JPH07179930A - Method for top-blowing oxygen into vacuum refining furnace by using straight barrel type immersion tube - Google Patents

Method for top-blowing oxygen into vacuum refining furnace by using straight barrel type immersion tube

Info

Publication number
JPH07179930A
JPH07179930A JP32692193A JP32692193A JPH07179930A JP H07179930 A JPH07179930 A JP H07179930A JP 32692193 A JP32692193 A JP 32692193A JP 32692193 A JP32692193 A JP 32692193A JP H07179930 A JPH07179930 A JP H07179930A
Authority
JP
Japan
Prior art keywords
gas
molten steel
blowing
blown
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32692193A
Other languages
Japanese (ja)
Other versions
JP2915772B2 (en
Inventor
Shinya Kitamura
信也 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18193251&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH07179930(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP32692193A priority Critical patent/JP2915772B2/en
Publication of JPH07179930A publication Critical patent/JPH07179930A/en
Application granted granted Critical
Publication of JP2915772B2 publication Critical patent/JP2915772B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To enable the efficient decarburizing and oxygen-enriched operation and the removal of metal stuck to a vessel by top-blowing the oxygen under the specific conditions and specifying the overlapping area between bubble activating surface zone of stirring gas blown from the bottom part and the top-blowing gas. CONSTITUTION:Molten steel 5 tapped from a refining furnace is incorporated in a ladle 2, and an immersion tube 1 is dipped into the ladle. Successively, the pressure in the immersion tube 1 is reduced and the oxygen gas or oxidizing gas through a top-blowing lance 4 is top-blown from the upper part onto the surface of the molten steel exposed in the vacuum, and also, the inert gas is blown from a porous brick 3 at the bottom part to stir the molten steel. At this time, the top-blowing gas is blown so that a parameter Q shown by the equation Q=(F/n(hXdXp<1/2>) (F: flow rate of the top-blowing gas, h: distance between the tip part of the lance and the stationary molten steel surface, d: diameter of the lance nozzle, n: number of the nozzle holes, p: atmospheric pressure) becomes 0.05-5.0. Further, the overlapping area on the molten steel surface of the bubble activating surface zone generated by the gas 6 for stirring from the bottom part and the top-blowing gas is defined as 30-90% of the cross-sectional area of the immersion tube 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、真空精錬炉への酸素ガ
スの供給方法に関するものであり、効率的な脱炭、酸素
富化、槽内付着地金の除去を可能とするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for supplying oxygen gas to a vacuum refining furnace, which enables efficient decarburization, enrichment of oxygen, and removal of metal adhered in a tank. .

【0002】[0002]

【従来の技術】真空精錬炉での酸素の供給には、3つの
目的がある。1つは、酸素と鋼浴中の炭素とを直接反応
させて脱炭させることであり、例えばステンレス鋼の仕
上げ脱炭に利用されている。2つ目は、溶鋼中の酸素濃
度を高めることであり、普通鋼精錬において転炉の吹き
止め炭素を上げて転炉耐火物コストを下げ、真空炉で脱
炭させる場合に、精錬初期に酸素が不足することを補う
目的で用いられている。3つ目は、槽内付着地金を除去
するためであり、槽内空間で脱炭により生成したCOガ
スをCO2 に燃焼させる時の発熱反応(2次燃焼反応)
を利用するものである。このうち、第1の目的と第2の
目的のためには、酸素ガスは直接溶鋼と接触する方が効
率的であるのに対して、第3の目的のためには、酸素ガ
スは直接には溶鋼と接触させない方が効果的となる。
2. Description of the Related Art Supplying oxygen in a vacuum refining furnace has three purposes. One is to directly react oxygen with carbon in a steel bath for decarburization, which is used for finish decarburization of stainless steel, for example. The second is to increase the oxygen concentration in the molten steel, and in the case of ordinary steel refining, when the blowing carbon of the converter is increased to reduce the converter refractory cost, and when decarburizing in a vacuum furnace, oxygen is added at the initial stage of refining. Is used to make up for the lack of. The third is to remove the metal attached to the tank, and an exothermic reaction when the CO gas generated by decarburization in the tank space is burned to CO 2 (secondary combustion reaction).
Is used. Of these, for the first and second purposes, it is more efficient for oxygen gas to come into direct contact with molten steel, whereas for the third purpose, oxygen gas is directly Is more effective when not in contact with molten steel.

