JPH05279747A - Formation of insulating film on grain oriented electrical steel sheet - Google Patents

Formation of insulating film on grain oriented electrical steel sheet

Info

Publication number
JPH05279747A
JPH05279747A JP8110992A JP8110992A JPH05279747A JP H05279747 A JPH05279747 A JP H05279747A JP 8110992 A JP8110992 A JP 8110992A JP 8110992 A JP8110992 A JP 8110992A JP H05279747 A JPH05279747 A JP H05279747A
Authority
JP
Japan
Prior art keywords
steel sheet
film
oriented electrical
electrical steel
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8110992A
Other languages
Japanese (ja)
Inventor
Shuichi Yamazaki
修一 山崎
Takeo Nagashima
武雄 長島
Hiroyasu Fujii
浩康 藤井
Osamu Tanaka
收 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8110992A priority Critical patent/JPH05279747A/en
Publication of JPH05279747A publication Critical patent/JPH05279747A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • C23C22/33Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings

Abstract

PURPOSE:To form the insulating films having high adhesion and the high tension to be imparted on a grain oriented electrical steel sheet by forming the films having the good adhesion to the steel sheet on the steel sheet, then applying insulation coatings of a colloidal silica-phosphate system thereon. CONSTITUTION:The insulating films having the high adhesion to the grain oriented electrical steel sheet are formed at <=4g/m<2> per one surface on the steel sheet. The insulation coatings consisting essentially of colloidal silica and phosphate are then applied thereon. Substrate films are formed by coating the steel sheet with an aq. primary phosphate soln. of >=1 kinds of Al, Mg, Sr, Ba and Fe or an aq. phosphoric acid soln. and baking the coatings at about >=350 deg.C. An aq. alkaline metal silicate soln. is also usable for forming the substrate films. The insulation coating liquid consists of (1) the colloidal silica, (2) >=1 kinds of the primary phosphate selected from Al, Mg, Sr, Ba and Fe and (3) >=1 kinds of chromic anhydride and chromates as basic components.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は表面にフォルステライト
皮膜を持たない方向性電磁鋼板、さらには鏡面ないしそ
れに近い状態に調整した仕上げ焼鈍後の方向性電磁鋼板
の表面に、高い密着性を持つ高張力の絶縁皮膜を形成す
る方法を提供するものである。
FIELD OF THE INVENTION The present invention has high adhesion to the surface of grain-oriented electrical steel sheet having no forsterite coating on the surface, and further to the surface of grain-oriented electrical steel sheet after finish annealing adjusted to a mirror surface or a state close to it. The present invention provides a method for forming a high-strength insulating film.

【0002】[0002]

【従来の技術】方向性電磁鋼板は磁気鉄芯材料として多
用されており、特にエネルギーロスを少なくするために
鉄損の少ない材料が求められている。鉄損の低減には鋼
板に張力を付与することが有効であることが知られてい
る。
2. Description of the Related Art Grain-oriented electrical steel sheets are widely used as a magnetic iron core material, and a material having a small iron loss is particularly required to reduce energy loss. It is known that applying tension to a steel sheet is effective in reducing iron loss.

【0003】鋼板に張力を付与するためには、鋼板より
熱膨張係数の小さい材質からなる皮膜を高温で形成する
ことが有効である。仕上げ焼鈍工程で鋼板表面の酸化物
と焼鈍分離剤とが反応して生成するフォルステライトを
主体とする皮膜は、鋼板に与える張力が大きく、かつ皮
膜密着性も極めて良好である。
In order to apply tension to the steel sheet, it is effective to form a film made of a material having a smaller coefficient of thermal expansion than the steel sheet at a high temperature. The film mainly composed of forsterite formed by the reaction between the oxide on the surface of the steel sheet and the annealing separator in the finish annealing step has a large tension applied to the steel sheet and has very good film adhesion.

【0004】さらに、特開昭48−39338号公報で
開示されたコロイド状シリカと燐酸塩を主体とするコー
ティング液を焼き付けることによって絶縁皮膜を形成す
る方法は、鋼板に対して張力付与の効果が大きく、鉄損
低減に有効である。この絶縁コーティング液において
は、シリカ成分が絶縁皮膜の低熱膨張化すなわち鋼板へ
の高張力付与に、燐酸塩成分が絶縁皮膜の下地に対する
密着性確保にそれぞれ寄与しているものと思われる。し
たがって、仕上げ焼鈍工程で生じた皮膜を残したうえで
張力性の絶縁コーティングを施すことが一般的な方向性
電磁鋼板の製造方法となっている。
Further, the method of forming an insulating film by baking a coating solution containing colloidal silica and a phosphate as disclosed in JP-A-48-39338 has the effect of imparting tension to a steel sheet. Large and effective in reducing iron loss. In this insulating coating solution, it is considered that the silica component contributes to the low thermal expansion of the insulating film, that is, imparts a high tensile strength to the steel sheet, and the phosphate component contributes to ensuring the adhesion of the insulating film to the base. Therefore, a general method for producing a grain-oriented electrical steel sheet is to apply a tensile insulating coating after leaving the film produced in the finish annealing step.

