷却水と間接に熱交換をおこなう二
次冷却水系統とを設けたことを特徴とする。
A specific configuration of the integrated gasification combined cycle power plant of the present invention comprises a gas quenching device for cooling the high temperature gasified fuel by directly contacting the gasified high temperature gasified fuel with cooling water. In addition, a secondary cooling water system that indirectly exchanges heat with the primary cooling water that comes into contact with the high-temperature gasified fuel in the gas quenching device is provided.

【0009】そして、二次冷却水は、ガスタービン燃焼
器に供給される精製燃料ガスにより冷却されることが好
ましく、ガス化される原燃料は液体燃料であり、二次冷
却水は原燃料により冷却されることが好ましい。
The secondary cooling water is preferably cooled by the refined fuel gas supplied to the gas turbine combustor, the raw fuel to be gasified is a liquid fuel, and the secondary cooling water is the raw fuel. It is preferably cooled.

【0010】さらに、二次冷却水とガスタービン燃焼器
に供給される精製燃料ガスとを直接接触させることが望
ましく、二次冷却水をガス精製装置吸収液の加熱に用い
ることが望ましい。
Further, it is desirable to bring the secondary cooling water into direct contact with the purified fuel gas supplied to the gas turbine combustor, and it is desirable to use the secondary cooling water for heating the absorption liquid of the gas purification device.

【0011】また、本発明のガス化複合発電プラント
は、空気から酸素を分離する酸素製造装置と、この酸素
を酸化剤としてガス化を行うガス化炉と、ガス化された
高温のガス化燃料と冷却水とを直接接触させ高温ガス化
燃料を冷却させるガス急冷装置とを備えたものであっ
て、酸素製造装置にて余剰となった窒素をガス急冷装置
内で高温ガス化燃料に混合させることを特徴とする。
Further, the integrated gasification combined cycle plant of the present invention comprises an oxygen production apparatus for separating oxygen from air, a gasification furnace for gasification using this oxygen as an oxidant, and a gasified high-temperature gasification fuel. And a quenching device for cooling the high-temperature gasified fuel by directly contacting the cooling water with each other. Nitrogen surplus in the oxygen production device is mixed with the high-temperature gasified fuel in the gas quenching device. It is characterized by

【0012】本発明を採用する技術分野においては、噴
流層ガス化方式ではガス化炉内部で、原燃料を酸化剤に
より高温化しガス化するためガス化炉内部の温度を高温
に保つ必要があり、ガス化炉出口ではガス化燃料は高温
のまま排出される。
In the technical field employing the present invention, in the spouted bed gasification system, it is necessary to keep the temperature inside the gasification furnace at a high temperature in order to gasify the raw fuel inside the gasification furnace by the oxidizer. At the gasification furnace outlet, the gasified fuel is discharged at a high temperature.

【0013】したがって、ガス化炉で発生したガス化燃
料をガスタービンと蒸気タービンとを備えた複合発電プ
ラントの燃料として用いるガス化複合発電プラントにお
いては、発電効率を向上させるため、ガス化炉出口のガ
ス化燃料がもつ顕熱をできるだけ有効に回収する必要が
ある。
Therefore, in a gasification combined cycle power plant that uses the gasified fuel generated in the gasification furnace as a fuel for a combined cycle power generation plant equipped with a gas turbine and a steam turbine, in order to improve power generation efficiency, the gasification furnace outlet is used. It is necessary to recover as much as possible the sensible heat of the gasification fuel of.

【0014】また、ガス化を行う原燃料は硫黄等の不純
物を含んだ石炭や重質油であり、ガス化を行った後、ガ
スタービンへ燃料として供給できるように燃料ガスの精
製処理を行っている。例えば、重質油のようにガス化対
象の原燃料中に、バナジウムが含まれる場合にはガス化
処理過程の高温部で溶融塩腐食が生じ易く、また、ガス
化燃料中にHCl(塩酸)が存在すると、材料表面に保
護性の酸化被膜が形成されにくく、材料は硫化性の苛酷
なガス腐食性環境下にさらされることとなるが、本発明
を採用することによりこうした問題点も解決される。
Further, the raw fuel to be gasified is coal or heavy oil containing impurities such as sulfur. After gasification, the fuel gas is refined so that it can be supplied to the gas turbine as fuel. ing. For example, when vanadium is contained in the raw fuel to be gasified, such as heavy oil, molten salt corrosion is likely to occur in the high temperature part of the gasification process, and HCl (hydrochloric acid) is contained in the gasified fuel. In the presence of, the protective oxide film is hard to be formed on the surface of the material, and the material is exposed to the severe sulfide gas corrosive environment.However, by adopting the present invention, these problems can be solved. It

【0015】本発明は、信頼性向上,コスト低減の面か
らガス化炉出口の高温の燃料と冷却水とを接触させ急速
に燃料温度を低下させる急冷方式を採用する。この方式
では燃料ガスの温度を低下させることができる。更に、
本発明は、燃料ガスの顕熱を発電プラントに有効に回収
するも可能である。また、本発明では粗製燃料ガスの温
度を低下させるため多量の急冷水を必要とすることはな
い。
The present invention employs a rapid cooling system in which high temperature fuel at the gasifier outlet and cooling water are brought into contact with each other to rapidly reduce the fuel temperature from the viewpoint of improving reliability and reducing cost. With this method, the temperature of the fuel gas can be lowered. Furthermore,
The present invention can effectively recover the sensible heat of the fuel gas to the power plant. Further, in the present invention, since the temperature of the crude fuel gas is lowered, a large amount of quench water is not required.

【0016】[0016]

【作用】燃料ガス急冷装置においてガス化炉出口の高温
燃料ガスと直接接触した一次冷却水は、その一部が蒸発
し燃料ガス中に混合されると同時に、接触時の熱伝達に
より燃料ガスの熱を奪い温度が上昇する。この一次冷却
水に回収された燃料ガスの顕熱は、一次冷却水と接触す
るように設けられた二次冷却水系統に熱伝達され、結果
として燃料ガスの顕熱は間接的に二次冷却水系統に回収
することができる。一次冷却水と二次冷却水系統とは直
接接触することがないので燃料との直接接触により不純
物が混入した一次冷却水により二次冷却水が汚染される
ことはなく配管内の腐食の心配がないため冷却配管をプ
ラント内部の低温部と容易に接続でき、プラント内で燃
料顕熱の有効利用ができる。
In the fuel gas quenching apparatus, the primary cooling water that is in direct contact with the high temperature fuel gas at the gasifier outlet is partially vaporized and mixed into the fuel gas, and at the same time, the heat transfer during contact causes It takes heat and the temperature rises. The sensible heat of the fuel gas collected in the primary cooling water is transferred to the secondary cooling water system provided so as to come into contact with the primary cooling water, and as a result, the sensible heat of the fuel gas is indirectly cooled by the secondary cooling water. Can be collected in the water system. Since the primary cooling water and the secondary cooling water system do not come into direct contact with each other, the primary cooling water mixed with impurities due to direct contact with the fuel does not contaminate the secondary cooling water and there is a risk of corrosion in the piping. Since there is no cooling pipe, the cooling pipe can be easily connected to the low temperature part inside the plant, and the sensible heat of fuel can be effectively used in the plant.