【0003】これに対して、特公昭49−12810号
公報には、RH脱ガス炉を利用して高クロム鋼に対して
上方より酸素を吹き付けた方法が開示されている。ま
た、特開昭60−145316号公報には、同様にRH
脱ガス炉を利用して高クロム鋼に対して未脱酸溶鋼処理
時の湯面位置よりは低く、脱酸溶鋼処理時の湯面位置よ
りは高い位置より酸素を吹き付ける方法が開示されてい
る。しかし、いずれの方法でも、脱炭は効率的に進行す
るものの、3つ目の目的に示した2次燃焼は考慮してい
ないため、多量のスプラッシュが発生する上に、それら
が槽内に付着するため操業に大きな支障を与えるという
問題があった。
On the other hand, Japanese Examined Patent Publication No. Sho 49-12810 discloses a method in which oxygen is blown onto a high chromium steel from above using an RH degassing furnace. In addition, in JP-A-60-145316, the RH
A method of blowing oxygen to a high chromium steel from a position lower than the molten metal surface position during undeoxidized molten steel treatment and higher than the molten metal surface position during deoxidized molten steel treatment using a degassing furnace is disclosed. . However, in either method, decarburization proceeds efficiently, but since the secondary combustion shown in the third purpose is not taken into consideration, a large amount of splash occurs and they adhere to the tank. Therefore, there was a problem that the operation was seriously hindered.

【0004】また、特開平2−77518号公報には、
溶鋼湯面から所定位置離した上方から、適正範囲の湯面
到達圧力になるように酸素ガスを吹き付けることで2次
燃焼反応を積極的に利用する方法が開示されている。こ
の場合には、到達圧力が大きすぎる場合には2次燃焼が
利用できなくなり、逆に、小さすぎる場合には着熱効率
が悪化するという問題が生じ、適正操業条件は大きく制
約を受けるという問題がある。
Further, Japanese Patent Laid-Open No. 2-77518 discloses that
There is disclosed a method in which the secondary combustion reaction is positively utilized by spraying oxygen gas from above the molten steel surface at a predetermined position so that the pressure reaches the molten steel surface in an appropriate range. In this case, if the ultimate pressure is too high, the secondary combustion cannot be used, and conversely, if it is too low, there is a problem that the heat deposition efficiency is deteriorated, and the appropriate operating conditions are greatly restricted. is there.

【0005】ここで、いわゆるソフトブローした場合に
着熱効率が悪化する理由は、2次燃焼反応が起こる領域
が湯面から遠方になるためである。これは、2次燃焼反
応が起こる領域で発生した熱をメタル液滴を介して着熱
させるのではなく、2次燃焼領域からの輻射により溶鋼
に着熱させるため、湯面直上で反応させる必要があるた
めである。また、いわゆるハードブローの場合に2次燃
焼率が低下するのは、激しく発生するスプラッシュのた
め、スプラッシュが2次燃焼領域でCO2 と反応(脱
炭)しCOガスへと戻るためである。
Here, the reason why the heat deposition efficiency is deteriorated in the case of so-called soft blow is that the region where the secondary combustion reaction occurs is far from the molten metal surface. This is because the heat generated in the area where the secondary combustion reaction occurs is not applied through the metal droplets but is applied to the molten steel by the radiation from the secondary combustion area, so it is necessary to react it directly above the molten metal surface. Because there is. Also, what the secondary combustion rate is decreased in the case of so-called hard blow, it is to return to the vigorously for splash occurs, react with CO 2 in the splash secondary combustion zone (decarburization) and CO gas.

【0006】[0006]

【発明が解決しようとする課題】以上で示したように、
特公昭49−12810号公報や特開昭60−1453
16号公報に開示されている技術には、多量のスプラッ
シュが発生する上に、それらが槽内に付着するため操業
に大きな支障を与えるという問題点を有していた。ま
た、特開平2−77518号公報に開示されている技術
には、到達圧力が大きすぎる場合には2次燃焼が利用で
きなくなり、逆に、小さすぎる場合には着熱効率が悪化
するため、適正操業条件が大きく制約を受けるという問
題点があった。従って、本発明の目的とするところは、
ハードブロー時の激しいスプラッシュの発生や2次燃焼
率の低下が起こりにくく、逆に、ソフトブロー時の着熱
効率の大幅な低下が起こりにくい技術により、広い適正
条件で操業を可能とすることにある。
[Problems to be Solved by the Invention] As shown above,
JP-B-49-12810 and JP-A-60-1453
The technique disclosed in Japanese Patent No. 16 has a problem in that a large amount of splashes are generated, and moreover, they are attached to the inside of the tank, which seriously hinders the operation. Further, in the technique disclosed in Japanese Patent Laid-Open No. 2-77518, secondary combustion cannot be used when the ultimate pressure is too high, and conversely, when the ultimate pressure is too low, heat deposition efficiency is deteriorated, and therefore it is appropriate. There was a problem that the operating conditions were greatly restricted. Therefore, the object of the present invention is to
It is to make it possible to operate under a wide range of appropriate conditions with technology that makes it difficult for a hard splash to occur and a secondary combustion rate to drop during hard blow, and conversely to prevent a significant decrease in heat deposition efficiency during soft blow. .

