JPH0718016B2 - Method for producing stainless steel with excellent rust resistance - Google Patents

Method for producing stainless steel with excellent rust resistance

Info

Publication number
JPH0718016B2
JPH0718016B2 JP11082182A JP11082182A JPH0718016B2 JP H0718016 B2 JPH0718016 B2 JP H0718016B2 JP 11082182 A JP11082182 A JP 11082182A JP 11082182 A JP11082182 A JP 11082182A JP H0718016 B2 JPH0718016 B2 JP H0718016B2
Authority
JP
Japan
Prior art keywords
stainless steel
rust resistance
excellent rust
oxide
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11082182A
Other languages
Japanese (ja)
Other versions
JPS591685A (en
Inventor
重義 前田
恒敏 浅井
叡 伊藤
武久 水沼
裕保 小俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11082182A priority Critical patent/JPH0718016B2/en
Publication of JPS591685A publication Critical patent/JPS591685A/en
Publication of JPH0718016B2 publication Critical patent/JPH0718016B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 本発明は耐銹性の優れたステンレス鋼の製造法に関する
ものであってその特徴とするところはあらかじめ表面に
シリコン化合物を塗布した後、水素ガスもしくは水素ガ
スと窒素ガスとの混合ガス中で加熱軟化(焼きなまし)
を行ない、表面にシリカ(SiO2またはSiOx)皮膜を形成
させることにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing stainless steel having excellent rust resistance, which is characterized by applying a silicon compound in advance to the surface and then applying hydrogen gas or hydrogen gas and nitrogen gas. Heat softening in mixed gas with (annealing)
To form a silica (SiO 2 or SiO x ) film on the surface.

本発明はステンレス鋼、特にクロム系ステンレス鋼の光
輝焼鈍材の耐銹性が同一鋼種(成分系)であるにもかか
わらず、材料によって大巾に異なる事実を見い出し、そ
の原因が、これまでの常識に反してその表面皮膜にクロ
ムを多く含む酸化物であるステンレス鋼よりも、大部分
シリコンの酸化物、就中無定形シリカから成るステンレ
ス鋼がよりすぐれた耐銹性を示すという新発見に基づい
てなされたものである。
The present invention finds that the rust resistance of bright annealed materials of stainless steel, especially chrome-based stainless steel, is the same steel type (component system), but varies widely depending on the material. Contrary to common sense, a new discovery that stainless steel consisting mostly of silicon oxide, especially amorphous silica, exhibits superior rust resistance than stainless steel, which is an oxide containing a large amount of chromium in its surface film. It was made based on.

現在ステンレス鋼の製造プロセスを最終的な表面仕上の
面から分類すると、冷間圧延後に軽油燃焼による酸化雰
囲気中で焼なましし、引続き硝酸電解もしくは硝フッ酸
浸漬によって表面の着色酸化膜を除去すると同時に表面
を不働態化するプロセスと水素ガスを含む還元性雰囲気
中で表面が酸化着色しないように焼なまし(光輝焼鈍、
Bright annealing,以下BAと略す)を行ない、不働態化
処理は省略するプロセスとに分けられる。後者のプロセ
スでは製品の表面品質(外観、耐銹性)は当然ながら最
終工程でる焼なまし工程に支配される。
The current stainless steel manufacturing process is classified according to the final surface finish.After cold rolling, it is annealed in an oxidizing atmosphere by burning light oil, and subsequently the colored oxide film on the surface is removed by nitric acid electrolysis or nitric hydrofluoric acid dipping. Simultaneously with the process of passivating the surface and annealing in a reducing atmosphere containing hydrogen gas to prevent the surface from being oxidized and colored (bright annealing,
Bright annealing (hereinafter abbreviated as BA) is performed and the passivation process is omitted. In the latter process, the surface quality (appearance, rust resistance) of the product is naturally controlled by the final annealing process.