【0005】一方、最近、フォルステライト系皮膜と地
鉄の乱れた界面構造が、鉄損に対する皮膜張力効果をあ
る程度相殺していることが明らかになってきた。そこ
で、例えば特開昭49−96920号公報に開示されて
いる如く、仕上げ焼鈍工程で生ずるフィルステライト質
皮膜を除いたり、更に鏡面化仕上げを行ったのち、張力
皮膜を改めて施すことにより、更なる鉄損低減を試みる
技術が開発された。
On the other hand, recently, it has been revealed that the disordered interface structure between the forsterite coating and the base iron cancels the coating tension effect on iron loss to some extent. Therefore, as disclosed in, for example, Japanese Patent Laid-Open No. 49-96920, by removing the fillsterite film produced in the finish annealing step, further performing mirror finishing, and then applying a tension film again, Techniques have been developed to try to reduce iron loss.

【0006】しかしながら、上記コーティング液はフォ
ルステライトを主体とする皮膜の上に施した場合には、
かなりの密着性が得られるものの、フォルステライト系
皮膜を除去したり、あるいは仕上げ焼鈍工程で意図的に
フォルステライト形成を行わなかった場合には、十分な
密着性が得られない。
However, when the above coating liquid is applied on a film mainly composed of forsterite,
Although a considerable degree of adhesion can be obtained, sufficient adhesion cannot be obtained when the forsterite-based film is removed or when the forsterite is not intentionally formed in the final annealing step.

【0007】フォルステライト系皮膜除去を行った場合
は絶縁コーティングのみで所要の皮膜張力を確保する必
要があり、必然的に厚膜化しなければならず、より一層
の皮膜密着性が必要である。したがって、従来の絶縁コ
ーティングでは鏡面化の効果を十分に引き出すほどの皮
膜張力を達成することは困難であり、十分な鉄損低減が
図られていなかった。
When the forsterite-based film is removed, it is necessary to secure the required film tension only by the insulating coating, and it is necessary to make the film thicker, and further the film adhesion is required. Therefore, it is difficult for the conventional insulating coating to achieve the film tension enough to bring out the effect of mirroring, and the iron loss has not been sufficiently reduced.

【0008】[0008]

【発明が解決しようとする課題】本発明は、これら従来
技術における問題点を解決し、特にフォルステライト皮
膜の無い鋼板であっても、密着性が高くかつ鋼板に付与
する張力の大きい絶縁皮膜を形成する方法を提供するこ
とを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves these problems in the prior art, and in particular, even for a steel sheet having no forsterite coating, an insulating coating having a high adhesion and a large tension applied to the steel sheet is provided. It is intended to provide a method of forming.

【0009】[0009]

【課題を解決するための手段】本発明は、鋼板との密着
性の良好な皮膜を形成させた後、コロイド状シリカ−燐
酸塩系絶縁コーティングをあらためて施すことにより、
方向性電磁鋼板に対し高い皮膜密着性と張力を有する絶
縁コーティングを形成する方法である。
According to the present invention, after forming a film having good adhesion to a steel sheet, a colloidal silica-phosphate-based insulating coating is applied again,
This is a method of forming an insulating coating having high film adhesion and tension on a grain-oriented electrical steel sheet.

【0010】ここで、コロイド状シリカ−燐酸塩系絶縁
コーティング液とは、例えば、特開昭48−39338
号公報、特開昭53−28043号公報、特開昭50−
79442号公報、特開昭52−25296号公報に開
示されているようなものである。すなわち、コロイド
状シリカ、Al,Mg,Sr,Ba,Feのうちから
選ばれる1種または2種以上の第一燐酸塩、無水クロ
ム酸塩、クロム酸塩のうちから選ばれる1種または2種
以上を基本成分とするものであり、そのほかに、耐熱性
を向上させるためにSiO2 ,Al2 3 ,TiO2
の酸化物を添加しても良い。
Here, the colloidal silica-phosphate-based insulating coating liquid is, for example, JP-A-48-39338.
JP-A-53-28043, JP-A-50-
It is as disclosed in JP-A-79442 and JP-A-52-25296. That is, one or more kinds selected from colloidal silica, one or more kinds selected from Al, Mg, Sr, Ba and Fe, primary phosphate, anhydrous chromate and chromate. In addition to the above, the oxides such as SiO 2 , Al 2 O 3 and TiO 2 may be added to improve heat resistance.

【0011】[0011]

【作用】以下、本発明を詳細に説明する。方向性電磁鋼
板における張力付与は、耐熱性のある酸化物系の皮膜を
高温において形成させ、冷却過程における鋼板と皮膜と
の熱膨張の差を利用してなされている。ところが、鋼板
に張力を施そうとするならば界面に応力が生じ、皮膜の
密着性が十分でなければ皮膜は剥離してしまう。従っ
て、鋼板に対する張力が大きい皮膜ほど下地との皮膜密
着力が大きくなければならない。
The present invention will be described in detail below. The application of tension to the grain-oriented electrical steel sheet is performed by forming a heat-resistant oxide film at high temperature and utilizing the difference in thermal expansion between the steel plate and the film during the cooling process. However, if tension is applied to the steel sheet, stress is generated at the interface, and if the adhesion of the coating is not sufficient, the coating will peel off. Therefore, the higher the tension on the steel sheet, the greater the adhesion of the coating to the substrate.

