JPH07181206A - Sensor for measuring high frequency current - Google Patents
Sensor for measuring high frequency currentInfo
- Publication number
- JPH07181206A JPH07181206A JP32678293A JP32678293A JPH07181206A JP H07181206 A JPH07181206 A JP H07181206A JP 32678293 A JP32678293 A JP 32678293A JP 32678293 A JP32678293 A JP 32678293A JP H07181206 A JPH07181206 A JP H07181206A
- Authority
- JP
- Japan
- Prior art keywords
- high frequency
- sensor
- frequency current
- conductor
- pin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measuring Leads Or Probes (AREA)
- Measurement Of Current Or Voltage (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は高周波電流測定用センサ
に関し、特に非接触で電流を測定する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-frequency current measuring sensor, and more particularly to a non-contact current measuring method.
【0002】[0002]
【従来の技術】従来の高周波電流測定用センサに関する
構成を図3に示す。2. Description of the Related Art A conventional high-frequency current measuring sensor is shown in FIG.
【0003】尚、図3は、「IEEE TRANSAC
TIONS ON MICROWAVE THEORY
AND TECHNIQUES,VOL.MTT−2
8,NO.7,JULY,1980」に記載されている
高周波電流測定用センサである。本図において探針10
1は、同軸ケーブル102の芯線に接続される。同軸ケ
ーブル102は検波器51に接続されている。Incidentally, FIG. 3 shows "IEEE TRANSAC".
TIONS ON MICROWAVE THEORY
AND TECHNIQUES, VOL. MTT-2
8, NO. 7, JULY, 1980 ”. In this figure, the probe 10
1 is connected to the core wire of the coaxial cable 102. The coaxial cable 102 is connected to the detector 51.
【0004】次に、この実施例1の動作原理について説
明する。図4に示すように、探針101を被測定物(導
体103)に近づけると、導体103を流れる高周波電
流によって生じる電界のうち、探針101の向きと同じ
向きの成分によって、探針101に高周波電流が誘起さ
れる。この電流の検波器51で検波すれは、被測定物を
流れる高周波電流を知ることができる。Next, the operating principle of the first embodiment will be described. As shown in FIG. 4, when the probe 101 is brought close to the object to be measured (conductor 103), the component of the electric field generated by the high-frequency current flowing through the conductor 103 in the same direction as the direction of the probe 101 causes the probe 101 to move. High frequency current is induced. The high-frequency current flowing through the object to be measured can be known by detecting the current with the current detector 51.
【0005】図5は「IEEE TRANSACTIO
NS ON MICROWAVETHEORY AND
TECHNIQUES,VOL.40,NO.8,A
UGUST,1992」に記載されている第2の従来例
の高周波電流測定用センサである。本図において導体線
21は一端を導体管11に接続し、他端を導体管11の
側壁に設けられたコプレーナー線路33に接続される。
コプレーナ線路33は検波器51に接続されている。FIG. 5 shows "IEEE TRANSACTIO".
NS ON MICROWAVETHEORY AND
TECHNIQUES, VOL. 40, NO. 8, A
UGUST, 1992 ”, which is a second conventional high-frequency current measurement sensor. In this figure, the conductor wire 21 has one end connected to the conductor tube 11 and the other end connected to a coplanar line 33 provided on the side wall of the conductor tube 11.
The coplanar line 33 is connected to the detector 51.
【0006】次に、この従来例2の動作原理について説
明する。図6に示すように、センサ直下に被測定物が存
在する場合、被測定物(導体103)を流れる高周波電
流によって生じる磁界は導体線21を囲むようにして発
生する。このため、被測定物を流れる高周波電流のう
ち、導体線21と同じ方向成分を持つ成分が導体線21
に誘起される。この電流を検波器51で検波すれば、被
測定物を流れる高周波電流を知ることができる。また、
図7に示すようにセンサから離れて被測定物が存在する
場合、被測定物を流れる高周波電流によって生じる磁界
は導体線21を囲まない。このため、被測定物が遠い場
合には導体線21に誘起される高周波電流は無くなる。Next, the operating principle of the second conventional example will be described. As shown in FIG. 6, when the object to be measured is present immediately below the sensor, the magnetic field generated by the high frequency current flowing through the object to be measured (conductor 103) is generated so as to surround the conductor wire 21. Therefore, of the high-frequency current flowing through the DUT, the component having the same direction component as the conductor wire 21 is the conductor wire 21.
