JPH07176822A - Semiconductor light source and its manufacture - Google Patents

Semiconductor light source and its manufacture

Info

Publication number
JPH07176822A
JPH07176822A JP34495893A JP34495893A JPH07176822A JP H07176822 A JPH07176822 A JP H07176822A JP 34495893 A JP34495893 A JP 34495893A JP 34495893 A JP34495893 A JP 34495893A JP H07176822 A JPH07176822 A JP H07176822A
Authority
JP
Japan
Prior art keywords
layer
modulator
light source
order
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34495893A
Other languages
Japanese (ja)
Other versions
JP2669335B2 (en
Inventor
Yasumasa Imoto
康雅 井元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP34495893A priority Critical patent/JP2669335B2/en
Publication of JPH07176822A publication Critical patent/JPH07176822A/en
Application granted granted Critical
Publication of JP2669335B2 publication Critical patent/JP2669335B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make larger in order the absorption coefficient of the photo absorption layer of a modulator by a method wherein the further the photoabsorption layer recedes from the side of a laser, the smaller the band gap of the photoabsorption layer is made in order. CONSTITUTION:A diffraction grating 6 is formed in a substrate 5 and thereafter, an SiO2 film is deposited. A pair of stripe width-modulation patterns 7, which consist of the SiO2 film and have a width of 18mum and a length of 500mum at an interval of 1.5mum, subsequently, a width of 4 to 15mum and a length of lengths changed in order to 200mum, are formed. An N-type InGaAsP guide layer of a thickness of 0.1mum, a non-doped InGaAs well layer having a band gap long wave of 1.56mum in a laser part, a seven-layer multiple quantum well layer 9 using non-doped InGaAsP layers of a wavelength composition of 1.15mum as barrier layers and a clad layer 10, which consists of a P-type InP layer and has a thickness of 0.1mum, are grown in order. At this time, as the widths of the patterns 7 become wider in order in a modulation part, the growth rate of the layers is accelerated and the thickness of the layer 9 becomes thicker in order. Accordingly, the further a photoabsorption layer of a modulator recedes from the side of a the smaller a band gap of the photoabsorption layer becomes and the absorption coefficient of the photoabsorption layer can be made larger in order.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信用に用いられる
変調器集積型半導体光源に関し、特に高出力動作に適し
た外部変調器集積型の半導体光源及びその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a modulator-integrated semiconductor light source used for optical communication, and more particularly to an external modulator-integrated semiconductor light source suitable for high output operation and a manufacturing method thereof.

【0002】[0002]

【従来の技術】光ファイバー通信技術の進歩に伴い、よ
り長距離でより大容量の伝送システムの開発が進められ
ている。現在商業用に供されているのは半導体レーザを
直接変調する方式であるが、この方式では活性層中への
注入電流を変動させるためこれにともない屈折率が変動
し、チャーピングと呼ばれるレーザの波長揺らぎが生じ
る。一方、長距離化には、用いる半導体レーザの波長を
1.3μm帯のものから1.55μm帯のものに変える
ことが光ファイバーの伝送損失の点から有効であるが、
1.55μm帯の光を用いる場合、すでに敷設されてい
る通常の分散補償の無い光ファイバーでギガビット伝送
を行おうとすると波長分散に起因する受信側での感度劣
化が生じ、既設の光ファイバーを用いて伝送距離、容量
を大きくしていく上で支障となっている。この問題を解
決する手段として、レーザはDC駆動させ、外部変調器
で光強度を変調させることによりレーザのチャーピング
を押さえる方式が近年注目を浴びており、特に外部変調
器とレーザとを集積した半導体光源は装置の小型化、組
立の容易化等の利点があり、その開発への期待が大き
い。
2. Description of the Related Art With the progress of optical fiber communication technology, development of a transmission system having a longer distance and a larger capacity has been promoted. Currently used for commercial use is a method of directly modulating a semiconductor laser, but this method changes the injection current into the active layer, so the refractive index also changes, which is called chirping. Wavelength fluctuation occurs. On the other hand, for increasing the distance, it is effective to change the wavelength of the semiconductor laser to be used from 1.3 μm band to 1.55 μm band in terms of transmission loss of the optical fiber.
When using light in the 1.55 μm band, if you try to perform gigabit transmission with an already installed optical fiber without dispersion compensation, sensitivity deterioration occurs on the receiving side due to chromatic dispersion, and transmission is performed using the existing optical fiber. This is an obstacle to increasing the distance and capacity. As a means for solving this problem, a method in which the laser is driven by DC and the chirping of the laser is suppressed by modulating the light intensity by an external modulator has been receiving attention in recent years, and in particular, the external modulator and the laser are integrated. The semiconductor light source has advantages such as miniaturization of the device and easy assembly, and there are great expectations for its development.