【0017】また、一次冷却水を二次冷却水によって冷
却するため、不純物が混入し、再使用するための処理を
必要とする一次冷却水の使用量を低減できる。
Further, since the primary cooling water is cooled by the secondary cooling water, it is possible to reduce the amount of the primary cooling water used which is mixed with impurities and requires a treatment for reuse.

【0018】酸化剤として酸素を用いる酸素酸化ガス化
炉においては、酸素を製造する酸素製造プラントを発電
プラント内に設置している。空気分離装置では、外部よ
り空気を装置内に取入れ窒素と酸素を分離する。酸素は
酸化剤としてガス化炉に供給されるが、窒素は余剰とな
る。この余剰となった窒素をガス化炉出口の高温ガス化
燃料ガスと混合させることにより、燃料ガス温度は低下
し、燃料ガスを急冷するのに必要な一次冷却水量を低減
できる。
In an oxygen oxidative gasification furnace using oxygen as an oxidant, an oxygen production plant for producing oxygen is installed in a power plant. In the air separation device, air is taken into the device from the outside to separate nitrogen and oxygen. Oxygen is supplied to the gasifier as an oxidant, but nitrogen becomes an excess. By mixing the surplus nitrogen with the high-temperature gasified fuel gas at the gasifier outlet, the temperature of the fuel gas is lowered and the amount of primary cooling water required for quenching the fuel gas can be reduced.

【0019】[0019]

【実施例】以下、本発明の一実施例を図1により説明す
る。ガスタービン装置は、ガスタービン圧縮機1,燃焼
器2,ガスタービン3及びガスタービン発電機4で構成
される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. The gas turbine device includes a gas turbine compressor 1, a combustor 2, a gas turbine 3, and a gas turbine generator 4.

【0020】ガス化炉5には燃料供給管42及び空気分
離装置等からなる酸素製造装置10から酸素供給配管4
1が接続され、この配管には酸素圧縮機11が設置され
ている。
In the gasification furnace 5, a fuel supply pipe 42 and an oxygen producing device 10 including an air separation device are connected to the oxygen supply pipe 4.
1 is connected, and an oxygen compressor 11 is installed in this pipe.

【0021】空気分離装置等からなる酸素製造装置10
には、空気圧縮機12からの空気配管が接続され、空気
圧縮機12入口には圧縮機入口空気配管40が接続され
ている。ガス化炉5出口からは、高温燃料ガスの流路が
ガス急冷装置6に接続されている。ガス急冷装置6から
は、粗製燃料ガス配管44がガス洗浄装置7へ接続さ
れ、ガス洗浄装置7からの燃料ガス配管はガス精製装置
8に接続され、ガス精製装置8からはガスタービン燃料
供給配管9が燃焼器2へ接続され、ガスタービン燃料供
給配管9途中に燃料加熱装置23が設置されている。
Oxygen production device 10 comprising an air separation device and the like
Is connected to the air pipe from the air compressor 12, and a compressor inlet air pipe 40 is connected to the inlet of the air compressor 12. From the outlet of the gasification furnace 5, a high temperature fuel gas passage is connected to the gas quenching device 6. A crude fuel gas pipe 44 is connected to the gas cleaning device 7 from the gas quenching device 6, a fuel gas pipe from the gas cleaning device 7 is connected to a gas purification device 8, and a gas turbine fuel supply pipe is connected from the gas purification device 8. 9 is connected to the combustor 2, and a fuel heating device 23 is installed in the middle of the gas turbine fuel supply pipe 9.

【0022】ガスタービン3と排熱回収ボイラ14の間
にはガスタービン排気ダクト13が設置される。排熱回
収ボイラー14内には、中圧ドラム50,中圧蒸発器5
1,中圧過熱器52,高圧節炭器54,高圧ドラム5
5,高圧蒸発器56,高圧過熱器57が設置されてい
る。蒸気タービン系は、高圧蒸気タービン15,中圧蒸
気タービン16,低圧タービン17,蒸気タービン発電
機18,復水器19,給水ポンプ20で構成されてい
る。復水器19からの給水管は、給水ポンプ20出口で
分割され給水温度調節器49を通り中圧ドラム50に接
続される管路、昇圧ポンプ48を通りガス洗浄装置7内
に設置されたガス洗浄装置加熱器27に接続され給水温
度調節器49に戻る管路、昇圧ポンプ48を通り排水冷
却装置B29を経由してガス洗浄装置7内の洗浄水熱交
換器30を通り給水温度調節器49に戻る管路及び高圧
昇圧ポンプ53を通り高圧節炭器54に接続される管路
となる。高圧昇圧ポンプ53出口の管路は分岐されガス
化炉5のガス化炉加熱器26に接続され、ガス化炉加熱
器26からの配管は高圧ドラム55に接続される。
A gas turbine exhaust duct 13 is installed between the gas turbine 3 and the exhaust heat recovery boiler 14. Inside the exhaust heat recovery boiler 14, a medium pressure drum 50 and a medium pressure evaporator 5 are provided.
1, medium pressure superheater 52, high pressure economizer 54, high pressure drum 5
5, a high pressure evaporator 56 and a high pressure superheater 57 are installed. The steam turbine system includes a high pressure steam turbine 15, an intermediate pressure steam turbine 16, a low pressure turbine 17, a steam turbine generator 18, a condenser 19, and a feed water pump 20. The water supply pipe from the condenser 19 is divided at the outlet of the water supply pump 20 and passes through the water supply temperature controller 49 and is connected to the intermediate pressure drum 50, and the gas installed through the booster pump 48 in the gas cleaning device 7. The pipe connected to the cleaning device heater 27 and returning to the feed water temperature controller 49, the booster pump 48, the drainage cooling device B29, the cleaning water heat exchanger 30 in the gas cleaning device 7, and the feed water temperature controller 49. To the high-pressure economizer 54. The pipe line at the outlet of the high-pressure booster pump 53 is branched and connected to the gasifier furnace heater 26 of the gasifier 5, and the pipe from the gasifier furnace heater 26 is connected to the high-pressure drum 55.