【0007】[0007]

【課題を解決するための手段】本発明者らは、浴中に吹
き込まれガス気泡が浮上する表面領域(気泡活性面)を
利用し、そこに酸素ガスを吹き付けることで広い操業条
件範囲で2次燃焼による熱補償と効率的脱炭反応を成し
遂げられるという知見を得た。本発明はこの知見に基づ
きなされたものである。その要旨とするところは、転
炉、電気炉などの精錬炉より出鋼された取鍋内溶鋼に対
して、大径の直胴形状の容器を溶鋼に浸漬するととも
に、該直胴浸漬槽内を減圧する溶鋼の真空精錬方法にお
いて、真空に暴露されている溶鋼表面に上方より、酸
素、または酸化性ガスを次式で定義される上吹きガスの
動圧に対応するパラメータ(Q)が0.05〜5.0と
なるように吹き付けるとともに、取鍋低部より吹き込ま
れる攪拌用ガスにより生成される気泡活性面領域と、上
吹きガスの鋼浴表面での重なり面積が、浸漬槽内溶鋼面
位置での浸漬槽断面積の30〜90%とすることによ
り、効率的な酸素供給を可能とした、直胴型浸漬管を用
いた真空精錬炉への酸素ガス上吹き方法である。 Q=(F/n)/(h×d×P1/2 ) ここで、Fは上吹きガス流量(Nm3 /Hr)、hはラ
ンス先端と静止湯面間の距離(cm)、dはランスノズ
ル直径(cm)、nはノズル孔数、Pは雰囲気圧力(T
orr)を示す。
The inventors of the present invention utilize a surface area (bubble active surface) in which gas bubbles are blown into a bath, and blow oxygen gas onto the surface region so that a wide range of operating conditions can be achieved. We have obtained the knowledge that the heat compensation and the efficient decarburization reaction can be achieved by the secondary combustion. The present invention is based on this finding. The gist of this is that a large-diameter, straight-body-shaped container is immersed in molten steel in a ladle that has been tapped from a refining furnace such as a converter or an electric furnace. In the method for vacuum refining molten steel in which the pressure is reduced, the parameter (Q) corresponding to the dynamic pressure of the top-blown gas defined by the following equation is 0 from the top on the surface of the molten steel exposed to vacuum. It is sprayed so as to be 0.05 to 5.0, and the bubble activated surface area generated by the stirring gas blown from the lower part of the ladle and the overlapping area of the upper blown gas on the steel bath surface are the molten steel in the immersion tank. This is a method for blowing oxygen gas onto a vacuum refining furnace using a straight-body type immersion pipe, which enables efficient oxygen supply by setting the cross-sectional area of the immersion tank at the surface position to 30 to 90%. Q = (F / n) / (h × d × P 1/2 ), where F is the upper blowing gas flow rate (Nm 3 / Hr), h is the distance (cm) between the tip of the lance and the stationary molten metal surface, d Is the lance nozzle diameter (cm), n is the number of nozzle holes, P is the atmospheric pressure (T
orr).