Is induced by. If this current is detected by the detector 51, the high frequency current flowing through the DUT can be known. Also,
When the device under test exists away from the sensor as shown in FIG. 7, the magnetic field generated by the high-frequency current flowing through the device under test does not surround the conductor wire 21. Therefore, when the object to be measured is far, the high frequency current induced in the conductor wire 21 disappears.
【0007】[0007]
【発明が解決しようとする課題】従来例1の高周波電流
測定用センサでは、電界の垂直方向成分に反応するた
め、被測定物を流れる高周波電流の大きさは検出できる
ものの、電流の向きまでは検出できない。In the sensor for measuring high frequency current of Conventional Example 1, since it reacts to the vertical component of the electric field, the magnitude of the high frequency current flowing through the object to be measured can be detected, but up to the direction of the current. Cannot be detected.
【0008】また、従来例2の高周波電流測定用センサ
では、導体線21と同じ方向成分の高周波電流の大きさ
しか検出できない。このため、他方向の高周波電流を検
出するためには、センサ自体を機械的に90度回転させ
る必要があるため、測定に時間がかかった。Further, the high frequency current measuring sensor of the second conventional example can detect only the magnitude of the high frequency current of the same direction component as the conductor wire 21. Therefore, in order to detect the high-frequency current in the other direction, it is necessary to mechanically rotate the sensor itself by 90 degrees, which requires a long time for measurement.
【0009】[0009]
【課題を解決するための手段】本発明の目的は、センサ
を機械的に回転させて高周波電流の検出方向を切り替え
るのではなく、電気的に検出方向を切り替えることを目
的とする。このため、本発明の高周波電流測定用センサ
は、高周波電流を検出するための導体線2本を直交さ
せ、各導体線の両端にはPINダイオードを配置して、
バイアス入力の正負によって、高周波電流の検出方向を
切り替えるようにしてある。SUMMARY OF THE INVENTION An object of the present invention is not to mechanically rotate a sensor to switch the detection direction of a high frequency current, but to electrically switch the detection direction. Therefore, in the high-frequency current measurement sensor of the present invention, two conductor wires for detecting a high-frequency current are made orthogonal to each other, and PIN diodes are arranged at both ends of each conductor wire,
The detection direction of the high frequency current is switched depending on whether the bias input is positive or negative.
【0010】[0010]
【実施例】次に本発明について図面を参照して説明す
る。図1は本発明の原理を示す図である。高周波電流測
定用センサのセンサ部2は、導体管1の一端において、
導体線21〜24を十字形に接続し、PINダイオード
11,13の一端を導体管1に、他端をそれぞれ導体線
21,23に接続され、またPINダイオード12,1
4の一端を同軸管31,32に、他端を導体線22,2
4にそれぞれ接続される。同軸管31,32の出力は、
高周波信号用検波器51,52からなる検波器部3を経
て検波出力端子54へ接続される。さらに同軸管31,
32の出力は高周波阻止インダクタンス41,42から
なるバイアス回路4を経て、バイアス入力53へ接続さ
れる。The present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing the principle of the present invention. The sensor part 2 of the high-frequency current measuring sensor is provided at one end of the conductor tube 1,
The conductor lines 21 to 24 are connected in a cross shape, one ends of the PIN diodes 11 and 13 are connected to the conductor tube 1, and the other ends are connected to the conductor lines 21 and 23, respectively.
4 to the coaxial tubes 31 and 32, and the other end to the conductor wires 22 and 2
4 are connected respectively. The outputs of the coaxial tubes 31 and 32 are
It is connected to the detection output terminal 54 via the detector unit 3 including the high-frequency signal detectors 51 and 52. Furthermore, the coaxial pipe 31,
The output of 32 is connected to the bias input 53 through the bias circuit 4 including the high frequency blocking inductances 41 and 42.