【0012】従来のコロイダルシリカ−燐酸塩系絶縁コ
ーティングにおいては、皮膜による張力と皮膜密着力の
両方を満足させるために組成が決められたものである。
すなわち、シリカ成分が皮膜の低熱膨張化、高張力化
に、燐酸塩が下地との密着力確保に貢献していると思わ
れる。
In the conventional colloidal silica-phosphate-based insulating coating, the composition is determined in order to satisfy both the tension by the film and the film adhesion.
That is, it is considered that the silica component contributes to the low thermal expansion and the high tension of the film and the phosphate contributes to the securing of the adhesive force with the base.

【0013】一方、一般に酸化物と金属の親和力は、酸
化物同士、金属同士よりも弱い。したがって、同じ程度
の皮膜張力が得られる皮膜をフォルステライトのない鋼
板に形成させようとするならば、より一層の皮膜密着性
が必要となる。
On the other hand, the affinity between oxides and metals is generally weaker than that between oxides and between metals. Therefore, in order to form a film having the same film tension on a steel plate without forsterite, further film adhesion is required.

【0014】発明者らは、現行の絶縁コーティングより
も鋼板との密着性の良好な皮膜を形成(以下、下地皮膜
形成)したのちに張力の大きい皮膜を成膜(以下、張力
皮膜形成)させるならば、フォルステライト皮膜のな
い、すなわち金属の露出した鋼板においても高い皮膜密
着力を確保できるのではないかと考え、検討を重ねた。
その結果、下地皮膜形成を350℃以上の温度で行うな
らば、下地皮膜形成によって、皮膜の密着力が向上す
るのみ成らず、このような処理によっても張力皮膜形
成によって鋼板に付与される張力が、下地処理を施さな
かった場合に期待される張力に劣らないことを新規に知
見して発明を完成させた。
The inventors of the present invention form a film having better adhesiveness to a steel sheet than the current insulating coating (hereinafter referred to as "undercoating"), and then form a film having high tension (hereinafter referred to as "tensioned film formation"). Then, we thought that it would be possible to secure a high film adhesion even on a steel plate without a forsterite film, that is, on a steel sheet with exposed metal, and conducted repeated studies.
As a result, if the base film is formed at a temperature of 350 ° C. or higher, not only the adhesion of the film is improved by forming the base film, but also the tension applied to the steel sheet by the formation of the tension film is increased by such treatment. The inventors completed the invention by newly discovering that the tension is not inferior to that expected when no base treatment is applied.

【0015】鋼板との密着性が大きい皮膜形成が期待で
きるコーティング液として、燐酸(鋼板と燐酸とが反応
して鋼板表面に燐酸鉄が生ずる)、燐酸塩水溶液、アル
カリ金属珪酸塩水溶液(水ガラス)が考えられる。
As a coating liquid which can be expected to form a film having a high adhesion to a steel sheet, phosphoric acid (a steel sheet reacts with phosphoric acid to produce iron phosphate on the surface of the steel sheet), an aqueous phosphate solution, an aqueous alkali metal silicate solution (water glass ) Is considered.

【0016】コロイダルシリカ−燐酸塩系絶縁コーティ
ング焼き付けに先立つ、これらのコーティング液による
下地皮膜形成効果についての実験をまとめたものが表1
である。
Table 1 shows a summary of experiments on the effect of forming a base film by these coating solutions prior to baking of colloidal silica-phosphate-based insulating coating.
Is.

【0017】[0017]

【表1】 [Table 1]

【0018】実験はすべて3%のSiを含有する0.2
3mm板厚の最終仕上げ焼鈍済みの方向性電磁鋼板につ
き、酸洗によりフォルステライト皮膜を除去した鋼板に
対して行った。下地皮膜形成はすべて処理液を所定の量
塗布後乾燥、800℃で焼き付けたものである。
All experiments were performed with 0.2 containing 3% Si.
For a grain-oriented electrical steel sheet having a final finish annealing of 3 mm thickness, the steel sheet from which the forsterite film was removed by pickling was used. The undercoat film is formed by applying a predetermined amount of the treatment liquid, drying it, and baking it at 800 ° C.

【0019】皮膜の密着性評価は、直径20mmの鋼丸棒
を用いて試料の180°曲げ試験を行い、内側の皮膜に
剥離が発生したかどうかによって行った。 ○…皮膜の剥離無し △…皮膜剥離面積20%以下 ×…皮膜剥離面積20%以上 また、皮膜形成によって付与された張力の測定は、片面
のみ皮膜を形成させた試料の曲率半径より算出した。
The adhesion of the coating was evaluated by conducting a 180 ° bending test of the sample using a steel round bar having a diameter of 20 mm and checking whether peeling occurred on the coating inside. O: No peeling of film Δ: 20% or less of film peeling area X: 20% or more of film peeling area The tension applied by the film formation was calculated from the radius of curvature of a sample having a film formed on only one surface.

