JPH07176819A - Manufacture of semiconductor laser device - Google Patents

Manufacture of semiconductor laser device

Info

Publication number
JPH07176819A
JPH07176819A JP6459392A JP6459392A JPH07176819A JP H07176819 A JPH07176819 A JP H07176819A JP 6459392 A JP6459392 A JP 6459392A JP 6459392 A JP6459392 A JP 6459392A JP H07176819 A JPH07176819 A JP H07176819A
Authority
JP
Japan
Prior art keywords
sulfur
semiconductor laser
laser device
sulfide solution
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6459392A
Other languages
Japanese (ja)
Inventor
Osamu Kondo
修 今藤
Yuichi Shimizu
裕一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP6459392A priority Critical patent/JPH07176819A/en
Publication of JPH07176819A publication Critical patent/JPH07176819A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To provide a method of manufacturing a high-output semiconductor laser, which reduces reliably the surface level density of a laser crystal end face and inhibits a COD. CONSTITUTION:A method of manufacturing a semiconductor laser has a process, wherein a wafer, on which the formation of electrodes ends, is cleaved and after a sulfur monomolecular layer 5 is formed on a cleavage surface 4 using an ammonium sulfide resolution 2 during the time ending the formation of an insulating film 7, an ammonium polysulfide solution 3 is produced from the solution 2 utilizing a photochemical reaction and the surface 4 is completely passivated by forming further a sulfur polymolecular layer 6 on the above layer 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高出力が得られる半導
体レーザ装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor laser device capable of obtaining high output.

【0002】[0002]

【従来の技術】近年、光ディスクメモリの分野におい
て、システムの高速化並びに高密度化が進んでいる。そ
うした状況下において、半導体レーザ装置には、高速化
のための高出力化や高密度化のための短波長化が求めら
れている。特に、半導体レーザ装置の高出力化はかなり
進んでおり、種々の構造が提案されている。
2. Description of the Related Art In recent years, in the field of optical disk memory, system speed and density have been increasing. Under such circumstances, the semiconductor laser device is required to have higher output for higher speed and shorter wavelength for higher density. In particular, the semiconductor laser device has been considerably advanced in output, and various structures have been proposed.

【0003】高出力化の障害となる最大の原因は、レー
ザ装置端面の光学損傷(COD)である。最近では、レ
ーザ装置端面近傍に非注入領域を設けてCODを防止す
ることが可能なウインドウ型構造を有する半導体レーザ
装置が提案されているが、現段階でまだまだ量産性に乏
しい。
The largest cause of obstacles to higher output is optical damage (COD) on the end face of the laser device. Recently, a semiconductor laser device having a window-type structure capable of preventing COD by providing a non-implanted region near the end face of the laser device has been proposed, but it is still poor in mass productivity at this stage.

【0004】因習的な高出力半導体レーザ装置におい
て、光出力の増加に伴いレーザ装置端面の光密度が増加
するため、CODを起こす。CODを起こす原因は、端
面に表面準位が存在するためである。この端面の表面準
位はバンドギャップ内に存在し、中でも、半導体レーザ
装置の代表的材料であるGaAsの表面準位は、バンド
ギャップのほぼ中央に存在するため、非発光再結合発生
の原因となる。非発光再結合に伴い熱が発生し活性領域
の温度が上昇するため、端面近傍のバンドギャップが小
さくなり、光の吸収係数が高くなる。そのため、多くの
電子−正孔対が発生する。これらの電子−正孔が再結合
する際に再び熱を放出し、端面の温度が更に上昇する。
こうしたサイクルを繰り返すことにより、CODが発生
する。したがって、CODを抑制するためには、レーザ
装置端面の表面準位密度を下げる必要がある。表面準位
密度を低減するためには、結晶表面に存在する不純物や
格子欠陥を低減する必要がある。
In a conventional high-power semiconductor laser device, COD occurs because the light density at the end face of the laser device increases as the light output increases. The cause of COD is that the surface level exists on the end face. The surface level of this end face exists in the band gap, and in particular, the surface level of GaAs, which is a typical material of the semiconductor laser device, exists almost in the center of the band gap. Become. Since heat is generated due to non-radiative recombination and the temperature of the active region rises, the band gap near the end face becomes smaller and the light absorption coefficient becomes higher. Therefore, many electron-hole pairs are generated. When these electron-holes recombine, heat is released again, and the temperature of the end face rises further.
COD is generated by repeating such a cycle. Therefore, in order to suppress COD, it is necessary to reduce the surface state density of the end face of the laser device. In order to reduce the surface state density, it is necessary to reduce impurities and lattice defects existing on the crystal surface.