【0003】従来の変調器集積半導体光源のバンドギャ
ップダイアグラムは図13に示すように変調器部1のバ
ンドギャップはレーザ部2のフォトンエネルギより少し
大きく設定されており、逆バイアス電圧を加えフランツ
・ケルディシュ効果若しくは量子閉じ込めシュタルク効
果により吸収係数を変調することによりレーザ出力光の
強度を変調するものであり、この変調器部1のバンドギ
ャップは一定になっており、変調器部光吸収層の吸収係
数も一定である[例えば、1993年電子情報通信学会
秋季大会予稿集C−98]。
As shown in FIG. 13, the bandgap diagram of the conventional modulator integrated semiconductor light source is such that the bandgap of the modulator section 1 is set to be slightly larger than the photon energy of the laser section 2, and a reverse bias voltage is applied to the Franz. The intensity of the laser output light is modulated by modulating the absorption coefficient by the Keldysh effect or the quantum confined Stark effect. The band gap of the modulator section 1 is constant, and the absorption of the modulator section light absorption layer is fixed. The coefficient is also constant [for example, 1993 IEICE Fall Conference Proceedings C-98].

【0004】[0004]

【発明が解決しようとする課題】この従来の変調器集積
型半導体光源では、図13に示すように変調器の光吸収
層のバンドギャップは光導波方向で一定である。従っ
て、吸収係数も光導波方向で一定であり、変調時に吸収
されるレーザ光のパワ密度は図14に示すように変調器
の入射端3で最大となり指数関数的に出射端4に向かっ
て減衰する分布となる。従って入射パワが大きくなると
入射端3の近傍で吸収飽和を起こし、その結果、受信側
での感度劣化の原因となる応答劣化や消光比劣化を起こ
してしまうという問題がある。
In this conventional modulator integrated semiconductor light source, as shown in FIG. 13, the band gap of the light absorption layer of the modulator is constant in the optical waveguide direction. Therefore, the absorption coefficient is also constant in the optical waveguide direction, and the power density of the laser light absorbed at the time of modulation becomes maximum at the entrance end 3 of the modulator and attenuates exponentially toward the exit end 4 as shown in FIG. Distribution. Therefore, when the incident power becomes large, there is a problem that absorption saturation occurs near the incident end 3, and as a result, response deterioration and extinction ratio deterioration that cause sensitivity deterioration on the receiving side occur.

【0005】本発明は、以上の問題点を解決するもの
で、高出力時の変調器部での吸収飽和を抑え、消光比劣
化、応答劣化を防ぐ半導体光源及びその製造方法を提供
することを目的とする。
The present invention solves the above problems and provides a semiconductor light source that suppresses absorption saturation in the modulator section at high output, prevents extinction ratio deterioration, and response deterioration, and a method of manufacturing the same. To aim.

【0006】[0006]

【課題を解決するための手段】本発明は、以上の目的を
達成するために、電界吸収型変調器を集積してなる半導
体光源であって、前記変調器は、レーザ光のフォトンエ
ネルギよりも大きなバンドギャップを有すると共に、レ
ーザ側から離隔するにしたがってバンドギャップが順次
又は段階的に小さくなる電界吸収型変調器からなる半導
体光源を構成するものである。
In order to achieve the above object, the present invention is a semiconductor light source in which an electro-absorption modulator is integrated, wherein the modulator is higher than the photon energy of laser light. A semiconductor light source having an electroabsorption modulator having a large bandgap and a bandgap gradually or stepwise becomes smaller as the distance from the laser side is increased.

【0007】また、電界吸収型変調器を集積してなる半
導体光源の製造方法であって、InP基板上に形成され
た2本のSiO2膜よりなるストライプパターンに挾ま
れた領域に有機金属気相成長法により多重量子井戸構造
を有する発光層および光吸収層を一括的に形成する製造
工程において、前記光吸収層の形成部のストライプパタ
ーン幅を前記発光層側から順次もしくは段階的に広く形
成するようにした半導体光源の製造方法を特徴とする。
Further, in a method of manufacturing a semiconductor light source in which an electro-absorption modulator is integrated, an organometallic vapor is formed in a region sandwiched by a stripe pattern composed of two SiO 2 films formed on an InP substrate. In a manufacturing process for collectively forming a light-emitting layer and a light-absorbing layer having a multiple quantum well structure by a phase growth method, a stripe pattern width of a portion where the light-absorbing layer is formed is sequentially or gradually widened from the light-emitting layer side. The method of manufacturing a semiconductor light source configured as described above is characterized.