【0020】表1に示したように、コロイダルシリカ−
燐酸塩系コーティング皮膜形成に先立つ下地皮膜形成に
よって、皮膜密着力は際だって向上する。また、本検討
の範囲内において、皮膜全体が鋼板に与える張力は、用
いた下地皮膜形成方法や皮膜量によらず、コロイダルシ
リカ−燐酸塩系コーティング皮膜の形成量に対応してい
る。
As shown in Table 1, colloidal silica-
The adhesion of the film is remarkably improved by forming the base film prior to the formation of the phosphate coating film. Further, within the scope of this study, the tension applied to the steel sheet by the entire coating corresponds to the amount of the colloidal silica-phosphate coating coating formed, regardless of the underlying coating forming method and the coating amount used.

【0021】したがって、本発明における下地皮膜形成
処理によって皮膜張力に何等悪影響が生じないことがわ
かる。おそらく、本発明による下地皮膜の熱膨張係数が
鋼板のそれにほぼ等しいことが原因であると思われる。
Therefore, it is understood that the film tension is not adversely affected by the base film forming treatment in the present invention. Presumably, it is because the thermal expansion coefficient of the undercoat according to the present invention is almost equal to that of the steel sheet.

【0022】さらに、表1において、本発明1と比較例
3、および本発明2と比較例4を比べてわかるように、
燐酸塩を用いた場合、下地皮膜形成量が4g/m2 を超
えると焼き付け後に白粉状となり、皮膜形成が困難にな
った。下地皮膜の導入は占積率を悪化させる原因にもな
るため、その形成量は4g/m2 以下に抑えるのがよ
い。
Further, in Table 1, as can be seen by comparing Invention 1 with Comparative Example 3 and Invention 2 with Comparative Example 4,
When a phosphate was used, when the amount of underlying film formed exceeded 4 g / m 2 , it became white powder after baking, making film formation difficult. Since the introduction of the undercoat film also causes the space factor to be deteriorated, it is preferable to suppress the amount of formation thereof to 4 g / m 2 or less.

【0023】下地皮膜の焼き付け温度については、35
0℃以下で焼き付けた場合には、引き続く張力皮膜のコ
ーティング液を焼き付ける際に下地皮膜が剥離してしま
う現象がみられた。したがって、下地皮膜の焼き付け温
度は350℃以上でなければならない。
The baking temperature of the undercoat is 35
In the case of baking at 0 ° C. or lower, there was a phenomenon that the undercoat was peeled off when the subsequent coating solution for the tension film was baked. Therefore, the baking temperature of the base film must be 350 ° C. or higher.

【0024】[0024]

【実施例】 実施例1 3%Siを含有する最終板厚0.23mmに圧延された珪
素鋼に対し、脱炭焼鈍を兼ねて珪素鋼表面にSiO2
含む酸化層を形成させた後、MgOを主とする焼鈍分離
剤を塗布し、最終仕上げ焼鈍を行った。このようにして
焼鈍した方向性電磁鋼板表面にはフォルステライトを主
体とする皮膜が存在するため、硫フッ酸溶液に鋼板を浸
漬することにより、フォルステライト皮膜を除去した
(板厚0.22mm)。
Example 1 After forming an oxide layer containing SiO 2 on the surface of silicon steel also for decarburization annealing, the silicon steel rolled to a final plate thickness of 0.23 mm containing 3% Si was used. An annealing separator mainly composed of MgO was applied, and final finish annealing was performed. Since the film mainly composed of forsterite is present on the surface of the grain-oriented electrical steel sheet annealed in this way, the forsterite coating was removed by immersing the steel sheet in a sulfuric hydrofluoric acid solution (sheet thickness 0.22 mm). ..

【0025】この鋼板表面に35%燐酸マグネシウム溶
液を片面当たり1g/m2 塗布し、800℃で焼き付け
た。続いて20%コロイド状シリカ100ml、35%燐
酸マグネシウム溶液60ml、無水クロム酸5gからなる
処理液を片面当たり8g/m2 塗布し、800℃で焼き
付けた。このようにして製造された絶縁コーティングつ
き方向性電磁鋼板の諸特性を表2に示す。
A 35% magnesium phosphate solution was applied to the surface of the steel sheet at 1 g / m 2 per side and baked at 800 ° C. Subsequently, a treatment liquid consisting of 100 ml of 20% colloidal silica, 60 ml of 35% magnesium phosphate solution, and 5 g of chromic anhydride was applied on one side at 8 g / m 2 and baked at 800 ° C. Table 2 shows various characteristics of the grain-oriented electrical steel sheet with an insulating coating produced in this manner.

【0026】[0026]

【表2】 [Table 2]

【0027】実施例2 3%Siを含有する最終板厚0.23mmに圧延された珪
素鋼に対し、脱炭焼鈍を兼ねて珪素鋼表面にSiO2
含む酸化層を形成させた後、MgOを主とする焼鈍分離
剤を塗布し、最終仕上げ焼鈍を行った。このようにして
焼鈍した方向性電磁鋼板表面にはフォルステライトを主
体とする皮膜が存在するため、硫フッ酸溶液に鋼板を浸
漬することにより、フォルステライト皮膜を除去し、さ
らに化学研磨により鏡面化した(板厚0.20mm)。
Example 2 For a silicon steel rolled to a final plate thickness of 0.23 mm containing 3% Si, an oxide layer containing SiO 2 was formed on the surface of the silicon steel also for decarburization annealing, and then MgO was formed. Was applied, and a final finish annealing was performed. Since there is a film mainly composed of forsterite on the surface of the grain-oriented electrical steel annealed in this way, the forsterite film is removed by immersing the steel plate in a sulfuric hydrofluoric acid solution, and then chemically polished to give a mirror surface. (Plate thickness 0.20 mm).