【0008】[0008]

【作用】本発明は、着熱挙動に対する気泡活性面の効果
に着目したものである。ここで、気泡活性面は、吹き込
まれたガス気泡が表面に浮上する領域という定義であ
り、その決定方法は、水モデル、水銀モデル、あるい
は、実機での観察結果より、垂直方向に吹き込まれたガ
スに対する気泡活性面積(AN )は(1)式で、水平方
向に吹き込まれたガスに対する気泡活性面積(AV )は
(2)式で与えるものである。 AN =3.14×(0.212×T)2 ・・・・(1) AV =3.14×(7×M0.672 /2・・・・(2) ここで、Tは吹き込み位置から溶鋼面までの距離(m)
であり、Mはノズル1個当りのガス吹き込み量(Nm3
/s)である。
The present invention focuses on the effect of the bubble activating surface on the heat deposition behavior. Here, the bubble active surface is defined as a region in which the blown gas bubbles float on the surface, and the determination method is based on the observation results of water model, mercury model, or actual machine. The bubble active area (A N ) for the gas is given by the equation (1), and the bubble active area (A V ) for the gas blown in the horizontal direction is given by the equation (2). A N = 3.14 × (0.212 × T) 2 ···· (1) A V = 3.14 × (7 × M 0.67) 2/2 ···· (2) where, T is Distance from injection position to molten steel surface (m)
And M is the gas injection amount per nozzle (Nm 3
/ S).

【0009】本発明者らは着熱、スプラッシュ発生、2
次燃焼に対する気泡活性面の効果を詳細に調査した結
果、以下の結論を得た。 1)2次燃焼による生成熱の溶鋼への着熱は、輻射によ
るものと、2次燃焼域へ飛散したメタル液滴を媒体とす
るものの2つあり、気泡活性面が狭い場合には、吹き込
まれたガスが狭い領域に集中するためメタル液滴が必要
以上に高く上がり、いわゆるスプラッシュとなり槽壁面
に付着するのみで熱媒体として作用しにくいのに対し
て、気泡活性面を広くした場合には、メタル液滴は広い
範囲から発生し槽壁面へ付着することなく再び溶鋼へ戻
る割合が非常に大きくなるため、効率的な熱媒体とな
る。したがって、気泡活性面を広くした場合には、輻射
にたよることなしに着熱することができるため、熱媒体
として作用するメタル液滴の飛散する高さまで2次燃焼
域を比較的高い位置にしても高い着熱効率が得られる。
The present inventors have found that heat generation, splash generation, and 2
As a result of detailed investigation of the effect of the bubble activation surface on the secondary combustion, the following conclusions were obtained. 1) There are two types of heat generated by secondary combustion on molten steel: one is by radiation and the other is by using metal droplets scattered in the secondary combustion area as a medium. If the bubble active surface is narrow, it is blown into the molten steel. Since the generated gas concentrates in a narrow area, the metal droplet rises higher than necessary, and it becomes a so-called splash that only adheres to the wall surface of the tank and is difficult to act as a heat medium. The metal droplets are generated from a wide range, and the ratio of returning to the molten steel again without adhering to the wall surface of the tank becomes very large, and thus it becomes an efficient heat medium. Therefore, when the bubble active surface is widened, heat can be applied without being affected by radiation, so that the secondary combustion region is set at a relatively high position up to the height at which the metal droplets acting as a heat medium are scattered. However, high heat-transfer efficiency can be obtained.

【0010】この条件としては、上吹きガスの湯面での
動圧に加え、気泡活性面領域と上吹きガスの衝突領域の
鋼浴表面での重なり面積が重要となり、浸漬槽内溶鋼面
位置での浸漬槽断面積の30〜90%であれば、かなり
のソフトブローであっても高い着熱効率が得られる。こ
こで、上吹きガスの湯面での動圧はガスのノズル出口流
速をV(m3 /Hr)、ノズル径をd(cm)、ランス
先端と静止湯面間の距離をh(cm)、ガス密度をρ
(g/Nm3 )、重力加速度をg(m/s2 )、雰囲気
圧力をP(Torr)とすると、(ρ×P)×(d×V
/h)2 /(2g)となり、これを標準状態で表わした
酸素流量(F:Nm3 /Hr)、とノズル数(n)で書
き直し指標化するとQを得る。図1に示した種々の実験
により、この値が0.05までは高い着熱効率が得られ
るが、0.05よりも小さくなると2次燃焼域が高い位
置になるため、到達する液滴量が少なくなり着熱効率が
悪化した。逆にQが5.0よりも大きいと2次燃焼域で
熱交換した液滴がメタル浴に戻らず、そのまま系外に飛
散するため着熱効率が悪化する。 Q=(F/n)/(h×d×P1/2
As this condition, in addition to the dynamic pressure of the top-blown gas on the molten metal surface, the overlapping area of the bubble active surface region and the collision region of the top-blown gas on the steel bath surface is important. If it is 30 to 90% of the cross-sectional area of the dipping tank in 1, the high heat-transfer efficiency can be obtained even with a considerable soft blow. Here, the dynamic pressure of the top-blown gas at the molten metal surface is V (m 3 / Hr), the nozzle outlet flow velocity of the gas, the nozzle diameter is d (cm), and the distance between the tip of the lance and the stationary molten metal surface is h (cm). , The gas density ρ
(G / Nm 3 ), gravitational acceleration g (m / s 2 ), and atmospheric pressure P (Torr), (ρ × P) × (d × V
/ H) 2 / (2g), which is rewritten as an index by rewriting the oxygen flow rate (F: Nm 3 / Hr) expressed in the standard state and the number of nozzles (n) to obtain Q. According to various experiments shown in FIG. 1, a high heat-transfer efficiency can be obtained up to a value of 0.05. It decreased and the heat transfer efficiency deteriorated. On the other hand, when Q is larger than 5.0, the droplets that have exchanged heat in the secondary combustion region do not return to the metal bath but scatter out of the system as they are, and the heat deposition efficiency deteriorates. Q = (F / n) / (h × d × P 1/2 )