【0023】ガス急冷装置6内部には急冷水噴射ノズル
33が設置され、ガス急冷装置6下部からは冷却水配管
が固形物分離装置A21に接続され、固形物分離装置A
21から冷却水配管が排水冷却装置A22を経由して一
次冷却水処理装置31に接続される。一次冷却水処理装
置31からは、冷却水配管が一次冷却水ポンプ32を経
由してガス急冷装置6に設置された急冷水噴射ノズル3
3に接続されると共に、ガス洗浄装置7に設置された洗
浄水噴射ノズル34に接続されている。ガス洗浄装置7
下部には冷却水配管が固形物分離装置B28に接続さ
れ、固形物分離装置B28から冷却水配管が排水冷却装
置B29を経由して一次冷却水処理装置31に接続され
る。
A quenching water injection nozzle 33 is installed inside the gas quenching device 6, and a cooling water pipe is connected to a solids separating device A21 from the lower part of the gas quenching device 6 to form a solids separating device A.
The cooling water pipe from 21 is connected to the primary cooling water treatment device 31 via the drainage cooling device A22. From the primary cooling water treatment device 31, a cooling water pipe is installed in the gas quenching device 6 via the primary cooling water pump 32, and the quenching water injection nozzle 3 is provided.
3 and the cleaning water jet nozzle 34 installed in the gas cleaning device 7. Gas cleaning device 7
A cooling water pipe is connected to the lower part of the solids separation device B28, and a cooling water pipe from the solids separation device B28 is connected to a primary cooling water treatment device 31 via a drainage cooling device B29.

【0024】ガス急冷装置6内部には二次冷却水熱交換
器25が設置され、二次冷却水熱交換器25からの二次
冷却水配管が燃料加熱装置23に接続され、燃料加熱装
置23からは排水冷却装置A22を経て二次冷却水熱交
換器25に戻る二次冷却水配管が接続される。また、燃
料加熱装置23と排水冷却装置A22間の二次冷却水配
管には二次冷却水ポンプ24が設置されている。
A secondary cooling water heat exchanger 25 is installed inside the gas quenching device 6, the secondary cooling water pipe from the secondary cooling water heat exchanger 25 is connected to the fuel heating device 23, and the fuel heating device 23. A secondary cooling water pipe that returns to the secondary cooling water heat exchanger 25 via the drainage cooling device A22 is connected from the above. A secondary cooling water pump 24 is installed in the secondary cooling water pipe between the fuel heating device 23 and the drainage cooling device A22.

【0025】空気分離装置等からなる酸素製造装置10
では、圧縮機入口空気配管40を通り空気圧縮機12で
昇圧された空気を酸素と窒素に分離する。空気分離装置
等からなる酸素製造装置10で分離される酸素の濃度は
一般には酸素90%以上であり、酸素圧縮機11により
昇圧され酸素供給配管41を通ってガス化炉5に供給さ
れ、燃料供給配管42からガス化炉5に供給された原燃
料をガス化する。原燃料は、石炭であっても重質油であ
っても本実施例の基本的な系統が適用できる。ガス化炉
5にてガス化された高温燃料ガス43はガス急冷装置6
に供給され、急冷水噴射ノズル33から供給される一次
冷却水と直接接触し冷却される。ガス急冷装置6下部に
は冷却水貯蔵部を設け、直接接触した後の一次冷却水
は、この冷却水貯蔵部に溜まった後、固形物分離装置A
21に排出され、固形物分離装置A21で冷却水中の不
純物A45を分離し、外部に排出した後、排水冷却装置
A22を通って一次冷却水処理装置31に回収される。
Oxygen production device 10 comprising an air separation device, etc.
Then, the air that has passed through the compressor inlet air pipe 40 and is pressurized by the air compressor 12 is separated into oxygen and nitrogen. The concentration of oxygen separated in the oxygen production device 10 including an air separation device is generally 90% or more, and the pressure is increased by the oxygen compressor 11 and is supplied to the gasification furnace 5 through the oxygen supply pipe 41 to generate the fuel. The raw fuel supplied from the supply pipe 42 to the gasification furnace 5 is gasified. As the raw fuel, the basic system of this embodiment can be applied regardless of whether it is coal or heavy oil. The high temperature fuel gas 43 gasified in the gasification furnace 5 is a gas quenching device 6
And is directly contacted with the primary cooling water supplied from the quenching water injection nozzle 33 to be cooled. A cooling water storage unit is provided below the gas quenching device 6, and the primary cooling water after direct contact is collected in this cooling water storage unit, and then the solid separation device A
21. The solids separation device A21 separates impurities A45 in the cooling water, discharges it to the outside, and then collects it in the primary cooling water treatment device 31 through the drainage cooling device A22.

【0026】ガス急冷装置6で冷却された燃料ガスは粗
製燃料ガス配管44を通ってガス洗浄装置7に供給さ
れ、洗浄水噴射ノズル34から供給される冷却水によっ
て洗浄される。洗浄後の冷却水はガス洗浄装置7低部に
溜まった後固形物分離装置B28で、冷却水中の不純物B
46を分離し、外部に排出後排水冷却装置B29を通っ
て一次冷却水処理装置31に回収される。一次冷却水処
理装置31では、冷却水中にとけ込んだ不純物を処理
し、補給水47を補った後一次冷却水ポンプ32で昇圧
後、一次冷却水として急冷水噴射ノズル33および洗浄
水噴射ノズル34に供給する。
The fuel gas cooled by the gas quenching device 6 is supplied to the gas cleaning device 7 through the crude fuel gas pipe 44 and is cleaned by the cooling water supplied from the cleaning water injection nozzle 34. After the cleaning, the cooling water is collected in the lower part of the gas cleaning device 7 and is then collected by the solids separating device B28 to remove impurities B in the cooling water.
After separating 46, it is discharged to the outside and is collected by the primary cooling water treatment device 31 through the drainage cooling device B29. In the primary cooling water treatment device 31, the impurities dissolved in the cooling water are treated, supplementary water 47 is supplemented, the pressure is increased by the primary cooling water pump 32, and then the quenching water injection nozzle 33 and the wash water injection nozzle 34 are supplied as primary cooling water. Supply.

【0027】ガス洗浄装置7で洗浄された燃料ガスはガ
ス精製装置8に供給される。本実施例ではガス精製装置
8は湿式脱硫方式であり、ガス精製装置8出口の燃料ガ
スは低温ででてくる。この燃料ガスは、ガスタービン燃
料供給配管9を流れ燃料加熱装置23を通って燃焼器2
に供給される。
The fuel gas cleaned by the gas cleaning device 7 is supplied to the gas purification device 8. In this embodiment, the gas purifier 8 is a wet desulfurization system, and the fuel gas at the outlet of the gas purifier 8 comes out at a low temperature. This fuel gas flows through the gas turbine fuel supply pipe 9 and passes through the fuel heating device 23 and the combustor 2
Is supplied to.