【0005】従来の高出力半導体レーザ装置の製造工程
において、電極工程を終了したウエハをへき開し、へき
開面に何も処理を行わずコーティングにより絶縁膜を形
成していた。こうした工程では、へき開からコーティン
グまでの間にレーザ結晶端面に酸化物などの不純物が形
成されてしまう。最近では、へき開面上に硫化アンモニ
ウム溶液による表面処理を行った後、絶縁膜を形成する
工程が提案されている。これは、ウエハからへき開した
バーを硫化アンモニウム溶液に5分間浸し、数分間水
洗,乾燥したのち絶縁膜を形成するというものである。
硫化アンモニウム溶液に浸すことにより、レーザ結晶端
面の不純物を取り除いてから硫黄の単分子層を形成しレ
ーザ結晶端面を不活性にすることができる。
In the conventional manufacturing process of a high-power semiconductor laser device, a wafer after the electrode process is cleaved, and the cleaved surface is coated with an insulating film without any treatment. In such a process, impurities such as oxides are formed on the laser crystal end face between the cleavage and the coating. Recently, a process of forming an insulating film after performing a surface treatment on the cleaved surface with an ammonium sulfide solution has been proposed. In this method, a bar cleaved from a wafer is immersed in an ammonium sulfide solution for 5 minutes, washed with water for several minutes and dried, and then an insulating film is formed.
By dipping in the ammonium sulfide solution, impurities on the laser crystal end face can be removed, and then a sulfur monomolecular layer can be formed to inactivate the laser crystal end face.

【0006】図4はGaAs結晶12を例に、硫化アン
モニウム溶液の反応機構を簡単なモデルで示したもので
ある。硫化アンモニウム溶液中の硫黄イオン8は、S2-
の状態で存在する。GaAs結晶12の表面にGaとA
sの酸化物10が不純物として存在する場合、硫黄イオ
ン8は酸化物10中のGaあるいはAsの結合手を攻撃
し、酸化物をGaAs結晶12から取り除き、同時にG
aAs結晶表面に硫黄の単分子層5が形成される。取り
除かれた酸化物10は溶液中のアンモニウムイオン11
により配位されるので、GaAs結晶12の表面に再度
付着することはない。これにより、GaAs結晶表面は
硫黄の単分子層5により保護され不純物による表面単位
が低減される。
FIG. 4 shows the reaction mechanism of an ammonium sulfide solution with a simple model, using a GaAs crystal 12 as an example. Sulfur ions 8 in the ammonium sulfide solution are S 2-
Exists in the state of. Ga and A on the surface of the GaAs crystal 12.
When the oxide 10 of s is present as an impurity, the sulfur ion 8 attacks a bond of Ga or As in the oxide 10 to remove the oxide from the GaAs crystal 12, and at the same time, G
A monolayer 5 of sulfur is formed on the surface of the aAs crystal. The removed oxide 10 is ammonium ion 11 in the solution.
Since they are coordinated by, they do not redeposit on the surface of the GaAs crystal 12. As a result, the GaAs crystal surface is protected by the sulfur monomolecular layer 5 and the surface unit due to impurities is reduced.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記従
来の構成では、硫化アンモニウム溶液による表面処理方
法により形成された硫黄の単分子層の硫黄とレーザ結晶
端面の各原子と間の結合は共有結合性が強いと考えられ
るが、紫外線が照射されるとこの結合は切れてしまうこ
とが多い。上記の硫化アンモニウム溶液による表面処理
を行ってから絶縁膜を形成する工程に移るまでの間にへ
き開面が紫外線に侵される可能性は、紫外線を防止する
方法を講じない限り、一般に高い。したがって、レーザ
結晶端面に形成された硫黄の単分子層が破壊され、再度
酸化が進み不純物が形成される恐れがある。
However, in the above-mentioned conventional structure, the bond between the sulfur in the monolayer of sulfur formed by the surface treatment method using the ammonium sulfide solution and each atom on the end face of the laser crystal is covalent. Is believed to be strong, but this bond often breaks when exposed to ultraviolet light. The possibility that the cleaved surface will be attacked by ultraviolet rays during the period from the surface treatment with the ammonium sulfide solution to the step of forming the insulating film is generally high unless a method for preventing ultraviolet rays is taken. Therefore, the sulfur monolayer formed on the end face of the laser crystal may be destroyed, and oxidation may proceed again to form impurities.