【0008】[0008]

【実施例】以下、本発明の実施例を図面に基づき説明す
る。図1は本発明第1実施例の変調器集積光源の光導波
方向のバンドギャップダイアグラム、図2は第1実施例
の変調器部1における吸収光パワ密度を示す線図、図3
は第1実施例の変調器集積光源の製造工程を説明するた
めの平面図、図4および図5はその断面図、図6は第1
実施例の変調器集積光源の外観図、図7は本発明の第2
実施例の変調器集積光源のバンドギャップダイアグラ
ム、図8は第2実施例の変調器部1における吸収光パワ
密度を示す線図、図9は第2実施例の変調器集積半導体
光源の製造工程を説明するための平面図、図10および
図11はその断面図、図12は第2実施例の変調器集積
光源の外観図、図13は従来の変調器集積光源の光導波
方向のバンドギャップダイアグラム、図14は従来の変
調器部における吸収光パワ密度を示す線図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a bandgap diagram in the optical waveguide direction of a modulator integrated light source of the first embodiment of the present invention, FIG. 2 is a diagram showing absorbed light power density in the modulator section 1 of the first embodiment, and FIG.
Is a plan view for explaining the manufacturing process of the modulator integrated light source of the first embodiment, FIGS. 4 and 5 are sectional views thereof, and FIG.
FIG. 7 is an external view of a modulator integrated light source of the embodiment, and FIG.
8 is a band gap diagram of the modulator integrated light source of the embodiment, FIG. 8 is a diagram showing the absorbed light power density in the modulator portion 1 of the second embodiment, and FIG. 9 is a manufacturing process of the modulator integrated semiconductor light source of the second embodiment. 10 and 11 are cross-sectional views thereof, FIG. 12 is an external view of the modulator integrated light source of the second embodiment, and FIG. 13 is a band gap in the optical waveguide direction of a conventional modulator integrated light source. FIG. 14 is a diagram showing the absorbed light power density in the conventional modulator section.

【0009】実施例1 本実施例ではレーザ部2のバンドギャップは波長1.5
6μm、又変調器部のバンドギャップは波長組成でレー
ザ光の入射端3で1.43μm、出射端4で1.49μ
mになるように設定されている。なお、LDの発振波長
は回折格子により1.55μmとなるように設定されて
いる。
Embodiment 1 In this embodiment, the band gap of the laser section 2 is 1.5 wavelength.
6 μm, and the band gap of the modulator is 1.43 μm at the laser light entrance end 3 and 1.49 μm at the exit end 4 depending on the wavelength composition.
It is set to be m. The oscillation wavelength of the LD is set by the diffraction grating to be 1.55 μm.

【0010】図3〜図5は本実施例の変調器集積光源の
製造工程図を示す。このうち図3は平面図、図4,図5
は図3のA−A′線による断面を示す。(100)面方
位のn−InPよりなる基板5に干渉露光法とウェット
エッチングによりレーザ形成部に<011バー>方向に
周期241.7nmの回折格子6を形成する。次に、熱
CVD法によりSiO2を150nm堆積させ、<01
1バー>方向に間隔が1.5μmで幅18μm長さ50
0μm、それに続いて幅4μmから15μmへ順次変え
た長さ200μmの一対のSiO2のストライプ幅変調
パターン7を通常のフォトリソグラフィとウェットエッ
チングにより形成する(図3)。
3 to 5 are manufacturing process diagrams of the modulator integrated light source of this embodiment. Of these, FIG. 3 is a plan view, and FIGS.
Shows a cross section taken along the line AA 'in FIG. A diffraction grating 6 having a period of 241.7 nm is formed in the <011 bar> direction on the laser forming portion by interference exposure and wet etching on the substrate 5 made of n-InP having the (100) plane orientation. Next, SiO 2 is deposited to a thickness of 150 nm by the thermal CVD method, and <01
1 bar> direction with a gap of 1.5 μm and width of 18 μm and length of 50
A pair of SiO 2 stripe width modulation patterns 7 having a length of 0 μm and successively a width of 4 μm to 15 μm and a length of 200 μm are formed by ordinary photolithography and wet etching (FIG. 3).

【0011】次に、MO−VPE成長法により成長圧力
75Torr、成長温度625℃で波長組成1.13μ
mのキャリア濃度5×1017cm-3のn−InGaAs
Pからなるガイド層8を0.1μm、レーザ部でバンド
ギャップ波長が1.56μmとなるようなノンドープI
nGaAsを井戸層、波長組成1.15μmのノンドー
プInGaAsPをバリア層とする7層の多重量子井戸
層9、キャリア濃度1×1017cm-3のp−InPから
なるクラッド層10を0.1μmを順次成長させる(図
4)。このとき、変調器部ではストライプ幅変調パター
ン7の幅が順次広くなっていることにより成長速度が促
進され、多重量子井戸層9の厚さが順次厚くなることに
よりバンドギャップ波長が順次長くなる。
Next, the wavelength composition was 1.13 μm at a growth pressure of 75 Torr and a growth temperature of 625 ° C. by MO-VPE growth method.
n-InGaAs with a carrier concentration of m of 5 × 10 17 cm -3
The guide layer 8 made of P has a thickness of 0.1 μm, and the laser region has a non-doped I band gap wavelength of 1.56 μm.
A well layer of nGaAs and a barrier layer of non-doped InGaAsP having a wavelength composition of 1.15 μm are used as a multiple quantum well layer 9 of seven layers, and a clad layer 10 made of p-InP having a carrier concentration of 1 × 10 17 cm −3 is 0.1 μm. Grow sequentially (Fig. 4). At this time, in the modulator portion, the width of the stripe width modulation pattern 7 is gradually increased to accelerate the growth rate, and the thickness of the multiple quantum well layer 9 is gradually increased to sequentially increase the bandgap wavelength.