【0028】ガスタービンではガスタービン入口空気管
58を通った空気がガスタービン圧縮機1により圧縮さ
れ燃焼器2に供給され、燃料加熱装置23を通って供給
される燃料の燃焼をおこない高温燃焼ガスを発生しガス
タービン3に供給し膨張させ動力を発生する。ガスター
ビン3で発生した動力によりガスタービン圧縮機1およ
びガスタービン発電機4は駆動され、ガスタービン発電
機4により電力を発生させる。
In the gas turbine, the air passing through the gas turbine inlet air pipe 58 is compressed by the gas turbine compressor 1 and supplied to the combustor 2, and the fuel supplied through the fuel heating device 23 is combusted to burn the high temperature combustion gas. Is generated and supplied to the gas turbine 3 to be expanded to generate power. The power generated in the gas turbine 3 drives the gas turbine compressor 1 and the gas turbine generator 4, and the gas turbine generator 4 generates electric power.

【0029】ガスタービン3をでた膨張後の燃焼排ガス
は高温(現状のガスタービンでは約600℃)であるた
め、ガスタービン排気ダクト13を通して排熱回収ボイ
ラ14に供給する。排熱回収ボイラ14内では、燃焼排
ガスの顕熱を用いて蒸気を発生させる。復水器19で復
水された水を給水ポンプ20及び高圧昇圧ポンプ53で
昇圧し高圧節炭器54に高圧給水として供給し、高圧節
炭器54に供給された給水は加熱された後高圧ドラム5
5に供給され、高圧蒸発器56で蒸気にされ高圧過熱器
57で過熱された後高圧蒸気タービン15に供給され
る。高圧昇圧ポンプ53出口の給水の一部はガス化炉5
に設置されたガス化炉加熱器26に供給され、ガス化炉
5を冷却した後高圧ドラム55に回収される。
Since the combustion exhaust gas that has expanded from the gas turbine 3 has a high temperature (about 600 ° C. in the current gas turbine), it is supplied to the exhaust heat recovery boiler 14 through the gas turbine exhaust duct 13. In the exhaust heat recovery boiler 14, steam is generated using the sensible heat of the combustion exhaust gas. The water condensed in the condenser 19 is pressurized by the water supply pump 20 and the high-pressure booster pump 53 and supplied to the high-pressure economizer 54 as high-pressure water, and the water supplied to the high-pressure economizer 54 is heated to high pressure. Drum 5
5, is converted into steam by the high-pressure evaporator 56, is superheated by the high-pressure superheater 57, and is then supplied to the high-pressure steam turbine 15. Part of the water supply at the outlet of the high-pressure booster pump 53 is the gasifier 5
Is supplied to the gasification furnace heater 26 installed in the gasification furnace, cools the gasification furnace 5, and is then collected in the high-pressure drum 55.

【0030】給水ポンプ20出口の給水の一部は、昇圧
ポンプ48により昇圧され一部はガス洗浄装置7内に設
けたガス洗浄装置加熱器27に供給されガス洗浄装置7
内の燃料ガス温度を低下させ熱交換を行い給水温度調節
器49に回収される。昇圧ポンプ48をでた残りの給水
は排水冷却装置B29に供給され固形物分離装置B28で
分離された一次冷却水により予熱された後ガス洗浄装置
7内の洗浄水熱交換器30に供給される。洗浄水熱交換
器30は、ガス洗浄装置7底部に設置してあり洗浄水噴
射ノズル34から噴出された冷却水が燃料ガスを洗浄し
た後に溜まっており、給水は加熱され給水温度調節器4
9に供給される。
A part of the water supply at the outlet of the water supply pump 20 is boosted by the pressure boosting pump 48 and a part of the water is supplied to the gas cleaning device heater 27 provided in the gas cleaning device 7 to be supplied to the gas cleaning device 7.
The temperature of the fuel gas in the inside is lowered, heat is exchanged, and the water is recovered by the feed water temperature controller 49. The remaining water supply from the booster pump 48 is supplied to the drainage cooling device B29, preheated by the primary cooling water separated by the solids separation device B28, and then supplied to the cleaning water heat exchanger 30 in the gas cleaning device 7. . The cleaning water heat exchanger 30 is installed at the bottom of the gas cleaning device 7, and the cooling water ejected from the cleaning water injection nozzle 34 is accumulated after cleaning the fuel gas. The supply water is heated and the supply water temperature controller 4
9.

【0031】給水温度調節器49では、ガス洗浄装置加
熱器27及び洗浄水熱交換器30出口の高温給水を、給
水ポンプ20出口の低温給水の混合により温度調節を行
った後中圧ドラム50に供給する。中圧蒸発器51で
は、燃焼排ガスの顕熱により蒸発が行われ、蒸気は中圧
過熱器52に供給され過熱された後中圧蒸気タービン1
6に供給される。
In the feed water temperature controller 49, the temperature of the high temperature feed water at the outlet of the gas cleaning device heater 27 and the wash water heat exchanger 30 is adjusted by mixing the low temperature feed water at the outlet of the feed water pump 20, and then to the intermediate pressure drum 50. Supply. In the medium-pressure evaporator 51, the sensible heat of the combustion exhaust gas evaporates, and the steam is supplied to the medium-pressure superheater 52 and superheated.
6.

【0032】高圧蒸気タービン15出口の蒸気は、中圧
過熱器52からの蒸気と混合させ中圧蒸気タービン16
に供給される、中圧蒸気タービン16を出た蒸気は低圧
蒸気タービン17に供給され、復水器19へと排出され
る。高圧蒸気タービン15,中圧蒸気タービン16及び
低圧蒸気タービン17において発生した動力によって蒸
気タービン発電機18は駆動され電力を発生する。
The steam at the outlet of the high-pressure steam turbine 15 is mixed with the steam from the medium-pressure superheater 52, and the medium-pressure steam turbine 16 is mixed.
The steam leaving the medium-pressure steam turbine 16 is supplied to the low-pressure steam turbine 17, and is discharged to the condenser 19. The steam turbine generator 18 is driven by the power generated in the high-pressure steam turbine 15, the medium-pressure steam turbine 16, and the low-pressure steam turbine 17 to generate electric power.