本発明は後者のプロセスのステンレス鋼に関するもので
あって、同一成分系のステンレス鋼であっても耐銹性が
大巾に異なる原因を明らかにする目的で、各種のBA材の
表面組成をオージエ電子分光法および電子回折法で詳細
に調査した結果、例えばSUS430系(16〜19wt%)では表
面組成が主としてCrとSiの酸化物から成り、そのCrの表
面濃度(厚さ約20Åの平均組成)は3〜22原子パーセン
トで、Siの表面濃度は14〜46原子パーセントの範囲に変
化することが分った。該ステンレス鋼のSi濃度(0.3〜
0.7wt%)に比べて異常に高い表面Si濃度はBA中にSiの
優先酸化が起っていることを示している。すなわちBAの
雰囲気は一般にアンモニア分解ガス(75vol%H2+25vol
%N2)が用いられるが、微量の水分を含んでおり、その
水分量は0.001vol%から0.1vol%である,(露点にして
約−60℃〜−20℃)。而してガスの還元力は水素ガスの 並びに加熱温度によって決まる。すなわち今金属をM,そ
の酸化物をMxOyとするとその酸化還元平衡は次の式で表
わされる。
The present invention relates to the stainless steel of the latter process, and even if the stainless steels of the same composition are used, the surface composition of various BA materials is changed to the purpose of clarifying the reason why the rust resistance is greatly different. As a result of detailed investigations by electron spectroscopy and electron diffraction, for example, in the SUS430 system (16 to 19 wt%), the surface composition is mainly composed of Cr and Si oxides, and the surface concentration of Cr (average composition of thickness about 20Å) ) Is 3 to 22 atomic percent, and the surface concentration of Si varies in the range of 14 to 46 atomic percent. Si concentration of the stainless steel (0.3 to
An abnormally high surface Si concentration compared to 0.7 wt% indicates that preferential oxidation of Si occurs in BA. That is, the atmosphere of BA is generally an ammonia decomposition gas (75vol% H 2 + 25vol
% N 2 ) is used, but it contains a small amount of water, and its water content is 0.001 vol% to 0.1 vol%, (the dew point is about −60 ° C. to −20 ° C.). Thus, the reducing power of gas is that of hydrogen gas. And the heating temperature. That is, assuming that the metal is M and the oxide is M x O y , the redox equilibrium is expressed by the following equation.

ここでΔGは(1)反応のギブスの自由エネルギーであ
る。Fe,CrおよびSiのそれぞれのΔGを用いて(1)反
応の起りやすさ(酸化されやすさ)を比較すると、いず
れの温度においてもSiが最も酸化されやすく、Crがそれ
につぎ、Feは最も酸化されにくい。すなわち75%H2であ
れば露点−20℃以下でFeは焼なまし中(1000℃〜100
℃)に全く酸化されないが、Siは露点−60℃,1000℃で
も酸化状態にあり、Crは露点によっては酸化される。鋼
中の固溶金属元素が表面で酸化物(イオン)になると、
内部から固溶元素が引続き表面に拡散し、その結果、そ
の成分の酸化濃縮層が表面に形成される。Siの表面酸化
物は以上の原理によってBA中に形成するものである。し
たがって同一鋼成分であっても焼なまし雰囲気が異なる
と表面皮膜組成(Siの酸化物とCrの酸化物との割合)が
変わり、製品の耐銹性に直接影響を及ぼす。そこで各種
のBA材の耐銹性と表面組成との関係を調べたところSiの
酸化物の割合の高いものほど耐銹性がすぐれているこ
と、更にまたSiの酸化物がアモルファスになっているも
のが耐銹性がよいことを見い出した。
Here, ΔG is the Gibbs free energy of the reaction (1). Comparing (1) the easiness of reaction (easiness of oxidation) using ΔG of each of Fe, Cr, and Si, Si is most easily oxidized at any temperature, Cr is next, and Fe is most Hard to be oxidized. That is, if it is 75% H 2 , Fe is annealed at a dew point of -20 ° C or less (1000 ° C to 100 ° C).
However, Si is in an oxidized state even at dew points of -60 ° C and 1000 ° C, and Cr is oxidized depending on the dew point. When solid solution metal elements in steel become oxides (ions) on the surface,
The solid solution element continuously diffuses from the inside to the surface, and as a result, an oxidized concentrated layer of the component is formed on the surface. The surface oxide of Si is formed in BA by the above principle. Therefore, even with the same steel composition, the surface film composition (the ratio of oxides of Si and oxides of Cr) changes when the annealing atmosphere is different, which directly affects the rust resistance of the product. Therefore, we investigated the relationship between rust resistance and surface composition of various BA materials. The higher the proportion of Si oxide, the better the rust resistance. Furthermore, the Si oxide is amorphous. It was found that the product has good rust resistance.