【0011】次に、本発明の動作について説明する。バ
イアス入力53に正の電圧を加えると、PINダイオー
ド11,12は逆方向バイアスとなり、高周波的に非導
通状態となる。一方、PINダイオード13,14は順
方向バイアスとなり、高周波的に導通状態となる。この
場合、図2に示すように高周波電流測定用センサのセン
サ部2を被測定物に近ずけた場合に被測定物を流れる電
流が、導体線23,24と平行な電流成分だけが検出さ
れる。また、逆にバイアス入力に負の電圧を加えると、
PINダイオード11,12は順方向バイアスとなり、
高周波的に導通状態となる。一方、PINダイオード1
3,14は逆方向バイアスとなり、高周波的に非導通状
態となる。この場合、被測定物を流れる電流の内、導体
線21,22と平行な電流成分だけが検出される。Next, the operation of the present invention will be described. When a positive voltage is applied to the bias input 53, the PIN diodes 11 and 12 are reversely biased, and become non-conductive at high frequencies. On the other hand, the PIN diodes 13 and 14 are forward biased, and are in a conductive state at high frequencies. In this case, as shown in FIG. 2, when the sensor unit 2 of the high-frequency current measuring sensor is brought close to the object to be measured, only the current component flowing through the object to be measured is detected in parallel with the conductor lines 23 and 24. It Conversely, if a negative voltage is applied to the bias input,
PIN diodes 11 and 12 are forward biased,
It becomes conductive at high frequency. On the other hand, PIN diode 1
3 and 14 are reverse biased and are in a non-conductive state at high frequencies. In this case, of the current flowing through the object to be measured, only the current component parallel to the conductor lines 21 and 22 is detected.
【0012】なお、高周波電流の取り出しに同軸管を用
いているが、コプレーナ線路を用いてもよい。Although the coaxial tube is used for extracting the high frequency current, a coplanar line may be used.
【0013】また、本実施例では導体管1を直方体で構
成したが、直交する導体線21〜24が一端に接続でき
るものであれば、本形状に限るものでなく例えば円柱導
体管でも構成できる。In the present embodiment, the conductor tube 1 is composed of a rectangular parallelepiped. However, the conductor tube 1 is not limited to this shape as long as the conductor wires 21 to 24 orthogonal to each other can be connected to one end of the conductor tube 1. .
【0014】[0014]
【発明の効果】以上説明したように、本発明による高周
波電流測定用センサは、バイアス入力の正負を反転させ
ることにより電気的に高周波電流の検出方向が切り替え
られる。このため、センサを機械的に回転させて高周波
電流の検出方向を切り替える必要が無い。As described above, in the high-frequency current measuring sensor according to the present invention, the detection direction of the high-frequency current can be electrically switched by inverting the positive / negative of the bias input. Therefore, it is not necessary to mechanically rotate the sensor to switch the detection direction of the high frequency current.
【図1】本発明の動作原理を示す図である。FIG. 1 is a diagram showing an operating principle of the present invention.
【図2】本発明の一実施例を示す図である。FIG. 2 is a diagram showing an embodiment of the present invention.
【図3】従来例1の実施例を示す図である。FIG. 3 is a diagram showing an example of a first conventional example.
【図4】図3に示した従来例1のセンサの動作原理を示
す図である。FIG. 4 is a diagram showing an operating principle of the sensor of Conventional Example 1 shown in FIG.
【図5】従来例2の実施例を示す図である。FIG. 5 is a diagram showing an example of a second conventional example.
【図6】図5に示した従来例2において、センサ直下に
被測定物がある場合の動作原理を示す図である。FIG. 6 is a diagram showing an operation principle in the case where the object to be measured is located directly below the sensor in the second conventional example shown in FIG.
【図7】図5に示した従来例2において、センサから離
れて被測定物がある場合の動作原理を示す図である。FIG. 7 is a diagram showing an operation principle in the case where there is an object to be measured apart from the sensor in the second conventional example shown in FIG.