【0012】次にストライプ幅変調パターン7の開口幅
を通常のフォトリソグラフィとウェットエッチングによ
り7μmに拡げ、再度MO−VPE成長法によりキャリ
ア濃度5×1017cm-3のp−InPからなる埋め込み
層11を1.8μm、キャリア濃度5×1018cm-3
p−InGaAsからなるコンタクト層12を0.3μ
m成長させる(図5)。
Next, the opening width of the stripe width modulation pattern 7 is expanded to 7 μm by ordinary photolithography and wet etching, and a buried layer made of p-InP having a carrier concentration of 5 × 10 17 cm -3 is again formed by MO-VPE growth method. 11 is 1.8 μm, and the contact layer 12 made of p-InGaAs having a carrier concentration of 5 × 10 18 cm −3 is 0.3 μm.
m (FIG. 5).

【0013】次に、熱CVD法によりSiO2を350
nm堆積させ、通常のフォトリソグラフィとウェットエ
ッチングによりコンタクト用の窓を開け、Ti/Auを
それぞれ100/300nmスパッタ法により堆積さ
せ、通常のフォトリソグラフィとウェットエッチングに
よりp側電極13を形成し、ウェハーを100μmに研
磨し、裏面にn側電極14となるTi/Auをそれぞれ
100/300nmスパッタ法により堆積させ、N2
囲気中で430℃のシンターを行う。最後に劈開し、S
iNx膜をスパッタ法によりレーザ部2側の端面に高反
射膜15、変調器部1側の端面に無反射膜16を形成し
素子が完成する。図6は本実施例の変調器集積光源の外
観図を示す。
Next, SiO 2 is added to 350 by the thermal CVD method.
nm, a contact window is opened by ordinary photolithography and wet etching, Ti / Au is deposited by a 100/300 nm sputtering method, and a p-side electrode 13 is formed by ordinary photolithography and wet etching. Is polished to 100 μm, Ti / Au to be the n-side electrode 14 is deposited on the back surface by a 100/300 nm sputtering method, and sintering is performed at 430 ° C. in an N 2 atmosphere. Finally cleave, S
The iNx film is formed by the sputtering method to form the high reflection film 15 on the end face on the laser unit 2 side and the non-reflection film 16 on the end face on the modulator unit 1 side to complete the element. FIG. 6 is an external view of the modulator integrated light source of this embodiment.

【0014】本実施例の変調器部1の光吸収層の吸収係
数は入射端3から順次大きくなるため、吸収パワ密度は
変調器中で一定となる。図13は従来の変調器集積光源
の光導波方向のバンドギャップダイアグラム、図14は
従来の変調器部での吸収パワ密度分布であるが、この場
合は変調器部1のバンドギャップが一定であるため吸収
係数も一定であり、入射端で吸収パワ密度は最大となり
指数関数的に減少する。従来の変調器の光吸収層のON
時の吸収係数をA、長さをL、レーザの出力パワをPo
とおくと、変調器での最大吸収パワ密度Pmax1、およ
び吸収される全パワPabは、
Since the absorption coefficient of the light absorption layer of the modulator section 1 of this embodiment gradually increases from the entrance end 3, the absorption power density becomes constant in the modulator. FIG. 13 is a bandgap diagram in the optical waveguide direction of the conventional modulator integrated light source, and FIG. 14 is an absorption power density distribution in the conventional modulator part. In this case, the bandgap of the modulator part 1 is constant. Therefore, the absorption coefficient is also constant, and the absorption power density becomes maximum at the incident end and decreases exponentially. Turning on the light absorption layer of a conventional modulator
Absorption coefficient is A, length is L, laser output power is Po
Then, the maximum absorption power density Pmax1 in the modulator and the total power Pab absorbed are

【0015】[0015]

【数1】Pmax1=APo Pab=Po(1−e-AL## EQU1 ## Pmax1 = APo Pab = Po (1-e- AL )

【0016】となる。従来と吸収パワを同じにすると、
本実施例の最大吸収パワ密度Pmax2は、
[0016] If the absorption power is the same as the conventional one,
The maximum absorption power density Pmax2 of this embodiment is

