JPH05315711A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPH05315711A
JPH05315711A JP11868792A JP11868792A JPH05315711A JP H05315711 A JPH05315711 A JP H05315711A JP 11868792 A JP11868792 A JP 11868792A JP 11868792 A JP11868792 A JP 11868792A JP H05315711 A JPH05315711 A JP H05315711A
Authority
JP
Japan
Prior art keywords
semiconductor laser
face
end surface
sulfur
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11868792A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ota
啓之 大田
Seiji Onaka
清司 大仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11868792A priority Critical patent/JPH05315711A/en
Publication of JPH05315711A publication Critical patent/JPH05315711A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To provide a high power semiconductor laser with reduced deterioration in an end surface processing process of the semiconductor laser by drying the end surface of the laser in a vapor of multiplying sulfated ammonium after a process where the end surface is dipped in a solution of the multiplying sulfated ammonium, and further depositing a protective film on the end surface of the laser. CONSTITUTION:A resonance mirror is formed on an end surface of a semiconductor laser and is then dipped in a solution of (NH4)2S or (NH4)2SX. The end surface is successively dried in a vapor of (NH4)2S or (NH4)2SX at 20 deg.C or higher to deposit a protective film at the temperature of 30 deg.C during deposition or lower.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体レーザーの高出力
化のための端面の処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating an end face for increasing the output of a semiconductor laser.

【0002】[0002]

【従来の技術】半導体レーザーの端面処理として、(N
H4)2SX中に数分間、室温で浸しておく方法が報告さ
れている(例えば、イクステンテ゛ット゛・アウ゛ストラクト・オフ゛・サ゛・トエンティ
ーファースト・コンファレンス・オン・ソリット゛・ステート・テ゛ハ゛イシス゛・アント゛・マテリアルス゛
(Extended Abstract of the 21st Conference on Soli
d State Devices and Materials) 1989, p337 )。
2. Description of the Related Art As an end surface treatment of a semiconductor laser, (N
H4) A method of soaking in 2SX at room temperature for several minutes has been reported (for example, Extented, Abstract, Off, Sent, First, Conference, On, Solid, State, Durable, and Anti-Materials). (Extended Abstract of the 21st Conference on Soli
d State Devices and Materials) 1989, p337).

【0003】半導体レーザーの共振ミラーは通常結晶の
へき開によってpn接合面に垂直な面として作られるが
(この面を端面と呼ぶ。)、この端面が空気中にさらさ
れると面上に存在する原子、主にV族元素の原子の未結
合手に空気中の酸素が結合すると考えられる。活性層領
域においてこの結合が存在すると、禁制帯中に誘発され
る表面準位を介して非発光再結合電流が流れる。このた
め、端面近傍の活性層領域でのキャリア密度は、他の領
域に比べて少なくなっており、レーザ発振時においても
キャリアの反転分布が形成されない。従って、端面近傍
領域では電子正孔対の消滅による発光よりも光吸収が勝
っており、端面近傍の温度が上昇すると考えられる。こ
の温度上昇によって端面近傍の禁制帯幅が減少するた
め、さらに光吸収が増大する。
A resonator mirror of a semiconductor laser is usually formed by cleavage of a crystal as a surface perpendicular to a pn junction surface (this surface is called an end surface). When this end surface is exposed to the air, atoms existing on the surface are present. It is considered that oxygen in the air is mainly bonded to the dangling bonds of the atoms of the group V element. The presence of this bond in the active layer region causes a non-radiative recombination current to flow through the surface levels induced in the forbidden band. Therefore, the carrier density in the active layer region near the end face is smaller than that in other regions, and the population inversion distribution is not formed even during laser oscillation. Therefore, in the region near the end face, it is considered that light absorption is superior to light emission due to the disappearance of electron-hole pairs, and the temperature near the end face rises. Due to this temperature rise, the forbidden band width in the vicinity of the end face is reduced, and the light absorption is further increased.