【0008】本発明は上記課題を解決するもので、レー
ザ結晶端面の表面準位密度を確実に低減しCODを抑制
した高出力半導体レーザ装置の製造方法を提供すること
を目的とするものである。
The present invention solves the above problems, and an object of the present invention is to provide a method for manufacturing a high-power semiconductor laser device in which the surface state density of the laser crystal end face is reliably reduced and COD is suppressed. .

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に本発明は、電極形成が終了したウエハをへき開し絶縁
膜を形成するまでの間に、硫化アンモニウム溶液を用い
てへき開面上に硫黄の単分子層を形成した後、光化学反
応を利用して硫化アンモニウム溶液からポリ硫化アンモ
ニウム溶液を生成させ、前述の硫黄の単分子層の上に、
更に硫黄の多分子層を形成することで、へき開面を完全
にパッシベーションする工程を有する半導体レーザ装置
の製造方法である。
In order to achieve the above object, the present invention provides a method of cleaving a wafer on which an electrode has been formed by cleaving a wafer with an ammonium sulfide solution and cleaving sulfur on the cleaved surface until an insulating film is formed. After forming the monolayer of, polyammonium sulfide solution is generated from the ammonium sulfide solution by utilizing the photochemical reaction, and on the above-mentioned sulfur monolayer,
Further, it is a method for manufacturing a semiconductor laser device, which includes a step of completely passivating the cleavage plane by forming a multi-layer of sulfur.

【0010】[0010]

【作用】上記の構成により、へき開面上の表面準位密度
が低減され、硫黄の多分子層が紫外線防止膜として働
き、へき開面が完全にパッシベーションされ、COD
(光学損傷)が抑制される。
With the above structure, the surface level density on the cleaved surface is reduced, the sulfur multi-molecular layer acts as an ultraviolet protective film, the cleaved surface is completely passivated, and COD
(Optical damage) is suppressed.

【0011】[0011]

【実施例】以下、本発明の一実施例について、図1を参
照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.