Siの酸化物を表面に形成せしめるには、上記の如く焼な
まし雰囲気成分(水素ガス濃度と露点)をコントロール
することによって達成できる。しかしながらこの方法は
全ての熱サイクルで厳密な の管理が必要で、かつ連続焼なましに於てはコイル(鋼
帯)から持ち込まれる水分による露点上昇などがあって
コントロールが難かしい。またアモルファス酸化物にす
る露点の管理範囲が狭いという難点がある。本発明者ら
は表面にSiの酸化物を簡単に形成させる方法として、焼
鈍前にSiの化合物を塗布することが有効であることを見
いだした。すなわち冷間圧延後のコイルを脱脂後、シリ
カゾルの水けんだく液、各種の水溶性無機珪酸塩(オル
ソ珪酸ソーダおよびカリメタ珪酸ソーダおよびカリある
いは珪弗化ソーダおよび珪フッ化アンモンなど)の溶液
に浸漬し、ロール絞りによってSiO2の付着量を好ましく
は1〜120mg/m2の範囲に付着せしめ、150℃の熱風で乾
燥したあと、通常の加熱サイクル、たとえば950℃,1分
間の焼なましを行なう。この際露点は特に制御される必
要はないが、表面が着色しないためには−20℃以下(75
%H2において)が望ましい。またSiの好ましい付着量を
上記範囲としたのは、1mg/m2未満では耐銹性が同一焼な
まし条件の無塗布ステンレス鋼に比べて改善されず、一
方120mg/m2を超えると焼なまし後の表面が光沢不良を起
し外観が悪くなるためである。
The formation of Si oxide on the surface can be achieved by controlling the annealing atmosphere components (hydrogen gas concentration and dew point) as described above. However, this method is rigorous for all thermal cycles. Is required, and in continuous annealing, it is difficult to control because there is a rise in the dew point due to the moisture brought in from the coil (steel strip). In addition, there is a problem that the control range of the dew point of the amorphous oxide is narrow. The present inventors have found that applying a Si compound before annealing is effective as a method for easily forming a Si oxide on the surface. That is, after the coil after cold rolling is degreased, it is dissolved in a solution of silica sol in water, and various water-soluble inorganic silicates (sodium orthosilicate and potassium metametasilicate and potassium, or sodium silicofluoride and ammonium silicofluoride). After dipping, apply the amount of SiO 2 deposited by roll squeezing to a range of preferably 1 to 120 mg / m 2 , dry with hot air at 150 ° C, and then anneal under normal heating cycle, for example, 950 ° C for 1 minute. Do. At this time, the dew point does not need to be particularly controlled, but in order to prevent the surface from being colored, it is -20 ° C or lower (75
% H 2 ) is preferred. Further, the preferable amount of Si deposited is in the above range because rust resistance is not improved as compared with uncoated stainless steel under the same annealing conditions at less than 1 mg / m 2 , whereas if it exceeds 120 mg / m 2. This is because the surface after annealing has poor gloss and the appearance is poor.

塗布方法は上記の如く浸漬,ロール絞りが最も簡単であ
るが、珪酸ソーダ溶液を用いるときは脱脂を兼ねる目的
で電解(鋼帯をプラス,マイナスのいずれとしても可)
を併用することもできる。
As mentioned above, dipping and roll squeezing are the simplest coating methods, but when using a sodium silicate solution, electrolysis is used for the purpose of degreasing (the steel strip can be either positive or negative)
Can also be used together.

以下に本発明の実施例を述べる。Examples of the present invention will be described below.

実施例1 予じめ脱脂した19Crステンレス鋼(Cr19.2%,C0.0005
%,Si0.30%,Mn0.75%,P0.025%,S0.004%,Ni0.30%,Cu
0.4%,N0.009%,Nb0.50%,Fe残)の冷延板を3%オルソ
珪酸ソーダ水溶液(90℃)に浸漬し、ロール絞りによっ
て水切りした後、熱風乾燥し、75%2,露点−40℃の雰
囲気中で950℃,1分間の熱処理を行なった。100℃まで冷
却後大気中に取り出したものは、すぐれた光沢を示し
た。表面酸化膜組成並びに耐銹性を表1に示す。表面皮
膜はSiの酸化物が主体で、耐銹性は極めてすぐれてい
た。
Example 1 Preliminarily degreased 19Cr stainless steel (Cr19.2%, C0.0005
%, Si0.30%, Mn0.75%, P0.025%, S0.004%, Ni0.30%, Cu
0.4%, N0.009%, Nb0.50%, Fe remaining) cold-rolled sheet was dipped in 3% sodium orthosilicate solution (90 ° C), drained by roll squeezing, dried with hot air, 75% 2 , Heat treatment was performed at 950 ℃ for 1 minute in an atmosphere with a dew point of -40 ℃. The product taken out into the air after being cooled to 100 ° C. exhibited excellent gloss. Table 1 shows the surface oxide film composition and rust resistance. The surface film was mainly composed of Si oxide and had excellent rust resistance.

実施例2 実施例1と同じステンレス鋼(脱脂板)を2%の固形分
を含むシリカゾル中(常温)に浸漬し、引上げてロール
絞り,乾燥を行なった。実施例1と同様の焼なましを行
なった製品の表面皮膜と耐銹性を同じく表1に示す。
Example 2 The same stainless steel (degreasing plate) as in Example 1 was immersed in a silica sol containing 2% solids (normal temperature), pulled up, rolled, and dried. Table 1 shows the surface film and rust resistance of the product annealed in the same manner as in Example 1.