【0033】ガス急冷装置6内に設けられた二次冷却水
熱交換器25において、一次冷却水との熱交換により加
熱された二次冷却水は、燃料加熱装置23に送られガス
タービン燃料供給配管9を流れる燃料を加熱する。燃料
加熱装置23を出た一次冷却水は二次冷却水ポンプ24
により昇圧され排水冷却装置A22に供給され固形物分
離装置A21で不純物A45を分離した一次冷却水によ
り予熱された後二次冷却水熱交換器25に供給される。
In the secondary cooling water heat exchanger 25 provided in the gas quenching device 6, the secondary cooling water heated by heat exchange with the primary cooling water is sent to the fuel heating device 23 to supply gas turbine fuel. The fuel flowing through the pipe 9 is heated. The primary cooling water that has left the fuel heating device 23 is the secondary cooling water pump 24.
The pressure is increased to be supplied to the drainage cooling device A22, is preheated by the primary cooling water from which the impurities A45 are separated by the solid matter separating device A21, and is then supplied to the secondary cooling water heat exchanger 25.

【0034】燃料ガスは燃料加熱装置23にて加熱され
ることにより顕熱が増加するため発電プラントの効率が
向上する。
Since the fuel gas is heated by the fuel heating device 23, the sensible heat is increased, so that the efficiency of the power generation plant is improved.

【0035】本実施例では、二次冷却水により一次冷却
水の温度を低下させ一次冷却水の流量を減少させること
ができるとともに高温燃料ガスの顕熱を回収することが
できる。
In this embodiment, the temperature of the primary cooling water can be lowered by the secondary cooling water to reduce the flow rate of the primary cooling water, and the sensible heat of the high temperature fuel gas can be recovered.

【0036】さらに、本実施例では洗浄水熱交換器30
において給水を加熱できるため、排熱回収ボイラ14に
給水加熱器を設置せず中圧ドラム50に給水を供給する
ことができる効果がある。
Further, in this embodiment, the wash water heat exchanger 30 is used.
Since the feed water can be heated in the above, there is an effect that the feed water can be supplied to the intermediate pressure drum 50 without installing a feed water heater in the exhaust heat recovery boiler 14.

【0037】本実施例では、ガス急冷装置6の内部にお
いて急冷水噴射ノズル33からの一次冷却水を高温燃料
ガス中に直接噴射することによって燃料ガス温度を低下
しているが、ガス急冷装置6の構造として高温燃料ガス
をガス急冷装置6底部に溜めた一次冷却水内を通過させ
る急冷方法であっても、溜めた一次冷却水内に二次冷却
水熱交換器25を設置することによって本実施例と同様
な効果を得ることができる。
In the present embodiment, the fuel gas temperature is lowered by directly injecting the primary cooling water from the quench water injection nozzle 33 into the high temperature fuel gas inside the gas quenching device 6, but the gas quenching device 6 Even if it is a quenching method in which the high temperature fuel gas is passed through the inside of the primary cooling water stored in the bottom of the gas quenching device 6 as the structure of 1, the secondary cooling water heat exchanger 25 is installed in the stored primary cooling water. The same effect as that of the embodiment can be obtained.

【0038】本発明の他の実施例を図2に示す。図2の
実施例が図1の実施例と異なるのは、図2の実施例では
原燃料を液体と限定している点で、燃料油加熱装置20
2から燃焼油供給配管203がガス化炉5に接続され、
燃焼油供給配管203には燃料油昇圧ポンプ204が設
置されている。ガス急冷装置6内に設置された二次冷却
水熱交換器25からの二次冷却水は燃料油加熱装置20
2に供給され燃料油加熱装置202からの戻りの二次冷
却水配管は、二次冷却水循環ポンプ201及び排水冷却
装置A22を通り二次冷却水熱交換器25に戻る。
Another embodiment of the present invention is shown in FIG. The embodiment of FIG. 2 is different from the embodiment of FIG. 1 in that the raw fuel is limited to liquid in the embodiment of FIG.
2, the combustion oil supply pipe 203 is connected to the gasification furnace 5,
A fuel oil booster pump 204 is installed in the combustion oil supply pipe 203. The secondary cooling water from the secondary cooling water heat exchanger 25 installed in the gas quenching device 6 is supplied to the fuel oil heating device 20.
The secondary cooling water pipe that is supplied to the fuel oil heating device 202 and returns from the fuel oil heating device 202 passes through the secondary cooling water circulation pump 201 and the drainage cooling device A22 and returns to the secondary cooling water heat exchanger 25.

【0039】二次冷却水循環ポンプ201で昇圧され排
水冷却装置A22及び二次冷却水熱交換器25を通って
昇温された二次冷却水は燃料油加熱装置202に供給さ
れ、燃料油加熱装置202ないの液体燃料を加熱昇温す
る。昇温した液体燃料は燃料油昇圧ポンプ204で昇圧
され燃焼油供給配管203を通ってガス化炉5に供給さ
れる。
The secondary cooling water whose pressure has been raised by the secondary cooling water circulation pump 201 and which has been heated through the drainage cooling device A22 and the secondary cooling water heat exchanger 25 is supplied to the fuel oil heating device 202, and the fuel oil heating device 202 is supplied. The liquid fuel in 202 is heated and heated. The liquid fuel whose temperature has been raised is boosted by the fuel oil boosting pump 204 and supplied to the gasification furnace 5 through the combustion oil supply pipe 203.

【0040】本実施例によれば、原燃料を安全な給水に
より昇温でき原燃料の顕熱を増加できるため熱効率を高
めることができる。特にガス燃料に比べ液体燃料は比熱
が大きいため二次冷却水により回収できる熱量が多く熱
効率を高める効果がある。
According to this embodiment, the raw fuel can be heated by safe water supply and the sensible heat of the raw fuel can be increased, so that the thermal efficiency can be improved. In particular, since liquid fuel has a larger specific heat than gas fuel, the amount of heat that can be recovered by the secondary cooling water is large and there is an effect of improving thermal efficiency.

【0041】本発明の他の実施例を図3に示す。図3の
実施例が図1の実施例と異なるのは、図3では空気分離
装置等からなる酸素製造装置10から窒素供給配管30
2をガス急冷装置6へ接続し、窒素供給配管302に窒
素圧縮機301を設置している点である。
Another embodiment of the present invention is shown in FIG. The embodiment of FIG. 3 is different from the embodiment of FIG. 1 in that, in FIG.
2 is connected to the gas quenching device 6, and the nitrogen compressor 301 is installed in the nitrogen supply pipe 302.