【0011】2)いわゆるハードブローにした場合のス
プラッシュ発生は、上吹きガスの運動エネルギーによる
発生に加えて、表面直下での急激なCOガスの発生によ
るものも多い。この急激なCOガス発生は、表面直下で
ミクロ的な濃度の不均一が生じた場合に、[C]や
[O]の濃度の局所的に高い位置で爆発的に脱炭反応が
生じるための現象である。また、2次燃焼雰囲気でスプ
ラッシュが多量に発生すると、スプラッシュ中の炭素分
がCO2 により酸化されCOに戻る逆反応が生じるため
2次燃焼率が低下する。
2) In the so-called hard blow, the splash is often generated by the kinetic energy of the top blowing gas and also by the rapid generation of CO gas just below the surface. This rapid CO gas generation is due to an explosive decarburization reaction at a locally high concentration of [C] or [O] when microscopic nonuniformity of concentration occurs just below the surface. It is a phenomenon. Further, when a large amount of splash is generated in the secondary combustion atmosphere, the carbon in the splash is oxidized by CO 2 and the reverse reaction of returning to CO occurs, so that the secondary combustion rate decreases.

【0012】これらを解決するには、表面直下でのミク
ロ的な濃度の不均一を生じさせないことと、スプラッシ
ュを上記の熱媒体として作用する分以上に多量に生じさ
せないことの2つが重要となる。ここで、気泡活性面は
湯面下から浮上してくるガスで常に更新されているため
ミクロ的な濃度の不均一は生じにくく、広い気泡活性面
と上吹き位置とを組み合わせることで、小爆発的なスプ
ラッシュの発生は起こりにくくなる。この場合でもメタ
ル粒滴は2次燃焼域に入るが、CO2 の逆反応の場合に
は粒滴中の[C]の物質移動が律速となるため、前記の
粒滴への熱伝導に比べて長い時間が必要となる。
In order to solve these problems, it is important to prevent the occurrence of non-uniformity of the microscopic concentration just below the surface and to prevent the splash from being generated in a larger amount than the amount acting as the heat medium. . Here, since the bubble active surface is constantly updated with the gas that floats from below the molten metal surface, it is unlikely that microscopic non-uniformity of concentration will occur.By combining a wide bubble active surface and the upper blowing position, a small explosion will occur. Splash is less likely to occur. Even in this case, the metal droplets enter the secondary combustion zone, but in the case of the reverse reaction of CO 2 , the mass transfer of [C] in the droplets is rate-determining, so compared to the heat conduction to the droplets described above. Requires a long time.

【0013】したがって、着熱効率を良くした状態でC
2 の逆反応を抑制することは可能であり、その条件と
しては、気泡活性面領域と上吹きガスの衝突領域との鋼
浴表面での重なり面積が浸漬槽内溶鋼の幾何学的表面積
の30%以上であることにより、小爆発的なスプラッシ
ュの発生を抑制するとともに、図2に示すように、Qを
5.0以下とすることで、上吹きガスの運動エネルギー
によるスプラッシュの発生を抑制することになる。この
2つの条件を満たさない場合には、スプラッシュが激し
くなる上に、2次燃焼域に長時間スプラッシュ粒が滞留
するため逆反応が生じ2次燃焼率が低下する。
Therefore, in the state where the heat deposition efficiency is improved, C
It is possible to suppress the reverse reaction of O 2 , and the condition is that the overlapping area of the bubble active surface area and the collision area of the upper blowing gas on the steel bath surface is the geometric surface area of the molten steel in the immersion tank. When it is 30% or more, the generation of a small explosive splash is suppressed, and as shown in FIG. 2, by setting Q to 5.0 or less, the generation of a splash due to the kinetic energy of the upper blowing gas is suppressed. Will be done. If these two conditions are not satisfied, the splash will be severe and the splash particles will stay in the secondary combustion region for a long time, so that a reverse reaction will occur and the secondary combustion rate will decrease.