【0017】[0017]

【数2】Pmax2=Pab/L[Formula 2] Pmax2 = Pab / L

【0018】従って、本実施例では最大吸収パワ密度はTherefore, in this embodiment, the maximum absorption power density is

【0019】[0019]

【数3】Pmax2/Pmax1=(1−e-AL)/AL## EQU3 ## Pmax2 / Pmax1 = (1-e- AL ) / AL

【0020】に低減される。本実施例の場合、変調器長
は200μm、OFF時の吸収ロスは8dB、消光比1
5dBとなる。従来の同一素子長、同一特性のものと比
べると、最大吸収パワ密度は45%に低減される。高出
力化により変調器部1で吸収飽和を起こし、その結果消
光比劣化を引き起こすが、本実施例では従来の2.2倍
のレーザ出力に対してまで吸収飽和を抑えることが出来
る。
Is reduced to In the case of this embodiment, the modulator length is 200 μm, the absorption loss at the time of OFF is 8 dB, and the extinction ratio is 1
It becomes 5 dB. The maximum absorption power density is reduced to 45% as compared with the conventional one having the same element length and the same characteristics. Absorption saturation occurs in the modulator section 1 due to higher output, resulting in deterioration of the extinction ratio, but in the present embodiment, absorption saturation can be suppressed up to 2.2 times the laser output of the conventional one.

【0021】実施例2 図7は第2の実施例の変調器集積光源の光導波方向のバ
ンドギャップダイアグラム、図8は変調器部での吸収パ
ワ密度分布である。本実施例ではレーザ部2のバンドギ
ャップは波長1.56μm、又変調器部1のバンドギャ
ップは波長組成でレーザ光の入射端から1/3の部分が
1.44μm、次の1/3の部分が1.46μm、次の
1/3の部分が1.48μmになるように設定されてい
る。なお、レーザの発振波長は回折格子により1.55
μmとなるように設定されている。
Embodiment 2 FIG. 7 is a bandgap diagram in the optical waveguide direction of the modulator integrated light source of the second embodiment, and FIG. 8 is an absorption power density distribution in the modulator section. In this embodiment, the bandgap of the laser section 2 is 1.56 μm, and the bandgap of the modulator section 1 is 1.44 μm in the wavelength composition of 1/3 from the incident end of the laser light and 1/3 of the next. The portion is set to 1.46 μm, and the next ⅓ portion is set to 1.48 μm. The oscillation wavelength of the laser is 1.55 due to the diffraction grating.
It is set to be μm.

【0022】図9〜図11は本実施例の変調器集積光源
の製造工程図を示す。このうち図9は平面図、図10,
図11は図9のB−B′線による断面を示す。製造工程
は(100)面方位のn−InPよりなる基板5に干渉
露光法とウェットエッチングによりレーザ形成部に<0
11>方向に周期241.7nmの回折格子6を形成す
る。次に、熱CVD法によりSiO2を150nm堆積
させ、<011>方向に間隔が1.5μmで幅18μ
m、長さ500μm、それに続いて幅5μm、10μ
m、15μmへ120μmおきにステップ状に変えた一
対のSiO2のストライプ幅変調パターン7を通常のフ
ォトリソグラフィとウェットエッチングにより形成する
(図9)。
9 to 11 are manufacturing process diagrams of the modulator integrated light source of this embodiment. Of these, FIG. 9 is a plan view, FIG.
FIG. 11 shows a cross section taken along the line BB 'in FIG. In the manufacturing process, the substrate 5 made of n-InP having the (100) plane orientation is formed on the laser forming portion by <0.
The diffraction grating 6 having a period of 241.7 nm is formed in the 11> direction. Next, SiO 2 is deposited to a thickness of 150 nm by the thermal CVD method, and the interval is 1.5 μm and the width is 18 μm in the <011> direction.
m, length 500 μm, width 5 μm, 10 μ
m, the stripe width modulation pattern 7 of a pair of SiO 2 was changed stepwise to 120μm intervals to 15μm is formed by conventional photolithography and wet etching (FIG. 9).