【0042】空気分離装置等からなる酸素製造装置10
では、圧縮機入口空気配管40を通して空気圧縮機12
に吸入し昇圧した空気を酸素と窒素に分離する。酸素は
酸素供給配管41を流れ酸素圧縮機11にて昇圧され酸
化剤としてガス化炉5に供給される。空気分離装置等か
らなる酸素製造装置10で空気から酸素を分離した残り
の窒素は窒素圧縮機301により昇圧され窒素供給配管
302を通してガス急冷装置6に供給される。ガス急冷
装置6内では、この窒素と高温燃料ガス43が混合し、
急冷水噴射ノズル33からの第一次冷却水と共に高温燃
料ガス43の温度を低下させる。本実施例では、高温燃
料ガス43の混合によって、冷却に必要な第一次冷却水
の流量を図1に示す実施例に比べ、さらに減少できる効
果があり。さらに燃料ガスに不活性ガスである窒素を混
合できるため、ガス精製装置8にて処理され燃焼器2に
供給される燃料ガスの発熱量を低下させることができ燃
焼器2におけるNOxの発生量を低減できる効果があ
る。
Oxygen production device 10 comprising an air separation device, etc.
Then, through the compressor inlet air pipe 40, the air compressor 12
The air that was inhaled and pressurized was separated into oxygen and nitrogen. Oxygen flows through the oxygen supply pipe 41, is pressurized by the oxygen compressor 11, and is supplied to the gasification furnace 5 as an oxidant. The remaining nitrogen obtained by separating oxygen from air in the oxygen production device 10 including an air separation device is pressurized by the nitrogen compressor 301 and supplied to the gas quenching device 6 through the nitrogen supply pipe 302. In the gas quenching device 6, the nitrogen and the high temperature fuel gas 43 are mixed,
The temperature of the high temperature fuel gas 43 is lowered together with the primary cooling water from the quench water injection nozzle 33. In this embodiment, the flow rate of the primary cooling water required for cooling can be further reduced by mixing the high temperature fuel gas 43, as compared with the embodiment shown in FIG. Further, since nitrogen, which is an inert gas, can be mixed with the fuel gas, the calorific value of the fuel gas processed in the gas purification device 8 and supplied to the combustor 2 can be reduced, and the amount of NOx generated in the combustor 2 can be reduced. There is an effect that can be reduced.

【0043】本発明の他の実施例を図4に示す。図4の
実施例が図1の実施例と異なる点は、ガス急冷装置6に
設けた二次冷却水熱交換器25の系統である。二次冷却
水熱交換器25出口に設けた高温水供給配管402は燃
焼直接加熱器401に接続され燃焼直接加熱器401か
らは、高温水戻り配管403が急冷水噴射ノズル33に
接続され、高温水戻り配管403には昇圧ポンプ404
が設置されている。また、排水冷却装置A22へは昇圧
ポンプ48出口の給水配管が接続される。燃焼直接加熱
器401は高温水供給配管402および高温水戻り配管
403に接続されると同時にガスタービン燃料供給配管
9に接続されている。
Another embodiment of the present invention is shown in FIG. The embodiment of FIG. 4 differs from the embodiment of FIG. 1 in the system of the secondary cooling water heat exchanger 25 provided in the gas quenching device 6. The high temperature water supply pipe 402 provided at the outlet of the secondary cooling water heat exchanger 25 is connected to the combustion direct heater 401, and from the combustion direct heater 401, the high temperature water return pipe 403 is connected to the quench water injection nozzle 33, Step-up pump 404 in the water return pipe 403
Is installed. A water supply pipe at the outlet of the booster pump 48 is connected to the drainage cooling device A22. The combustion direct heater 401 is connected to the high temperature water supply pipe 402 and the high temperature water return pipe 403, and at the same time, connected to the gas turbine fuel supply pipe 9.

【0044】昇圧ポンプ48により昇圧された給水は、
二次冷却水となり、排水冷却装置A22において固形物
分離装置A21で不純物A45を分離した一次冷却水に
より予熱され後二次冷却水熱交換器25に供給され、一
次冷却水を通して間接的に高温燃料ガス43の顕熱を回
収する。二次冷却水熱交換器25を出た給水は高温水供
給配管402を通り燃焼直接加熱器401に供給され、
ガスタービン燃料供給配管9を通って燃焼直接加熱器4
01に流入した燃料ガスと直接接触し、一部は蒸発し燃
料ガス温度を上昇させる。燃焼直接加熱器401の下部
に溜まった残りの二次冷却水は、高温水戻り配管403
を通って昇圧ポンプ404により昇圧されたガス急冷装
置6内に急冷水噴射ノズル33により噴射される。
The water supplied by the booster pump 48 is
It becomes the secondary cooling water, is preheated by the primary cooling water that has separated the impurities A45 in the solid waste separation device A21 in the drainage cooling device A22, and then is supplied to the secondary cooling water heat exchanger 25, and indirectly passes through the primary cooling water to obtain the high-temperature fuel. The sensible heat of the gas 43 is recovered. The feed water exiting the secondary cooling water heat exchanger 25 is supplied to the combustion direct heater 401 through the high temperature water supply pipe 402,
Combustion direct heater 4 through gas turbine fuel supply pipe 9
Directly contact with the fuel gas flowing into 01, and partly evaporates to raise the fuel gas temperature. The remaining secondary cooling water collected in the lower portion of the combustion direct heater 401 is the high temperature water return pipe 403.
It is injected by the quench water injection nozzle 33 into the gas quenching device 6 whose pressure has been boosted by the boosting pump 404.

【0045】このようにして本実施例では、高温燃料ガ
ス43の顕熱を一次冷却水,二次冷却水を介して燃料ガ
スに回収できると同時に、二次冷却水と燃料ガスとの直
接接触により燃料ガスは、飽和の蒸気を含むようになる
ため燃焼器2における燃焼時に発生するNOxを低減で
きる効果がある。
As described above, in this embodiment, the sensible heat of the high-temperature fuel gas 43 can be recovered to the fuel gas via the primary cooling water and the secondary cooling water, and at the same time, the secondary cooling water and the fuel gas are directly contacted with each other. As a result, the fuel gas contains saturated vapor, so that NOx generated during combustion in the combustor 2 can be reduced.

【0046】本発明の他の実施例を図5に示す。図5の
実施例が図1の実施例と異なるのは、二次冷却水系統
で、二次冷却水熱交換器25出口の配管をガス精製装置
8の再生塔リボイラー503に接続し、再生塔リボイラ
ー503からの戻り配管を二次冷却水ポンプ506,排
水冷却装置A22を通して二次冷却水熱交換器25入り
口に接続している点である。
Another embodiment of the present invention is shown in FIG. The embodiment of FIG. 5 is different from the embodiment of FIG. 1 in the secondary cooling water system, in which the pipe at the outlet of the secondary cooling water heat exchanger 25 is connected to the regenerator reboiler 503 of the gas purifier 8 The return pipe from the reboiler 503 is connected to the inlet of the secondary cooling water heat exchanger 25 through the secondary cooling water pump 506 and the drainage cooling device A22.