【0014】[0014]

【実施例】実施例は図3のように、取鍋内溶鋼に直胴型
浸漬管を浸漬し該管内を減圧するとともに、炉底に設け
たポーラス煉瓦よりガスを供給し鋼浴を攪拌する真空精
錬装置で実施した。約350トンの未脱酸溶鋼を約20
分間処理し、約300ppmの炭素濃度から10ppm
まで脱炭する最中に、上吹きランスより酸素ガスを供給
した。2次燃焼率(PCR)は浸漬槽上方のガス中のC
2 /(CO+CO 2 )×100で定義した。また、着
熱効率(η)はCOがCO2 になる反応熱のうちでメタ
ルの温度上昇に利用された熱の割合として計算した。実
験条件は、上吹きランスを種々変更させてQを大幅に変
化させた以外に、図4に示した気泡活性面と上吹きガス
の浴面衝突面積との重なり領域の面積(A:幾何学的計
算値)も変化させた。ここで、浸漬槽断面積をGとし
た。ここで、Fは上吹きガス流量(Nm3 /Hr)、h
はランス先端と静止湯面間の距離(cm)、dはランス
ノズル直径(cm)、Pは雰囲気圧力(Torr)を示
す。
[Example] In the example, as shown in FIG.
Immerse the dip tube to reduce the pressure inside the tube and install it on the bottom of the furnace.
A vacuum cleaner that supplies gas from porous bricks and stirs the steel bath.
It was carried out with a smelting device. About 350 tons of undeoxidized molten steel is about 20
Process for minutes, carbon concentration of about 300ppm to 10ppm
Supplying oxygen gas from the top blowing lance during decarburization
did. The secondary combustion rate (PCR) is C in the gas above the immersion tank.
O2/ (CO + CO 2) × 100. Also wear
The thermal efficiency (η) of CO is CO2Out of the heat of reaction that becomes meta
It was calculated as the percentage of the heat used to raise the temperature of the fuel cell. Fruit
The test conditions were to change the top blowing lance variously and change the Q significantly.
In addition to the above, the bubble activated surface and the top blowing gas shown in FIG.
Area of the overlapping area with the bath surface collision area (A: Geometric total
The calculated value) was also changed. Here, the dip tank cross-sectional area is G
It was Here, F is the top blowing gas flow rate (Nm3 / Hr), h
Is the distance between the tip of the lance and the stationary surface (cm), d is the lance
Nozzle diameter (cm), P indicates atmospheric pressure (Torr)
You