【0012】図1(a)は、レーザ端面の処理工程を示
す図である。半導体レーザ装置として、GaAlAs系
のレーザを例に取り上げる。まず、ウエハからへき開し
たバー1を硫化アンモニウム(NH42S溶液2に5分
間浸した後、光を照射することにより硫化アンモニウム
溶液2からポリ硫化アンモニウム(NH42Sx溶液3
を生成させた後、更に1−2分間その溶液に浸す。こう
した処理を行った後、5分間水洗,乾燥後、コーティン
グする。上記の工程により、図1(b)に示すようにへ
き開面4の上には、硫化アンモニウム溶液中で硫黄の単
分子層5が形成され、次にポリ硫化アンモニウム溶液中
で硫黄の多分子層6が形成される。高温雰囲気下でコー
ティングすることにより硫黄膜が除かれ絶縁膜7が形成
される。
FIG. 1A is a diagram showing a process of processing a laser end face. As a semiconductor laser device, a GaAlAs-based laser will be taken as an example. First, a bar 1 cleaved from a wafer is immersed in an ammonium sulfide (NH 4 ) 2 S solution 2 for 5 minutes, and then irradiated with light to change the ammonium sulfide solution 2 into a polyammonium sulfide (NH 4 ) 2 Sx solution 3
And then soak in the solution for an additional 1-2 minutes. After such treatment, it is washed with water for 5 minutes, dried and then coated. Through the above steps, a sulfur monolayer 5 is formed in the ammonium sulfide solution on the cleavage plane 4 as shown in FIG. 1B, and then a sulfur polylayer is formed in the polyammonium sulfide solution. 6 is formed. By coating in a high temperature atmosphere, the sulfur film is removed and the insulating film 7 is formed.

【0013】図2は上記の硫化アンモニウム溶液を用い
た端面処理を行った場合のへき開面上での反応機構を簡
単なモデルにより説明した図である。硫化アンモニウム
溶液中の硫黄イオン8はS2-の状態で存在する。GaA
lAs結晶9の表面に酸化物10などの不純物が存在す
る場合、硫黄イオン8は酸化物中のGa,Al,Asの
結合手を攻撃し、酸化物10を結晶表面から取り除き、
同時に結晶表面に硫黄の単分子層5が形成される。酸化
物10は溶液中のアンモニウムイオン11により配位さ
れるので、再度結晶表面に付着することはない。さら
に、光化学反応により生成したポリ硫化アンモニウム溶
液により、環状構造を有するSx2-が供給される。Sx
2-は、活性なイオンなので、上記の硫黄の単分子層5と
容易に結合し、硫黄の単分子層5の上に硫黄の多分子層
6を形成する。こうして、硫黄の多分子層6が完全に結
晶表面を覆うことにより、結晶表面を不活性にし、不純
物や格子欠陥が低減され、表面準位密度が減少する。ま
た、この硫黄の多分子層6は紫外線防止膜としても働く
ので、へき開面を完全にパッシベーションすることがで
きる。
FIG. 2 is a diagram for explaining the reaction mechanism on the cleavage plane in the case of performing the end face treatment using the above ammonium sulfide solution by a simple model. Sulfur ions 8 in the ammonium sulfide solution exist in the state of S 2− . GaA
When impurities such as oxide 10 are present on the surface of lAs crystal 9, sulfur ions 8 attack the bonds of Ga, Al, and As in the oxide to remove oxide 10 from the crystal surface,
At the same time, a monolayer 5 of sulfur is formed on the crystal surface. Since the oxide 10 is coordinated by the ammonium ion 11 in the solution, it does not adhere to the crystal surface again. Further, Sx 2− having a cyclic structure is supplied by the polyammonium sulfide solution generated by the photochemical reaction. Sx
Since 2- is an active ion, it easily bonds with the above-mentioned sulfur monolayer 5 to form a sulfur multi-layer 6 on the sulfur monolayer 5. Thus, the polylayer 6 of sulfur completely covers the crystal surface, thereby inactivating the crystal surface, reducing impurities and lattice defects, and reducing the surface state density. Further, since the sulfur multi-molecular layer 6 also functions as an ultraviolet ray preventive film, the cleavage plane can be completely passivated.

【0014】へき開面上の原子と硫黄の単分子層5の間
の結合及び硫黄の単分子層5と多分子層6との間の結合
は、300℃以上に昇温すると切れるので、300℃以
上の温度雰囲気下でコーティングを行えば、上記の結合
は切れて硫黄は昇華した後絶縁膜7が形成されるので、
コーティング後のレーザ素子の反射率に影響を及ぼさな
い。
The bond between the atom on the cleavage plane and the sulfur monolayer 5 and the bond between the sulfur monolayer 5 and the polylayer 6 are broken when the temperature is raised to 300 ° C. or higher. If coating is performed under the above temperature atmosphere, the above-mentioned bond is broken and sulfur is sublimated to form the insulating film 7,
It does not affect the reflectance of the laser device after coating.