【0023】次に、MO−VPE成長法により成長圧力
150Torr、成長温度625℃で波長組成1.13
μmのキャリア濃度5×1017cm-3のn−InGaA
sPからなるガイド層8を0.1μm、LD部でバンド
ギャップ波長組成が1.54μmとなるようなノンドー
プのInGaAs井戸層、波長組成1.15μmのIn
GaAsPをバリア層とする7層の多重量子井戸層9、
キャリア濃度1×1017cm-3のp−InPからなるク
ラッド層10を0.1μmを順次成長させる(図1
0)。このとき変調器部のSiO2幅がステップ的に広
くなることにより多重量子井戸層9のバンドギャップ波
長もステップ的に長くなる。
Next, the wavelength composition was 1.13 at a growth pressure of 150 Torr and a growth temperature of 625 ° C. by MO-VPE growth method.
n-InGaA with a carrier concentration of 5 × 10 17 cm -3
The guide layer 8 made of sP has a thickness of 0.1 μm, the LD portion has a non-doped InGaAs well layer having a bandgap wavelength composition of 1.54 μm, and In having a wavelength composition of 1.15 μm.
7 multi-quantum well layers 9 using GaAsP as a barrier layer,
A cladding layer 10 made of p-InP having a carrier concentration of 1 × 10 17 cm −3 is sequentially grown to a thickness of 0.1 μm (see FIG. 1).
0). At this time, the SiO 2 width of the modulator portion becomes wider stepwise, and the bandgap wavelength of the multiple quantum well layer 9 also becomes longer stepwise.

【0024】次に、SiO2の開口幅を通常のフォトリ
ソグラフィとウェットエッチングにより7μmに拡げ、
再度MO−VPE成長法によりキャリア濃度5×1017
cm-3のp−InPからなる埋め込み層11を1.8μ
m、キャリア濃度5×1018cm-3のp−InGaAs
からなるコンタクト層12を0.3μm成長させる(図
11)。
Next, the opening width of SiO 2 is expanded to 7 μm by ordinary photolithography and wet etching.
The carrier concentration is 5 × 10 17 by the MO-VPE growth method again.
cm- 3 of the buried layer 11 made of p-InP having a thickness of 1.8 μm.
m, carrier concentration 5 × 10 18 cm −3 p-InGaAs
The contact layer 12 made of is grown to 0.3 μm (FIG. 11).

【0025】次に、熱CVD法によりSiO2を350
nm堆積させ、通常のフォトリソグラフィとウェットエ
ッチングによりコンタクト用の窓を開け、Ti/Auを
それぞれ100/300nmスパッタ法により堆積さ
せ、通常のフォトリソグラフィとウェットエッチングに
よりp側電極13を形成しウェハーを100μmに研磨
し、裏面にn側電極14となるTi/Auをそれぞれ1
00/300nmスパッタ法により堆積させ、N2雰囲
気中で430℃のシンターを行う。最後にレーザ部、変
調器部の中央で劈開し、SiNx膜をスパッタ法により
レーザ側の端面に高反射膜15、変調器側の端面に無反
射膜16を形成し素子が完成する。図12は本実施例の
変調器集積光源の外観図を示す。
Next, the SiO 2 film is heated to 350 by the thermal CVD method.
nm, a contact window is opened by ordinary photolithography and wet etching, Ti / Au is deposited by a 100/300 nm sputtering method, and a p-side electrode 13 is formed by ordinary photolithography and wet etching to form a wafer. Polished to 100 μm, and Ti / Au to be the n-side electrode 14 on the back surface 1
It is deposited by a 00/300 nm sputtering method and sintered at 430 ° C. in an N 2 atmosphere. Finally, cleavage is performed at the center of the laser portion and the modulator portion, and a high reflection film 15 is formed on the end surface on the laser side of the SiNx film by the sputtering method, and a non-reflective film 16 is formed on the end surface on the modulator side to complete the device. FIG. 12 is an external view of the modulator integrated light source of this embodiment.

【0026】本実施例の変調器部1の光吸収層のON時
の吸収係数は入射端から三段階で順次、A1、2A1、3
A1と大きくなるように設定されている。吸収係数が一
定である従来の同一素子長、同一特性のものと比べると
全吸収パワPabは同じであるので、
The absorption coefficient when the light absorption layer of the modulator section 1 of this embodiment is ON is A1, 2A1, 3 in three steps from the entrance end.
It is set to be larger than A1. Since the total absorption power Pab is the same as that of the conventional one having the same absorption coefficient and the same element length and the same characteristics,

【0027】[0027]

【数4】Pab=Po(1−e-AL) =Po(1−e-1/3(A1+2A1+3A1)L[Equation 4] Pab = Po (1-e- AL ) = Po (1-e-1 / 3 (A1 + 2A1 + 3A1) L )

【0028】となり、A1=1/2A 従って、従来に比べ本実施例の最大吸収パワ密度Pmax
3は
Therefore, A1 = 1 / 2A Therefore, the maximum absorption power density Pmax of this embodiment is higher than the conventional one.
3 is

【0029】[0029]

【数5】Pmax3=Pab/2A =Pmax1/2(5) Pmax3 = Pab / 2A = Pmax1 / 2

【0030】となり、本実施例の場合、従来に比べ最大
吸収パワ密度は50%に低減される。高出力化により変
調器部1で吸収飽和を起し消光比劣化を引き起すが、本
実施例では従来の2倍のレーザ出力に対してまで吸収飽
和を抑えることが出来る。
In the case of this embodiment, the maximum absorption power density is reduced to 50% as compared with the conventional one. Although a higher output causes absorption saturation in the modulator section 1 and deterioration of the extinction ratio, this embodiment can suppress the absorption saturation up to a laser output twice as high as the conventional one.