【0028】この鋼板表面に50%燐酸アルミニウム溶
液を片面当たり1g/m2 塗布し、800℃で焼き付け
た。続いて20%コロイド状シリカ100ml、50%燐
酸アルミニウム溶液100ml、無水クロム酸5gからな
る処理液を溝付きゴムロールにより片面当たり8g/m
2 塗布し、800℃で焼き付けた。このようにして製造
された絶縁コーティングつき方向性電磁鋼板の諸特性を
表2に示す。
A 50% aluminum phosphate solution was applied to the surface of this steel sheet at 1 g / m 2 per side and baked at 800 ° C. Then, a treatment liquid consisting of 100 ml of 20% colloidal silica, 100 ml of 50% aluminum phosphate solution, and 5 g of chromic anhydride was 8 g / m on each side with a grooved rubber roll.
Two coats were applied and baked at 800 ° C. Table 2 shows various characteristics of the grain-oriented electrical steel sheet with an insulating coating produced in this manner.

【0029】実施例3 3%Siを含有する最終板厚0.23mmに圧延された珪
素鋼に対し、脱炭焼鈍を兼ねて珪素鋼表面にSiO2
含む酸化層を形成させた後、MgOを主とする焼鈍分離
剤を塗布し、最終仕上げ焼鈍を行った。このようにして
焼鈍した方向性電磁鋼板表面にはフォルステライトを主
体とする皮膜が存在するため、フッ酸溶液に鋼板を浸漬
することにより、フォルステライト皮膜を除去し、乾燥
水素雰囲気中で1200℃10時間焼鈍することによ
り、表面を平坦化した(板厚0.22mm)。
Example 3 On a silicon steel rolled to a final plate thickness of 0.23 mm containing 3% Si, an oxide layer containing SiO 2 was formed on the surface of the silicon steel also for decarburization annealing, and then MgO was formed. Was applied, and a final finish annealing was performed. Since a film mainly composed of forsterite is present on the surface of the grain-oriented electrical steel sheet annealed in this way, the forsterite film is removed by immersing the steel sheet in a hydrofluoric acid solution, and the temperature is set to 1200 ° C. in a dry hydrogen atmosphere. The surface was flattened by annealing for 10 hours (sheet thickness 0.22 mm).

【0030】この鋼板表面に30%珪酸カリウム(K2
O/3SiO2 )溶液を片面当たり1g/m2 塗布し、
800℃で焼き付けた。続いて20%コロイド状シリカ
100ml、50%燐酸アルミニウム溶液100ml、無水
クロム酸5gからなる処理液を溝付きゴムロールにより
片面当たり8g/m2 塗布し、800℃で焼き付けた。
このようにして製造された絶縁コーティングつき方向性
電磁鋼板の諸特性を表2に示す。
30% potassium silicate (K 2
O / 3SiO 2 ) solution is applied at 1 g / m 2 per side,
It was baked at 800 ° C. Subsequently, a treatment liquid consisting of 100 ml of 20% colloidal silica, 100 ml of 50% aluminum phosphate solution, and 5 g of chromic anhydride was applied by a grooved rubber roll at 8 g / m 2 per side and baked at 800 ° C.
Table 2 shows various characteristics of the grain-oriented electrical steel sheet with an insulating coating produced in this manner.

【0031】実施例4 3%Siを含有する最終板厚0.23mmに圧延された珪
素鋼に対し、脱炭焼鈍後、Al2 3 を主とする焼鈍分
離剤を塗布し、最終仕上げ焼鈍を行った。このようにし
て焼鈍した方向性電磁鋼板表面には焼鈍による皮膜が形
成されず、鏡面状態を呈する(板厚0.23mm)。
Example 4 Silicon steel rolled to a final plate thickness of 0.23 mm containing 3% Si was decarburized and annealed, and then an annealing separator mainly composed of Al 2 O 3 was applied to the final finish annealing. I went. On the surface of the grain-oriented electrical steel sheet annealed in this way, no film is formed by annealing, and a mirror-like state is exhibited (sheet thickness 0.23 mm).

【0032】この鋼板表面に30%珪酸ナトリウム(N
2 O/3SiO2 )溶液を片面当たり1g/m2 塗布
し、800℃で焼き付けた。続いて20%コロイド状シ
リカ100ml、50%燐酸アルミニウム溶液100ml、
無水クロム酸5gからなる処理液を溝付きゴムロールに
より片面当たり8g/m2 塗布し、800℃で焼き付け
た。このようにして製造された絶縁コーティングつき方
向性電磁鋼板の諸特性を表2に示す。
30% sodium silicate (N
a 2 O / 3SiO 2 ) solution was applied at 1 g / m 2 per side and baked at 800 ° C. Then 100 ml of 20% colloidal silica, 100 ml of 50% aluminum phosphate solution,
A treatment liquid consisting of 5 g of chromic anhydride was applied on one side by a grooved rubber roll at 8 g / m 2 and baked at 800 ° C. Table 2 shows various characteristics of the grain-oriented electrical steel sheet with an insulating coating produced in this manner.