【0015】図3に、上記の製造方法を取り入れること
により作製された半導体レーザ装置の電流−光出力特性
を示す。レーザ装置端面の表面準位密度が減少されてい
るので、CODが抑制されていることがわかる。
FIG. 3 shows current-light output characteristics of a semiconductor laser device manufactured by incorporating the above manufacturing method. It can be seen that COD is suppressed because the surface state density of the end surface of the laser device is reduced.

【0016】なお、本実施例では、硫化アンモニウム溶
液を用いて硫黄の多層膜を形成したが、硫黄を含む複素
環式化合物を用いても同じ効果が得られる。
In this embodiment, the sulfur multi-layer film is formed by using the ammonium sulfide solution, but the same effect can be obtained by using the heterocyclic compound containing sulfur.

【0017】[0017]

【発明の効果】以上の実施例から明らかなように本発明
の半導体レーザ装置の製造方法は、硫黄の単分子層の上
に硫黄の多分子層を積層してから絶縁膜を形成するの
で、レーザ装置端面の表面準位密度を低減し、CODを
抑制した高出力の半導体レーザ装置を提供できる。
As is apparent from the above embodiments, in the method of manufacturing a semiconductor laser device of the present invention, the insulating film is formed after the sulfur multi-molecular layer is laminated on the sulfur mono-molecular layer. It is possible to provide a high-power semiconductor laser device in which the surface state density of the end face of the laser device is reduced and COD is suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)本発明の一実施例の半導体レーザ装置の
製造方法を示す処理工程図 (b)(a)の処理工程によるへき開面上の絶縁膜が形
成されるまでの様子を示す半導体レーザ装置の部分断面
FIG. 1A is a process step diagram showing a method for manufacturing a semiconductor laser device according to an embodiment of the present invention. FIG. 1B is a process step of forming an insulating film on a cleavage plane by the process step shown in FIG. Partial sectional view of a semiconductor laser device

【図2】図1の処理工程において生じる化学反応の反応
機構を示す半導体レーザ装置の断面図
2 is a cross-sectional view of a semiconductor laser device showing a reaction mechanism of a chemical reaction that occurs in the processing step of FIG.

【図3】図1の半導体レーザ装置の製造方法による半導
体レーザ装置の電流−光出力特性を示す図
3 is a diagram showing current-light output characteristics of a semiconductor laser device manufactured by the method for manufacturing the semiconductor laser device of FIG.

【図4】従来の半導体レーザ装置の製造方法による化学
反応の反応機構を示す図
FIG. 4 is a diagram showing a reaction mechanism of a chemical reaction by a conventional method for manufacturing a semiconductor laser device.

【符号の説明】[Explanation of symbols]

1 へき開したバー 2 硫化アンモニウム溶液 3 ポリ硫化アンモニウム溶液 4 へき開面 5 硫黄の単分子層 6 硫黄の多分子層 7 絶縁膜 8 硫黄イオン 9 GaAlAs結晶 10 酸化物 11 アンモニウムイオン 1 Cleaved Bar 2 Ammonium Sulfide Solution 3 Poly Ammonium Sulfide Solution 4 Cleavage Surface 5 Sulfur Monolayer 6 Sulfur Multilayer 7 Insulating Film 8 Sulfur Ion 9 GaAlAs Crystal 10 Oxide 11 Ammonium Ion