【0031】[0031]

【発明の効果】以上説明したように本発明は、変調器の
光吸収層のバンドギャップをレーザ側から遠のくほど順
次若しくは段階的に小さくすることにより吸収係数を順
次若しくは段階的に大きくする。これにより局所的なパ
ワ集中を緩和し最大吸収パワ密度を50%以下に抑え、
従来の2倍以上の出力に対して消光比劣化を防ぐことが
出来る。
As described above, according to the present invention, the absorption coefficient is sequentially or stepwise increased by gradually or gradually decreasing the bandgap of the light absorption layer of the modulator away from the laser side. As a result, local power concentration is eased and the maximum absorption power density is suppressed to 50% or less.
It is possible to prevent the extinction ratio from deteriorating with respect to the output which is more than twice that of the conventional output.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の変調器集積光源の光導波
方向のバンドギャップダイアグラムである。
FIG. 1 is a bandgap diagram in a light guide direction of a modulator integrated light source according to a first embodiment of the present invention.

【図2】第1実施例の変調器部での吸収パワ密度分布を
示す線図である。
FIG. 2 is a diagram showing an absorption power density distribution in the modulator section of the first embodiment.

【図3】第1実施例の変調器集積光源の製造工程を説明
するための平面図である。
FIG. 3 is a plan view for explaining a manufacturing process of the modulator integrated light source of the first embodiment.

【図4】図3のA−A′線断面図である。FIG. 4 is a sectional view taken along the line AA ′ of FIG.

【図5】図3のA−A′線断面図である。5 is a cross-sectional view taken along the line AA ′ of FIG.

【図6】第1実施例の変調器集積光源の外観図である。FIG. 6 is an external view of a modulator integrated light source according to the first embodiment.

【図7】本発明の第2実施例の変調器集積光源の光導波
方向のバンドギャップダイアグラムである。
FIG. 7 is a bandgap diagram in the optical waveguide direction of the modulator integrated light source according to the second embodiment of the present invention.

【図8】第2実施例の変調器部での吸収パワ密度分布を
示す線図である。
FIG. 8 is a diagram showing an absorption power density distribution in the modulator section of the second embodiment.

【図9】第2実施例の変調器集積光源の製造工程を説明
するための平面図である。
FIG. 9 is a plan view for explaining the manufacturing process of the modulator integrated light source of the second embodiment.

【図10】図9のB−B′線断面図である。10 is a sectional view taken along line BB ′ of FIG.

【図11】図9のB−B′線断面図である。11 is a sectional view taken along line BB ′ of FIG.

【図12】第2実施例の変調器集積光源の外観図であ
る。
FIG. 12 is an external view of a modulator integrated light source of the second embodiment.

【図13】従来の変調器集積光源の光導波方向のバンド
ギャップダイアグラムである。
FIG. 13 is a bandgap diagram in the optical waveguide direction of a conventional modulator integrated light source.

【図14】従来の変調器部での吸収パワ密度分布を示す
線図である。
FIG. 14 is a diagram showing an absorption power density distribution in a conventional modulator section.

【符号の説明】[Explanation of symbols]

1 変調器部 2 レーザ部 3 入射端 4 出射端 5 基板 6 回折格子 7 ストライプ幅変調パターン 8 ガイド層 9 多重量子井戸層 10 クラッド層 11 埋め込み層 12 コンタクト層 13 p側電極 14 n側電極 15 高反射膜 16 無反射膜 1 modulator part 2 laser part 3 entrance end 4 exit end 5 substrate 6 diffraction grating 7 stripe width modulation pattern 8 guide layer 9 multiple quantum well layer 10 clad layer 11 buried layer 12 contact layer 13 p-side electrode 14 n-side electrode 15 high Reflective film 16 Non-reflective film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電界吸収型変調器を集積してなる半導体
光源であって、前記変調器は、レーザ光のフォトンエネ
ルギよりも大きなバンドギャップを有すると共に、レー
ザ側から離隔するにしたがってバンドギャップが順次又
は段階的に小さくなる電界吸収型変調器からなることを
特徴とする半導体光源。
1. A semiconductor light source in which an electro-absorption modulator is integrated, wherein the modulator has a band gap larger than the photon energy of laser light, and the band gap increases as the distance from the laser side increases. A semiconductor light source, comprising an electro-absorption modulator that becomes smaller sequentially or stepwise.
【請求項2】 電界吸収型変調器を集積してなる半導体
光源の製造方法であって、InP基板上に形成された2
本のSiO2膜よりなるストライプパターンに挾まれた
領域に有機金属気相成長法により多重量子井戸構造を有
する発光層および光吸収層を一括的に形成する製造工程
において、前記光吸収層の形成部のストライプパターン
幅を前記発光層側から順次もしくは段階的に広く形成す
ることを特徴とする半導体光源の製造方法。
2. A method of manufacturing a semiconductor light source in which an electro-absorption modulator is integrated, comprising: a semiconductor light source formed on an InP substrate;
Forming a light absorbing layer and a light absorbing layer having a multiple quantum well structure by a metalorganic vapor phase epitaxy method in a region sandwiched between stripe patterns of the present SiO 2 film A method of manufacturing a semiconductor light source, characterized in that the stripe pattern width of a portion is formed sequentially or stepwise from the light emitting layer side.
JP34495893A 1993-12-20 1993-12-20 Semiconductor light source and manufacturing method thereof Expired - Lifetime JP2669335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34495893A JP2669335B2 (en) 1993-12-20 1993-12-20 Semiconductor light source and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34495893A JP2669335B2 (en) 1993-12-20 1993-12-20 Semiconductor light source and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH07176822A true JPH07176822A (en) 1995-07-14
JP2669335B2 JP2669335B2 (en) 1997-10-27