1 導体管 2 センサ 3 検波器部 4 バイアス部 11〜14 PINダイオード 21〜24 導体線 31〜32 同軸線路 33 コプレーナ線路 41〜42 高周波阻止インダクタンス 51〜52 検波器 101 探針 102 同軸ケーブル DESCRIPTION OF SYMBOLS 1 conductor pipe 2 sensor 3 detector part 4 bias part 11-14 PIN diode 21-24 conductor wire 31-32 coaxial line 33 coplanar line 41-42 high frequency blocking inductance 51-52 detector 101 probe 102 coaxial cable
Claims (2)
端の中点より互いに直交する4本の導体線を介して、 第1のpinダイオード及び前記第1のpinダイオー
ドと直角方向の第2のpinダイオードを管面に、 前記第1のpinダイオードと直線方向の第3のpin
ダイオード及び第4のpinダイオードを各々第1及び
第2の同軸ケーブルの芯線に接線し、 前記中点から見て第1及び第4のpinダイオードと第
2及び第3のpinダイオードが異なる方向で取り付け
られており、前記第1及び第2の同軸ケーブルの他端の
芯線に各々バイアス入力と高周波検波器を接続したこと
を特徴とする高周波電流測定用センサ。1. A first pin diode and a direction perpendicular to the first pin diode via four conductor wires orthogonal to each other from a midpoint of one end of a linear conductor tube having a conductor surface made of a conductor. The second pin diode on the tube surface, and the third pin in the linear direction with the first pin diode.
The diode and the fourth pin diode are tangentially connected to the core wires of the first and second coaxial cables, respectively, and the first and fourth pin diodes and the second and third pin diodes are different in direction from the midpoint. A high-frequency current measuring sensor, wherein a bias input and a high-frequency detector are connected to the core wires of the other ends of the first and second coaxial cables that are attached.
pinダイオードの対、及び第2と第4のpinダイオ
ードの対のどちらかを導通させることを特徴とする高周
波電流測定用センサ。2. The high-frequency current measurement sensor, wherein the bias input conducts either the pair of the first and third pin diodes or the pair of the second and fourth pin diodes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32678293A JP2639336B2 (en) | 1993-12-24 | 1993-12-24 | High frequency current measurement sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32678293A JP2639336B2 (en) | 1993-12-24 | 1993-12-24 | High frequency current measurement sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07181206A true JPH07181206A (en) | 1995-07-21 |
JP2639336B2 JP2639336B2 (en) | 1997-08-13 |
Family
ID=18191647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32678293A Expired - Lifetime JP2639336B2 (en) | 1993-12-24 | 1993-12-24 | High frequency current measurement sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2639336B2 (en) |
-
1993
- 1993-12-24 JP JP32678293A patent/JP2639336B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2639336B2 (en) | 1997-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1187553A (en) | Remote current detector | |
CN113280724A (en) | Differential bridge type eddy current displacement sensor | |
JPH0367231B2 (en) | ||
JP2639336B2 (en) | High frequency current measurement sensor | |
US11946988B2 (en) | Vehicle battery current sensing system | |
Janssen et al. | Accurate measurement of currents generated by single electrons transported in a one-dimensional channel | |
CN212321718U (en) | Cable current detection device | |
JP7086325B2 (en) | Partial discharge detector and power equipment | |
KR960007362Y1 (en) | Portable receiver for detecting probe signal on low voltage line conductor | |
JPH08160098A (en) | Method for detecting partial discharge signal | |
JPH04265890A (en) | Method and apparatus for finding space relationship between hidden conductors | |
US11799279B2 (en) | Multifunction single core sensor for ground fault application | |
JP2691549B2 (en) | Partial discharge detection device | |
JP2610833B2 (en) | Short-circuit position detecting device and short-circuit position detecting method | |
JP3232580B2 (en) | Zero-phase voltage detector | |
JP2889252B2 (en) | Power cable dielectric loss measuring device | |
SU1462178A1 (en) | Matrix of eddy-current converter | |
JP2002122628A (en) | Specifying method for fault point | |
JP3065815B2 (en) | Partial discharge detection method | |
JPH0637347Y2 (en) | IC test scanner | |
SU1718157A1 (en) | Method of determining a search direction in testing power lines for shorted spots and device thereof | |
JPS6259873A (en) | Accident section discriminating device using photosensor | |
GB2239956A (en) | Testing transmission lines | |
JPH0676874U (en) | Split type corona sensor | |
JP2006064461A (en) | Partial discharge detection device for electric rotary machine and method for it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19970325 |