【0015】実施例および比較例を表1に示す。表1に
示すように、実施例の1から12は本発明を示す。上吹
きガス流量、ランス先端と静止湯面間距離、ランスノズ
ル直径、雰囲気圧力を種々変化させてもA/Gが0.3
以上であり、かつ、Qが0.05〜5.0の範囲にあれ
ば、高い2次燃焼率と着熱効率を得ることがわかる。中
でも、Qが0.5から3.0の範囲にあるものは特に良
い結果を得ている。一方、13から19は比較例を示
す。13〜15はQが0.05よりも小さい場合である
が、2次燃焼は起こるものの着熱効率が極めて悪化して
いる。16と19はQが0.5よりも大きい場合である
が、逆反応により2次燃焼率が低下し、熱媒体である粒
鉄が系外に飛散するため着熱効率も低下している。17
と18はA/Gが0.3よりも小さい場合で、従来、R
Hで上方から酸素を供給していた場合に類似した試験条
件であるが、Qは適正範囲であっても着熱効率が悪い。
Table 1 shows examples and comparative examples. As shown in Table 1, Examples 1 to 12 illustrate the invention. A / G is 0.3 even when the top blowing gas flow rate, the distance between the tip of the lance and the stationary molten metal surface, the diameter of the lance nozzle, and the atmospheric pressure are changed.
It is understood that when the above is satisfied and Q is in the range of 0.05 to 5.0, a high secondary combustion rate and high heat transfer efficiency are obtained. Especially, those having Q in the range of 0.5 to 3.0 have particularly good results. On the other hand, 13 to 19 show comparative examples. Nos. 13 to 15 are cases in which Q is less than 0.05, but secondary combustion occurs, but the heat deposition efficiency is extremely deteriorated. 16 and 19 are cases where Q is larger than 0.5, but the secondary combustion rate decreases due to the reverse reaction, and the heat transfer efficiency decreases because the granular iron that is the heat medium scatters out of the system. 17
And 18 are when A / G is smaller than 0.3.
The test conditions are similar to the case where oxygen is supplied from above from H, but Q has a poor heat deposition efficiency even in the proper range.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【発明の効果】本発明を用いることにより、ハードブロ
ー時の激しいスプラッシュの発生や2次燃焼率の低下が
起こりにくく、逆に、ソフトブロー時の着熱効率の大幅
な低下が起こりにくい技術により、広い適正条件での、
脱炭処理初期の酸素付加、酸素吹き付けによる脱炭速度
向上や、脱炭処理中の2次燃焼による地金付着防止が可
能となった。
EFFECTS OF THE INVENTION By using the present invention, it is possible to prevent the occurrence of a severe splash and a decrease in the secondary combustion rate during hard blow, and conversely, a technique in which a significant decrease in the heat deposition efficiency during a soft blow does not occur. Under a wide range of appropriate conditions,
Oxygen addition at the initial stage of decarburization, improvement of decarburization speed by blowing oxygen, and prevention of metal adhesion by secondary combustion during decarburization became possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】Qと着熱効率の関係を示した図、FIG. 1 is a diagram showing the relationship between Q and heat transfer efficiency,

【図2】Qと2次燃焼率の関係を示した図、FIG. 2 is a diagram showing the relationship between Q and the secondary combustion rate,

【図3】本発明を実施した場合の模式図、FIG. 3 is a schematic diagram when the present invention is implemented,

【図4】図3のa−a′断面を示した図である。FIG. 4 is a diagram showing a cross section taken along the line aa ′ of FIG. 3;

【符号の説明】[Explanation of symbols]

1 浸漬管 2 取鍋 3 取鍋底に設置されたポーラス煉瓦 4 上吹きランス 5 溶鋼 6 上吹きガスの噴流 7 底吹きガスのプルームゾーン A SとBの重なり領域 B 上吹きガスの衝突領域 S 気泡活性面 1 Immersion pipe 2 Ladle 3 Porous brick installed at the bottom of ladle 4 Top blowing lance 5 Molten steel 6 Jet gas of top blowing gas 7 Plume zone of bottom blowing gas A Overlapping area of S and B B Collision area of top blowing gas S Bubbles Active surface

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 精錬炉より出鋼された取鍋内溶鋼に対し
て、直胴形状の浸漬槽を溶鋼に浸漬するとともに、該浸
漬槽内を減圧する溶鋼の真空精錬方法において、真空に
暴露されている溶鋼表面に上方より、上吹きガスとし
て、酸素または酸化性ガスを(1)式で定義されるパラ
メータQが0.05〜5.0となるように吹き付けると
ともに、取鍋低部より吹き込まれる攪拌用ガスにより生
成される気泡活性面領域と、上吹きガスの鋼浴表面での
重なり面積が、浸漬槽内溶鋼面位置での浸漬槽断面積の
30%以上、90%以下とすることを特徴とする、直胴
型浸漬管を用いた真空精錬炉への酸素ガス上吹き方法。 Q=(F/n)/(h×d×P1/2 )・・・・(1) ここで、Fは上吹きガス流量(Nm3 /Hr)、hはラ
ンス先端と静止湯面間の距離(cm)、dはランスノズ
ル直径(cm)、nはノズル孔数、Pは雰囲気圧力(T
orr)を示す。
1. A vacuum refining method for molten steel in which a straight-body-shaped dipping tank is immersed in molten steel and molten steel is depressurized in the ladle from the refining furnace. Oxygen or oxidizing gas is sprayed from above onto the surface of the molten steel so that the parameter Q defined by the equation (1) is 0.05 to 5.0, and from the bottom of the ladle. The overlapping area of the bubble active surface area generated by the stirring gas blown into the steel bath surface of the top blown gas is 30% or more and 90% or less of the immersion tank cross-sectional area at the molten steel surface position in the immersion tank. A method for blowing oxygen gas onto a vacuum refining furnace using a straight body type immersion tube, which is characterized in that Q = (F / n) / (h × d × P 1/2 ) ... (1) Here, F is the top blowing gas flow rate (Nm 3 / Hr), and h is the distance between the tip of the lance and the stationary molten metal surface. (Cm), d is the lance nozzle diameter (cm), n is the number of nozzle holes, P is the atmospheric pressure (T
orr).
JP32692193A 1993-12-24 1993-12-24 A method for blowing oxygen gas over a vacuum refining furnace using a straight body immersion tube Expired - Lifetime JP2915772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32692193A JP2915772B2 (en) 1993-12-24 1993-12-24 A method for blowing oxygen gas over a vacuum refining furnace using a straight body immersion tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32692193A JP2915772B2 (en) 1993-12-24 1993-12-24 A method for blowing oxygen gas over a vacuum refining furnace using a straight body immersion tube