Family

ID=18373311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34495893A Expired - Lifetime JP2669335B2 (en) 1993-12-20 1993-12-20 Semiconductor light source and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2669335B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6150667A (en) * 1996-05-22 2000-11-21 Nec Corporation Semiconductor optical modulator
US6204078B1 (en) 1998-06-23 2001-03-20 Nec Corporation Method of fabricating photonic semiconductor device using selective MOVPE
JP2009222965A (en) * 2008-03-17 2009-10-01 Opnext Japan Inc Electric field absorption type modulator
JP2021068820A (en) * 2019-10-24 2021-04-30 住友電気工業株式会社 Semiconductor laser element and semiconductor laser element manufacturing method
WO2021209115A1 (en) * 2020-04-14 2021-10-21 Huawei Technologies Co., Ltd. Electroabsorption modulated laser
WO2021209114A1 (en) * 2020-04-14 2021-10-21 Huawei Technologies Co., Ltd. Optical device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6150667A (en) * 1996-05-22 2000-11-21 Nec Corporation Semiconductor optical modulator
US6204078B1 (en) 1998-06-23 2001-03-20 Nec Corporation Method of fabricating photonic semiconductor device using selective MOVPE
JP2009222965A (en) * 2008-03-17 2009-10-01 Opnext Japan Inc Electric field absorption type modulator
JP2021068820A (en) * 2019-10-24 2021-04-30 住友電気工業株式会社 Semiconductor laser element and semiconductor laser element manufacturing method
WO2021209115A1 (en) * 2020-04-14 2021-10-21 Huawei Technologies Co., Ltd. Electroabsorption modulated laser
WO2021209114A1 (en) * 2020-04-14 2021-10-21 Huawei Technologies Co., Ltd. Optical device

Also Published As

Publication number Publication date
JP2669335B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
JP2809124B2 (en) Optical semiconductor integrated device and method of manufacturing the same
JPH0715000A (en) Constitution of integrated monolithic laser modulator of multiple quantum well structure
JPH04254380A (en) Monolithic integrated photoamplifier and photodetector
JP3244116B2 (en) Semiconductor laser
JP3141854B2 (en) Method for manufacturing optical semiconductor device
US6224667B1 (en) Method for fabricating semiconductor light integrated circuit
US6222867B1 (en) Optical semiconductor device having waveguide layers buried in an InP current blocking layer
JP2669335B2 (en) Semiconductor light source and manufacturing method thereof
JP2827411B2 (en) Optical semiconductor device and method of manufacturing the same
US6204078B1 (en) Method of fabricating photonic semiconductor device using selective MOVPE
JPH01319986A (en) Semiconductor laser device
JP3264321B2 (en) Waveguide-type semiconductor optical integrated device and method of manufacturing the same
US5811838A (en) Electro-absorption type semiconductor optical modulator
JPH10242577A (en) Semiconductor laser and manufacture thereof
JP3245940B2 (en) Semiconductor optical integrated device
JP3264179B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP3700245B2 (en) Phase-shifted distributed feedback semiconductor laser
JPH11354887A (en) Manufacture of semiconductor laser
JPH11330624A (en) Semiconductor device
JP2770848B2 (en) Integrated light source of semiconductor laser and optical modulator and method of manufacturing the same
JP3215477B2 (en) Semiconductor distributed feedback laser device
JP2771276B2 (en) Semiconductor optical integrated device and manufacturing method thereof
JP3159914B2 (en) Selectively grown waveguide type optical control element and method of manufacturing the same
JP2894285B2 (en) Distributed feedback semiconductor laser and method of manufacturing the same
KR100228395B1 (en) Dfb-laser device