実施例3 3%オルソ珪酸ソーダ(90℃)中で、実施例1と同じ成
分系のステンレス鋼(冷間圧延油付着のまま)を陰極と
して20A/dm2で2秒間電解し、引続き水洗乾燥を行なっ
た。実施例1と同様に焼なましを行なった製品の耐銹性
は表1に示すように極めてすぐれていた。
Example 3 A 3% sodium orthosilicate (90 ° C.) was electrolyzed for 2 seconds at 20 A / dm 2 using a stainless steel having the same composition as in Example 1 (with cold rolling oil adhered) as a cathode, followed by washing with water and drying. Was done. The rust resistance of the product annealed in the same manner as in Example 1 was extremely excellent as shown in Table 1.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水沼 武久 神奈川県川崎市中原区井田1618 新日本製 鐵株式會社基礎研究所内 (72)発明者 小俣 裕保 神奈川県川崎市中原区井田1618 新日本製 鐵株式會社基礎研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Takehisa Mizunuma 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Kanagawa Basic Research Institute (72) Inventor Yuho Omata 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa New Nippon Steel Stock Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ステンレス鋼または鋼帯をあらかじめ無機
の珪酸塩化合物の水溶液もしくはシリカゾルの水けんだ
く液中で処理し、引続き光輝焼鈍を行なうことを特徴と
する耐銹性の優れたステンレス鋼の製造法。
1. A stainless steel having excellent rust resistance, which is characterized in that a stainless steel or a steel strip is preliminarily treated in an aqueous solution of an inorganic silicate compound or a water solution of silica sol, followed by bright annealing. Manufacturing method.
JP11082182A 1982-06-29 1982-06-29 Method for producing stainless steel with excellent rust resistance Expired - Lifetime JPH0718016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11082182A JPH0718016B2 (en) 1982-06-29 1982-06-29 Method for producing stainless steel with excellent rust resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11082182A JPH0718016B2 (en) 1982-06-29 1982-06-29 Method for producing stainless steel with excellent rust resistance

Publications (2)

Publication Number Publication Date
JPS591685A JPS591685A (en) 1984-01-07
JPH0718016B2 true JPH0718016B2 (en) 1995-03-01

Family

ID=14545505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11082182A Expired - Lifetime JPH0718016B2 (en) 1982-06-29 1982-06-29 Method for producing stainless steel with excellent rust resistance

Country Status (1)

Country Link
JP (1) JPH0718016B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680190B2 (en) * 1986-12-19 1994-10-12 川崎製鉄株式会社 Method for improving rust resistance of brightly annealed ferrite stainless steel
JP4786576B2 (en) * 2007-03-23 2011-10-05 日新製鋼株式会社 Stainless steel material excellent in temper color resistance and its manufacturing method
CN113755830A (en) * 2021-08-30 2021-12-07 温州瑞银不锈钢制造有限公司 Production process of surface modified stainless steel and surface modified stainless steel

Also Published As

Publication number Publication date
JPS591685A (en) 1984-01-07

Similar Documents

Publication Publication Date Title
JP2664337B2 (en) Method for forming insulating film on unidirectional silicon steel sheet
JPH0718016B2 (en) Method for producing stainless steel with excellent rust resistance
JPS5996300A (en) Control of oxidated scale formation and method of descaling metal products
JPH03130376A (en) Production of unidirectionally oriented silicon steel sheet excellent in magnetic characteristic
JP3014530B2 (en) Manufacturing method of high strength galvanized steel sheet
JPH044397B2 (en)
JPS624475B2 (en)
JPH0368114B2 (en)
JPS6028909B2 (en) Steel plate with excellent chemical conversion treatment properties
PL127280B1 (en) Method of manufacturing silicon steel sheet of goss texture
JP2002194494A (en) Steel sheet for enameling, its production method, enameled product and its production method
US4612095A (en) Method for improving corrosion resistance of bright annealed stainless steel
JP2702371B2 (en) Manufacturing method of exterior stainless steel sheet having anti-glare property and corrosion resistance
JP2667098B2 (en) Manufacturing method of low iron loss grain-oriented electrical steel sheet
JPS56127762A (en) Preparation of aluminum alloy plated steel plate with excellent corrosion resistance and processability
JPH08143975A (en) Annealing releasing agent and slurry for grain-oriented electrical steel sheet to obtain excellent glass coating and magnetic characteristics
JP3668994B2 (en) Method for producing grain-oriented silicon steel sheet
JPH09272983A (en) Production of low core loss grain oriented silicon steel sheet excellent in corrosion resistance
US4012239A (en) Process for treating steel sheets for the purpose of enamelling the sheets
JP3280844B2 (en) Method for forming insulating film on unidirectional silicon steel sheet
JPS624473B2 (en)
JPS59215421A (en) Method for forming film containing zirconia on surface of silicon steel sheet
JPS5911670B2 (en) Method of applying annealing separator to grain-oriented electrical steel strip
JPS5893875A (en) Production of directional silicon steel plate
US3488232A (en) Method of annealing copper and its alloys