【0033】[0033]

【発明の効果】本発明は鋼板に対する張力を減ずること
無く、方向性電磁鋼板に密着性の高い絶縁コーティング
を形成させる方法を提供するものである。したがって、
本絶縁皮膜形成法により、皮膜地鉄界面の平坦度が優
れ、かつ鋼板に対して強い張力が付与された鉄損の低い
方向性電磁鋼板が製造でき、その工業的効果は甚大であ
る。
The present invention provides a method for forming an insulating coating having high adhesion on a grain-oriented electrical steel sheet without reducing the tension on the steel sheet. Therefore,
By this insulating coating forming method, it is possible to manufacture a grain-oriented electrical steel sheet having excellent flatness at the interface of the coating base iron and low iron loss in which strong tension is applied to the steel sheet, and its industrial effect is great.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 收 北九州市戸畑区飛幡町1番1号 新日本製 鐵株式会社八幡製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Osamu Tanaka 1-1, Toibatacho, Tobata-ku, Kitakyushu Nippon Steel Yawata Works Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 方向性電磁鋼板にコロイド状シリカと燐
酸塩を主とする絶縁コーティングを施すに当たり、鋼板
との密着性が前記絶縁コーティングよりも大きな下地皮
膜を片面当たり4g/m2 以下で形成した後、前記絶縁
コーティングを施すことを特徴とする、密着性に優れた
方向性電磁鋼板の絶縁皮膜形成方法。
1. When applying an insulating coating mainly composed of colloidal silica and phosphate to a grain-oriented electrical steel sheet, an undercoating having a larger adhesion to the steel sheet than that of the insulating coating is formed at 4 g / m 2 or less per side. And then applying the insulating coating, the method for forming an insulating coating on a grain-oriented electrical steel sheet having excellent adhesion.
【請求項2】 下地皮膜形成を、Al,Mg,Sr,B
a,Feのうちから選ばれるいずれか1種または2種以
上の第一燐酸塩水溶液もしくは燐酸水溶液を鋼板表面に
塗布し、350℃以上の温度で焼き付けることを特徴と
する請求項1記載の方向性電磁鋼板の絶縁皮膜形成方
法。
2. An undercoat film is formed using Al, Mg, Sr, B.
2. The direction according to claim 1, wherein any one or two or more primary phosphate aqueous solution or phosphoric acid aqueous solution selected from a and Fe is applied to the surface of the steel sheet and baked at a temperature of 350 ° C. or higher. Method for forming insulating film on magnetic electrical steel sheet.
【請求項3】 下地皮膜形成を、珪酸リチウム(Li2
O・nSiO2 )、珪酸ナトリウム(Na2 O・nSi
2 )、珪酸カリウム(K2 O・nSiO2)のうちか
ら選ばれるいずれか1種または2種以上の水溶液を鋼板
表面に塗布し、350℃以上の温度で焼き付けることを
特徴とする請求項1記載の方向性電磁鋼板の絶縁皮膜形
成方法。
3. A lithium silicate (Li 2
O ・ nSiO 2 ), sodium silicate (Na 2 O ・ nSi
O 2 ), potassium silicate (K 2 O · nSiO 2 ), or any one or two or more kinds of aqueous solutions selected from the above are applied to the surface of the steel sheet and baked at a temperature of 350 ° C. or higher. 1. The method for forming an insulating coating on a grain-oriented electrical steel sheet according to 1.
JP8110992A 1992-04-02 1992-04-02 Formation of insulating film on grain oriented electrical steel sheet Withdrawn JPH05279747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8110992A JPH05279747A (en) 1992-04-02 1992-04-02 Formation of insulating film on grain oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8110992A JPH05279747A (en) 1992-04-02 1992-04-02 Formation of insulating film on grain oriented electrical steel sheet

Publications (1)

Publication Number Publication Date
JPH05279747A true JPH05279747A (en) 1993-10-26