【0047】ガス精製装置8内では、洗浄水噴射ノズル
34からの配管がガス精製装置洗浄塔501に接続さ
れ、ガス精製装置洗浄塔501からはガスタービン燃料
供給配管9が燃焼器2に接続される。ガス精製装置洗浄
塔501出口と再生塔502には、配管が接続され、再
生塔502出口の配管はガス精製装置洗浄塔501に接
続され、循環液ポンプ505および循環液冷却装置50
4が設置されている。再生塔502にはさらに硫化水素
排出管507が接続され、循環液ポンプ505出口から
ガス精製装置洗浄塔501に接続された配管上には循環
液冷却装置504が設置されている。
In the gas purifier 8, the pipe from the cleaning water injection nozzle 34 is connected to the gas purifier washing tower 501, and the gas turbine fuel supply pipe 9 is connected to the combustor 2 from the gas purifier washing tower 501. It A pipe is connected to the outlet of the gas purification device cleaning tower 501 and the regeneration tower 502, a pipe of the outlet of the regeneration tower 502 is connected to the gas purification device cleaning tower 501, and the circulating liquid pump 505 and the circulating liquid cooling device 50 are connected.
4 are installed. A hydrogen sulfide discharge pipe 507 is further connected to the regeneration tower 502, and a circulating liquid cooling device 504 is installed on a pipe connected from the outlet of the circulating liquid pump 505 to the gas purification device cleaning tower 501.

【0048】ガス洗浄装置7から出てガス精製装置洗浄
塔501に入った燃料ガスは、ガス精製装置洗浄塔50
1上部から硫化水素を吸収する吸収液を噴霧することに
より、燃料ガス中の硫化水素を除去される。この場合吸
収を効果的に行うには、気体を液体に吸収させるのであ
るから、温度が低いことが必要であり、このため吸収液
は予め循環液冷却装置504にて冷却されている。硫化
水素を除去された燃料ガスはガスタービン燃料供給配管
9を通って燃焼器2に供給される。ガス精製装置洗浄塔
501にて硫化水素を吸収した吸収液は再生塔502に
供給され、再生塔502では、プラント内の他の熱源か
ら熱の供給を受けて、吸収液を暖めることによって吸収
されていた硫化水素を分離し硫化水素排出管507から
硫化水素処理プロセスへ排出する。
The fuel gas discharged from the gas cleaning device 7 and entering the gas purification device cleaning tower 501 is converted into the gas purification device cleaning tower 50.
By spraying an absorbing liquid that absorbs hydrogen sulfide from above, hydrogen sulfide in the fuel gas is removed. In this case, in order to effectively perform the absorption, since the gas is absorbed by the liquid, it is necessary that the temperature is low. Therefore, the absorbing liquid is cooled in advance by the circulating liquid cooling device 504. The fuel gas from which hydrogen sulfide has been removed is supplied to the combustor 2 through the gas turbine fuel supply pipe 9. The absorption liquid that has absorbed hydrogen sulfide in the gas purification device cleaning tower 501 is supplied to the regeneration tower 502, which receives heat from another heat source in the plant and is absorbed by warming the absorption liquid. The existing hydrogen sulfide is separated and discharged from the hydrogen sulfide discharge pipe 507 to the hydrogen sulfide treatment process.

【0049】この実施例では、循環液ポンプ505によ
り吸収液の一部を再生塔リボイラー503に循環し再生
塔リボイラー503にて吸収液を暖める熱源として、二
次冷却水熱交換器25にて加熱された二次冷却水を用い
ている。再生塔リボイラー503をでた二次冷却水は二
次冷却水ポンプ506で昇圧され、排水冷却装置A22
を通り二次冷却水熱交換器25に循環される。
In this embodiment, a part of the absorption liquid is circulated to the regeneration tower reboiler 503 by the circulating liquid pump 505 and heated by the secondary cooling water heat exchanger 25 as a heat source for warming the absorption liquid in the regeneration tower reboiler 503. The secondary cooling water is used. The secondary cooling water leaving the regeneration tower reboiler 503 is pressurized by the secondary cooling water pump 506, and the drainage cooling device A22.
And is circulated to the secondary cooling water heat exchanger 25.

【0050】本実施例によれば、ガス精製のガス処理熱
源として高温燃料ガスの顕熱を利用できるため、ガス精
製のために新たな熱供給源、例えば、排熱回収ボイラか
らの蒸気配管等を設ける必要がない効果がある。
According to this embodiment, since the sensible heat of the high temperature fuel gas can be used as the gas treatment heat source for gas purification, a new heat supply source for gas purification, for example, steam piping from the exhaust heat recovery boiler, etc. There is an effect that it is not necessary to provide.

【0051】[0051]

【発明の効果】本発明によれば、ガス化燃料の顕熱を有
効に回収できるため発電プラントの効率を向上させる効
果がある。
According to the present invention, the sensible heat of the gasified fuel can be effectively recovered, so that the efficiency of the power generation plant can be improved.

【0052】また、本発明によればガス化温度を低下さ
せるために必要な冷却水使用量を低減できる効果があ
る。
Further, according to the present invention, there is an effect that the amount of cooling water used for lowering the gasification temperature can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例を示すシステム構成図。FIG. 1 is a system configuration diagram showing a first embodiment of the present invention.

【図2】本発明の第二の実施例を示すシステム構成図。FIG. 2 is a system configuration diagram showing a second embodiment of the present invention.

【図3】本発明の第三の一実施例を示すシステム構成
図。
FIG. 3 is a system configuration diagram showing a third embodiment of the present invention.

【図4】本発明の第四の実施例を示すシステム構成図。FIG. 4 is a system configuration diagram showing a fourth embodiment of the present invention.