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 所定の処理を施し、電極の形成が終了し
たウエハをへき開し、硫化アンモニウム溶液を用いてへ
き開面上に硫黄の単分子層を形成し、その硫黄の単分子
層の上に光化学反応を利用して硫化アンモニウム溶液か
らポリ硫化アンモニウム溶液を生成させて、硫黄の多分
子層を形成した後、絶縁膜を形成する工程を少なくとも
有することを特徴とする半導体レーザ装置の製造方法。
1. A wafer subjected to a predetermined treatment and cleaved on which the formation of electrodes has been cleaved, an ammonium sulfide solution is used to form a monolayer of sulfur on the cleaved surface, and the monolayer of sulfur is formed on the monolayer of sulfur. A method for manufacturing a semiconductor laser device, which comprises at least a step of forming a polyammonium sulfide solution from an ammonium sulfide solution using a photochemical reaction to form a sulfur multi-molecular layer and then forming an insulating film.
JP6459392A 1992-03-23 1992-03-23 Manufacture of semiconductor laser device Pending JPH07176819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6459392A JPH07176819A (en) 1992-03-23 1992-03-23 Manufacture of semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6459392A JPH07176819A (en) 1992-03-23 1992-03-23 Manufacture of semiconductor laser device

Publications (1)

Publication Number Publication Date
JPH07176819A true JPH07176819A (en) 1995-07-14

Family

ID=13262714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6459392A Pending JPH07176819A (en) 1992-03-23 1992-03-23 Manufacture of semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH07176819A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1058359A1 (en) * 1999-05-31 2000-12-06 Sharp Kabushiki Kaisha Compound semiconductor surface stabilizing method, and semiconductor device
US6809344B2 (en) 2002-03-29 2004-10-26 Fujitsu Quantum Devices Limited Optical semiconductor device and method of fabricating the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1058359A1 (en) * 1999-05-31 2000-12-06 Sharp Kabushiki Kaisha Compound semiconductor surface stabilizing method, and semiconductor device
US6674095B1 (en) 1999-05-31 2004-01-06 Sharp Kabushiki Kaisha Compound semiconductor surface stabilizing method, semiconductor laser device fabricating method using the stabilizing method, and semiconductor device
US6809344B2 (en) 2002-03-29 2004-10-26 Fujitsu Quantum Devices Limited Optical semiconductor device and method of fabricating the same
US7122393B2 (en) 2002-03-29 2006-10-17 Fujitsu Quantum Devices Limited Optical semiconductor device and method of fabricating the same

Similar Documents

Publication Publication Date Title
US5799028A (en) Passivation and protection of a semiconductor surface
US5171706A (en) Method for the production of a semiconductor laser device
JP4275405B2 (en) Manufacturing method of semiconductor laser device
KR102228664B1 (en) Quantum well passivation structure for laser facets
US5260231A (en) Method for the production of a semiconductor laser
JP3425927B2 (en) Method for manufacturing semiconductor device
JPH07176819A (en) Manufacture of semiconductor laser device
JP3778769B2 (en) Method of stabilizing compound semiconductor surface, method of manufacturing semiconductor laser device using the same, and semiconductor device such as semiconductor laser device
JPH0964453A (en) Manufacture of semiconductor laser
JP3129973B2 (en) Semiconductor laser device
EP0381521B1 (en) A semiconductor laser device and a method for the production of the same
GB2309582A (en) Method and apparatus for manufacturing a semiconductor device with a nitride layer
JP3641403B2 (en) Semiconductor laser device and manufacturing method thereof
JP2650769B2 (en) Method of manufacturing semiconductor laser device
JP2004095650A (en) Semiconductor laser device and its manufacturing method
JP2783240B2 (en) Semiconductor laser device
JPH05315711A (en) Manufacture of semiconductor laser
JPH09129976A (en) Passivation of edge of semiconductor laser
JPH11135875A (en) Method of manufacturing semiconductor optical element
JPS62205267A (en) Production of aluminum oxide film
JPH07162083A (en) Semiconductor laser device and its manufacture
JPH03234076A (en) Forming method for window layer of semiconductor laser
JPH0712099B2 (en) Method for manufacturing semiconductor laser device
JPH02125686A (en) Manufacture of semiconductor device
JPH09270423A (en) Manufacture of semiconductor device