Publications (2)

Publication Number Publication Date
JPH07179930A true JPH07179930A (en) 1995-07-18
JP2915772B2 JP2915772B2 (en) 1999-07-05

Family

ID=18193251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32692193A Expired - Lifetime JP2915772B2 (en) 1993-12-24 1993-12-24 A method for blowing oxygen gas over a vacuum refining furnace using a straight body immersion tube

Country Status (1)

Country Link
JP (1) JP2915772B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997005291A1 (en) * 1995-08-01 1997-02-13 Nippon Steel Corporation Process for vacuum refining of molten steel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997005291A1 (en) * 1995-08-01 1997-02-13 Nippon Steel Corporation Process for vacuum refining of molten steel
AU695201B2 (en) * 1995-08-01 1998-08-06 Nippon Steel & Sumitomo Metal Corporation Process for vacuum refining of molten steel
US5902374A (en) * 1995-08-01 1999-05-11 Nippon Steel Corporation Vacuum refining method for molten steel
KR100214927B1 (en) * 1995-08-01 1999-08-02 아사무라 타카싯 Vacuum refining method of molten metal
EP1154023A1 (en) * 1995-08-01 2001-11-14 Nippon Steel Corporation Vacuum refining method for molten steel

Also Published As

Publication number Publication date
JP2915772B2 (en) 1999-07-05

Similar Documents

Publication Publication Date Title
US5902374A (en) Vacuum refining method for molten steel
JPH07179930A (en) Method for top-blowing oxygen into vacuum refining furnace by using straight barrel type immersion tube
JP2582316B2 (en) Melting method of low carbon steel using vacuum refining furnace
JP3214730B2 (en) Refining method of high purity steel using reflux type vacuum degasser
JP3293023B2 (en) Vacuum blowing method for molten steel
CN1316045C (en) Refining method and refining appts. of moten steel
JP3124416B2 (en) Vacuum refining method of molten steel by gas injection
JPH06228629A (en) Method for refining high purity stainless steel
JP3025042B2 (en) Manufacturing method of ultra-low carbon steel
JP2746630B2 (en) Melting method of ultra low carbon steel by vacuum degassing
JP2988737B2 (en) Manufacturing method of ultra-low carbon steel
JPH08337811A (en) Method for preventing sticking of metal in rh vacuum vessel
JP3377325B2 (en) Melting method of high cleanness ultra low carbon steel
JP3720984B2 (en) Highly efficient vacuum refining method
JPH09287016A (en) Method for melting stainless steel
JP3749622B2 (en) Dehydrogenation method for molten steel
JP2819440B2 (en) Method for decarburizing molten steel containing extremely low carbon chromium
JP2819424B2 (en) Manufacturing method of ultra-low carbon steel
JP2001152234A (en) Carbon adding method to molten steel in ladle
JPH07238312A (en) Production of ultra low carbon steel and vacuum degassing equipment
JP3290794B2 (en) Molten steel refining method under reduced pressure
JP3153983B2 (en) Melting method for high purity stainless steel
JPH0873925A (en) Vacuum degassing decarburization method for molten steel
JPH0741834A (en) Method for vacuum-refining molten steel having high circulating flow characteristic
JPH04285111A (en) Vacuum decarburization method for molten steel of extremely low carbon content

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 14

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 15

EXPY Cancellation because of completion of term