【図5】本発明の第五の実施例を示すシステム構成図。FIG. 5 is a system configuration diagram showing a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…燃焼器、5…石炭ガス化炉、6…ガス
急冷装置、7…ガス洗浄装置、10…空気分離装置、1
1…酸素圧縮機、12…空気圧縮機、22…排水冷却装
置A、23…燃料加熱装置、25…二次冷却水熱交換
器、202…燃料油加熱装置、301…窒素圧縮機、4
01…燃焼直接加熱器、503…再生塔リボイラー。
1 ... Compressor, 2 ... Combustor, 5 ... Coal gasification furnace, 6 ... Gas quenching device, 7 ... Gas cleaning device, 10 ... Air separation device, 1
DESCRIPTION OF SYMBOLS 1 ... Oxygen compressor, 12 ... Air compressor, 22 ... Waste water cooling device A, 23 ... Fuel heating device, 25 ... Secondary cooling water heat exchanger, 202 ... Fuel oil heating device, 301 ... Nitrogen compressor, 4
01 ... Combustion direct heater, 503 ... Regeneration tower reboiler.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02C 6/00 Z (72)発明者 田村 善助 東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication location F02C 6/00 Z (72) Inventor Zensuke Tamura 4-6 Kanda Surugadai, Chiyoda-ku, Tokyo Hitachi, Ltd. Inside the factory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】ガス化された高温のガス化燃料と冷却水と
を直接接触させ高温ガス化燃料を冷却させるガス急冷装
置を備えたガス化複合発電プラントにおいて、ガス急冷
装置内で高温ガス化燃料と接触する一次冷却水と間接に
熱交換をおこなう二次冷却水系統とを設けたことを特徴
とするガス化複合発電プラント。
1. A high temperature gasification in a gas quenching apparatus in a gasification combined cycle power plant equipped with a gas quenching device for directly cooling gasified high temperature gasified fuel and cooling water to cool the high temperature gasified fuel. A combined gasification combined cycle power plant comprising a secondary cooling water system that indirectly exchanges heat with primary cooling water that comes into contact with fuel.
【請求項2】請求項1において、二次冷却水はガスター
ビン燃焼器に供給される精製燃料ガスにより冷却される
ことを特徴とするガス化複合発電プラント。
2. The integrated gasification combined cycle power plant according to claim 1, wherein the secondary cooling water is cooled by the refined fuel gas supplied to the gas turbine combustor.
【請求項3】請求項1において、ガス化される原燃料は
液体燃料であり、二次冷却水は原燃料により冷却される
ことを特徴とするガス化複合発電プラント。
3. The integrated gasification combined cycle plant according to claim 1, wherein the raw fuel to be gasified is a liquid fuel, and the secondary cooling water is cooled by the raw fuel.
【請求項4】空気から酸素を分離する酸素製造装置と、
この酸素を酸化剤としてガス化を行うガス化炉と、ガス
化された高温のガス化燃料と冷却水とを直接接触させ高
温ガス化燃料を冷却させるガス急冷装置とを備えたガス
化複合発電プラントにおいて、酸素製造装置にて余剰と
なった窒素をガス急冷装置内で高温ガス化燃料に混合さ
せることを特徴とするガス化複合発電プラント。
4. An oxygen production apparatus for separating oxygen from air,
Combined gasification combined power generation equipped with a gasification furnace that gasifies using this oxygen as an oxidant, and a gas quenching device that cools the high-temperature gasification fuel by directly contacting the gasified high-temperature gasification fuel and cooling water An integrated gasification combined cycle power plant characterized by mixing surplus nitrogen in an oxygen production device with a high-temperature gasification fuel in a gas quenching device in the plant.
【請求項5】請求項1において、二次冷却水とガスター
ビン燃焼器に供給される精製燃料ガスとを直接接触させ
ることを特徴とするガス化複合発電プラント。
5. The integrated gasification combined cycle power plant according to claim 1, wherein the secondary cooling water and the refined fuel gas supplied to the gas turbine combustor are brought into direct contact with each other.
【請求項6】請求項1において、二次冷却水をガス精製
装置吸収液の加熱に用いることを特徴とするガス化複合
発電プラント。
6. The integrated gasification combined cycle power plant according to claim 1, wherein the secondary cooling water is used for heating the absorption liquid of the gas purifying device.
JP17229194A 1994-07-25 1994-07-25 Gasification combined power generating plant Pending JPH0835434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17229194A JPH0835434A (en) 1994-07-25 1994-07-25 Gasification combined power generating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17229194A JPH0835434A (en) 1994-07-25 1994-07-25 Gasification combined power generating plant

Publications (1)

Publication Number Publication Date
JPH0835434A true JPH0835434A (en) 1996-02-06

Family

ID=15939211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17229194A Pending JPH0835434A (en) 1994-07-25 1994-07-25 Gasification combined power generating plant

Country Status (1)

Country Link
JP (1) JPH0835434A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088154A (en) * 1996-09-20 1998-04-07 Mitsubishi Heavy Ind Ltd Gasifying combined power generation equipment
JP2008540717A (en) * 2005-05-02 2008-11-20 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Syngas production method and system
JP2011032926A (en) * 2009-07-31 2011-02-17 Mitsubishi Heavy Ind Ltd Gas turbine plant and gasification fuel power generation facility including the same
JP2019100617A (en) * 2017-12-01 2019-06-24 三菱重工業株式会社 Circulation type boiler system, fire power generation plant, and exhaust heat recovery method
KR20200121890A (en) * 2018-03-30 2020-10-26 미츠비시 파워 가부시키가이샤 Fuel gas cooling system and gas turbine plant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088154A (en) * 1996-09-20 1998-04-07 Mitsubishi Heavy Ind Ltd Gasifying combined power generation equipment
JP2008540717A (en) * 2005-05-02 2008-11-20 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Syngas production method and system
JP2011032926A (en) * 2009-07-31 2011-02-17 Mitsubishi Heavy Ind Ltd Gas turbine plant and gasification fuel power generation facility including the same
JP2019100617A (en) * 2017-12-01 2019-06-24 三菱重工業株式会社 Circulation type boiler system, fire power generation plant, and exhaust heat recovery method
KR20200121890A (en) * 2018-03-30 2020-10-26 미츠비시 파워 가부시키가이샤 Fuel gas cooling system and gas turbine plant

Similar Documents

Publication Publication Date Title
US4150953A (en) Coal gasification power plant and process
US8371099B2 (en) Power generation system incorporating multiple Rankine cycles
EP0642611B1 (en) A process for recovering energy from a combustible gas
KR970011311B1 (en) Process for removing carbon dioxide from combustion exhaust gas
RU2508158C2 (en) Method and device for separation of carbon dioxide from offgas at electric power station running at fossil fuel
JP5193160B2 (en) Gasification power generation system with carbon dioxide separation and recovery device
RU2580740C2 (en) Method for cleaning synthesis gas from biomass at negative pressure to obtain oil products and configuration system thereof
HU213648B (en) Partial oxidation process with production of power
KR20120044869A (en) Heat integration in a co2 capture plant
JP3462222B2 (en) Syngas expander located just upstream of the gas turbine
CN102186956B (en) Methods and systems for integrated boiler feed water heating
US5201172A (en) Method for treating black liquor
CN102052101B (en) System for improving performance of an IGCC power plant
US20120285171A1 (en) Heat recovery system and heat recovery method of co2 recovery unit
JP5753433B2 (en) Gasification power generation system
JPH0835434A (en) Gasification combined power generating plant
JPH05248260A (en) Coal gasified compound power generating plant
SU1729296A3 (en) Coal gasification method
EP0406994B1 (en) A composite coal gasification power plant
JP3787820B2 (en) Gasification combined power generation facility
JPH1182057A (en) Gasification-integrated combined power plant
RU2272915C1 (en) Method of operation of gas-steam plant
JP3652743B2 (en) Gasification combined power plant
US9429043B2 (en) Gasification power generation plant
JPH0718350B2 (en) Integrated coal gasification combined cycle power plant