Family

ID=13737218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8110992A Withdrawn JPH05279747A (en) 1992-04-02 1992-04-02 Formation of insulating film on grain oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JPH05279747A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999019538A1 (en) * 1997-10-14 1999-04-22 Nippon Steel Corporation Method of forming an insulating film on a magnetic steel sheet
US6287703B1 (en) * 1997-12-24 2001-09-11 Kawasaki Steel Corporation Ultralow-iron-loss grain oriented silicon steel plate and process for producing the same
KR100321030B1 (en) * 1997-09-26 2002-03-08 이구택 Coating composition for insulation layer and method for forming insulation layer on non-oriented silicon steel sheets using the same
WO2002088424A1 (en) * 2001-04-23 2002-11-07 Nippon Steel Corporation Unidirectional silicon steel sheet excellent in adhesion of insulating coating film imparting tensile force
JP2002348643A (en) * 2001-05-22 2002-12-04 Nippon Steel Corp Grain-oriented silicon steel sheet superior in adhesiveness of tension-imparting insulation film, and manufacturing method therefor
JP2005139481A (en) * 2003-11-04 2005-06-02 Nippon Steel Corp Method for manufacturing grain-oriented silicon steel sheet having excellent adhesiveness of tension impartable insulation film
JP2008031499A (en) * 2006-07-26 2008-02-14 Nippon Steel Corp Electromagnetic steel sheet provided with multilayer film having superior adhesiveness and excellent magnetic property, and manufacturing method therefor
JP2008069412A (en) * 2006-09-14 2008-03-27 Nippon Steel Corp Electrical part composed of electrical steel sheet with multilayer film having excellent film adhesion and satisfactory magnetic property, and method for producing the same
US7850792B2 (en) * 2005-07-14 2010-12-14 Nippon Steel Corporation Grain-oriented electrical steel sheet having insulating film not containing chromium and insulating film agent of same
JP2017075358A (en) * 2015-10-14 2017-04-20 新日鐵住金株式会社 Insulation film of directive electrical steel sheet, and forming method thereof
WO2019013351A1 (en) 2017-07-13 2019-01-17 新日鐵住金株式会社 Oriented electromagnetic steel sheet and method for producing same
WO2019013353A1 (en) 2017-07-13 2019-01-17 新日鐵住金株式会社 Oriented electromagnetic steel plate
WO2019013347A1 (en) 2017-07-13 2019-01-17 新日鐵住金株式会社 Oriented electromagnetic steel sheet, and manufacturing method of oriented electromagnetic steel sheet
WO2020149349A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and method for manufacturing same
WO2020149334A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electrical steel sheet, intermediate steel sheet for grain-oriented electrical steel sheet, and manufacturing method thereof
WO2020149319A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for manufacturing same
WO2020149322A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for manufacturing same
WO2020149331A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and method for manufacturing same
KR20210111284A (en) 2019-01-16 2021-09-10 닛폰세이테츠 가부시키가이샤 Method for manufacturing grain-oriented electrical steel sheet
WO2022215710A1 (en) 2021-04-06 2022-10-13 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for forming insulating film
WO2022215714A1 (en) 2021-04-06 2022-10-13 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for forming insulating film
WO2022215709A1 (en) 2021-04-06 2022-10-13 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and method for forming insulating film
US11970751B2 (en) 2019-01-16 2024-04-30 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing the same

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100321030B1 (en) * 1997-09-26 2002-03-08 이구택 Coating composition for insulation layer and method for forming insulation layer on non-oriented silicon steel sheets using the same
WO1999019538A1 (en) * 1997-10-14 1999-04-22 Nippon Steel Corporation Method of forming an insulating film on a magnetic steel sheet
US6322688B1 (en) 1997-10-14 2001-11-27 Nippon Steel Corporation Method of forming an insulating film on a magnetic steel sheet
US6287703B1 (en) * 1997-12-24 2001-09-11 Kawasaki Steel Corporation Ultralow-iron-loss grain oriented silicon steel plate and process for producing the same
WO2002088424A1 (en) * 2001-04-23 2002-11-07 Nippon Steel Corporation Unidirectional silicon steel sheet excellent in adhesion of insulating coating film imparting tensile force
US6713187B2 (en) 2001-04-23 2004-03-30 Nippon Steel Corporation Grain-oriented silicon steel sheet excellent in adhesiveness to tension-creating insulating coating films and method for producing the same
JP2002348643A (en) * 2001-05-22 2002-12-04 Nippon Steel Corp Grain-oriented silicon steel sheet superior in adhesiveness of tension-imparting insulation film, and manufacturing method therefor
JP2005139481A (en) * 2003-11-04 2005-06-02 Nippon Steel Corp Method for manufacturing grain-oriented silicon steel sheet having excellent adhesiveness of tension impartable insulation film
US7850792B2 (en) * 2005-07-14 2010-12-14 Nippon Steel Corporation Grain-oriented electrical steel sheet having insulating film not containing chromium and insulating film agent of same
JP2008031499A (en) * 2006-07-26 2008-02-14 Nippon Steel Corp Electromagnetic steel sheet provided with multilayer film having superior adhesiveness and excellent magnetic property, and manufacturing method therefor
JP2008069412A (en) * 2006-09-14 2008-03-27 Nippon Steel Corp Electrical part composed of electrical steel sheet with multilayer film having excellent film adhesion and satisfactory magnetic property, and method for producing the same
JP2017075358A (en) * 2015-10-14 2017-04-20 新日鐵住金株式会社 Insulation film of directive electrical steel sheet, and forming method thereof
US11186891B2 (en) 2017-07-13 2021-11-30 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for producing same
US11060159B2 (en) 2017-07-13 2021-07-13 Nippon Steel Corporation Grain-oriented electrical steel sheet and method of manufacturing grain-oriented electrical steel sheet
WO2019013347A1 (en) 2017-07-13 2019-01-17 新日鐵住金株式会社 Oriented electromagnetic steel sheet, and manufacturing method of oriented electromagnetic steel sheet
KR20200018669A (en) 2017-07-13 2020-02-19 닛폰세이테츠 가부시키가이샤 Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
KR20200020848A (en) 2017-07-13 2020-02-26 닛폰세이테츠 가부시키가이샤 Directional electronic steel sheet
KR20200022445A (en) 2017-07-13 2020-03-03 닛폰세이테츠 가부시키가이샤 A grain-oriented electrical steel sheet and its manufacturing method
US11346005B2 (en) 2017-07-13 2022-05-31 Nippon Steel Corporation Grain-oriented electrical steel sheet
WO2019013353A1 (en) 2017-07-13 2019-01-17 新日鐵住金株式会社 Oriented electromagnetic steel plate
WO2019013351A1 (en) 2017-07-13 2019-01-17 新日鐵住金株式会社 Oriented electromagnetic steel sheet and method for producing same
WO2020149334A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electrical steel sheet, intermediate steel sheet for grain-oriented electrical steel sheet, and manufacturing method thereof
WO2020149319A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for manufacturing same
WO2020149322A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for manufacturing same
KR20210109603A (en) 2019-01-16 2021-09-06 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet and its manufacturing method
KR20210109601A (en) 2019-01-16 2021-09-06 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet and its manufacturing method
KR20210111284A (en) 2019-01-16 2021-09-10 닛폰세이테츠 가부시키가이샤 Method for manufacturing grain-oriented electrical steel sheet
KR20210111290A (en) 2019-01-16 2021-09-10 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet and its manufacturing method
KR20210111281A (en) 2019-01-16 2021-09-10 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet and its manufacturing method
KR20210111280A (en) 2019-01-16 2021-09-10 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet, intermediate steel sheet for grain-oriented electrical steel sheet, and manufacturing method thereof
WO2020149331A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and method for manufacturing same
WO2020149349A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and method for manufacturing same
US11970751B2 (en) 2019-01-16 2024-04-30 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing the same
US11898215B2 (en) 2019-01-16 2024-02-13 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing the same
WO2022215709A1 (en) 2021-04-06 2022-10-13 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and method for forming insulating film
KR20230151012A (en) 2021-04-06 2023-10-31 닛폰세이테츠 가부시키가이샤 Method of forming grain-oriented electrical steel sheet and insulating film
KR20230151013A (en) 2021-04-06 2023-10-31 닛폰세이테츠 가부시키가이샤 Method of forming grain-oriented electrical steel sheet and insulating film
KR20230151108A (en) 2021-04-06 2023-10-31 닛폰세이테츠 가부시키가이샤 Method of forming grain-oriented electrical steel sheet and insulating film
WO2022215714A1 (en) 2021-04-06 2022-10-13 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for forming insulating film
WO2022215710A1 (en) 2021-04-06 2022-10-13 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for forming insulating film

Similar Documents

Publication Publication Date Title
JPH05279747A (en) Formation of insulating film on grain oriented electrical steel sheet
JP2698003B2 (en) Method for forming insulating film on unidirectional silicon steel sheet
JP2664337B2 (en) Method for forming insulating film on unidirectional silicon steel sheet
JP3272211B2 (en) Method of forming insulating film on magnetic domain controlled unidirectional silicon steel sheet
JP4044739B2 (en) Unidirectional silicon steel sheet excellent in film adhesion of tension imparting insulating film and method for producing the same
JP3930696B2 (en) Unidirectional silicon steel sheet excellent in film adhesion of tension imparting insulating film and method for producing the same
JP4473489B2 (en) Unidirectional silicon steel sheet and manufacturing method thereof
JPH05311453A (en) Production of ultralow iron loss grain-oriented electrical steel sheet
JP2002363763A (en) Grain-oriented silicon steel sheet having insulating film excellent in adhesion and method of producing the same
JPH05279864A (en) Formation of insulated film for grain oriented silicon steel sheet
JP2962715B2 (en) Method of forming insulation film on electrical steel sheet
JP2698501B2 (en) Method for forming insulating film on unidirectional silicon steel sheet
JP3172025B2 (en) Method for forming insulating film on unidirectional silicon steel sheet with good adhesion
JPH1171683A (en) Grain oriented silicon steel sheet having high-tension insulating coating film and its treatment
JP3178988B2 (en) Method for forming insulating film on grain-oriented electrical steel sheet with excellent adhesion
JP4041289B2 (en) Method for forming insulating coating on electrical steel sheet
JP3272210B2 (en) Method for forming insulating film on unidirectional silicon steel sheet
JP3921199B2 (en) Method for producing unidirectional silicon steel sheet excellent in film adhesion of tension imparting insulating film
JPH09316656A (en) Formation of insulated coating on grain-oriented silicon steel sheet excellent in coating adhesion
JP3280844B2 (en) Method for forming insulating film on unidirectional silicon steel sheet
JP3426958B2 (en) Unidirectional electrical steel sheet and method for increasing tension of coating of unidirectional electrical steel sheet
JP2667098B2 (en) Manufacturing method of low iron loss grain-oriented electrical steel sheet
JP2003293149A (en) Grain-oriented silicon steel sheet with excellent adhesion to tension-imparting insulation film, and manufacturing method therefor
JP4025514B2 (en) Insulating film forming method for unidirectional silicon steel sheet with excellent magnetic properties and film adhesion
JP2003034880A (en) Method for forming insulation film superior in adhesiveness on surface of grain-oriented electrical steel sheet, and method for manufacturing grain- oriented electrical steel sheet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608