【0004】光出力が増大して端面近傍における光密度
がある値に到達したとき、端面近傍の光吸収、禁制帯幅
の減少、温度上昇という正帰還によって、端面近傍の温
度が結晶の溶融温度まで到達したとき、端面は共振ミラ
ー面ではなくなるためにレーザ発振が不可能となる。以
上の過程による半導体レーザーの破壊現象をCOD(Ca
tastrophic Optical Damage:瞬時光学損傷)、そのと
きの光出力をCODレベルという。
When the light output increases and the light density near the end face reaches a certain value, the temperature near the end face is changed to the melting temperature of the crystal by positive feedback such as light absorption near the end face, decrease in the forbidden band width, and temperature rise. When it reaches to, the end face is not a resonance mirror surface, and laser oscillation becomes impossible. The COD (Ca
tastrophic Optical Damage: The optical output at that time is called the COD level.

【0005】そこで酸化された半導体の表面状態を改善
する処理方法の一つに硫黄処理がある。硫黄処理とは、
(NH4)2SX(多硫化アンモニウム)や(NH4)2S
(硫化アンモニウム)などの硫黄イオンを溶液中に含む
液体中に半導体の表面(端面を含む)を浸した後、直ち
に乾燥を行うか、超純水中あるいはメタノールなどの有
機溶媒中で洗浄した後に乾燥を行うという工程からな
る。この硫黄処理を半導体レーザの端面に施した場合、
端面表面をエッチングするとともに、端面表面のV族原
子に結合した酸素原子を除去し、酸素と結びついていた
V族原子の結合手は硫黄原子と再結合すると考えられ
る。これによって、端面が再び酸化されるのを防ぎ、表
面準位の増加を抑制するであろう。この結果、半導体レ
ーザのCODレベルが大幅に向上すると期待される。
Therefore, sulfur treatment is one of the treatment methods for improving the surface condition of an oxidized semiconductor. What is sulfur treatment?
(NH4) 2SX (ammonium polysulfide) and (NH4) 2S
After immersing the semiconductor surface (including the end face) in a liquid that contains sulfur ions such as (ammonium sulfide) in the solution, immediately dry it or wash it in ultrapure water or an organic solvent such as methanol. The process consists of drying. When this sulfur treatment is applied to the end face of the semiconductor laser,
It is considered that while the end face surface is etched, the oxygen atom bonded to the group V atom on the end face surface is removed, and the bond of the group V atom that has been bonded to oxygen is recombined with the sulfur atom. This will prevent the end faces from being oxidized again and will suppress the increase of surface states. As a result, the COD level of the semiconductor laser is expected to be significantly improved.

【0006】[0006]

【発明が解決しようとする課題】従来の硫黄処理では、
空気中や窒素などの不活性ガス雰囲気中あるいは減圧環
境下において乾燥を行っていたが、半導体レーザを多硫
化アンモニウムなどの溶液中から引き上げた後、乾燥が
終了するまでに雰囲気中の浮遊汚染物質を吸着してしま
う。そして、乾燥過程の間に端面表面に残る溶液は、汚
染物質を含んだまま蒸発するため、溶液中の汚染物質の
濃度が上昇して、高濃度の汚染領域が端面表面にできる
と考えられる。さらに、乾燥過程中に端面表面に残る硫
黄原子の濃度も次第に変化するため、端面表面のV族原
子と結合した硫黄原子の分布は不均一となり、再酸化を
防ぐのに十分な硫黄原子が存在しない領域ができてしま
うために、CODレベルの改善されない半導体レーザチ
ップができてしまうであろう。
In the conventional sulfur treatment,
Although air was dried in an atmosphere of inert gas such as nitrogen or under a reduced pressure environment, suspended contaminants in the atmosphere after the semiconductor laser was pulled up from a solution such as ammonium polysulfide and before the drying was completed. Will be absorbed. Then, it is considered that the solution remaining on the end surface during the drying process evaporates while containing the pollutant, so that the concentration of the pollutant in the solution rises and a high-concentration contaminated region is formed on the end surface. Furthermore, since the concentration of sulfur atoms remaining on the end surface during the drying process also gradually changes, the distribution of sulfur atoms bonded to the group V atoms on the end surface becomes uneven, and there are sufficient sulfur atoms to prevent reoxidation. Since a region that does not exist is formed, a semiconductor laser chip whose COD level is not improved will be formed.

【0007】また、半導体表面に残る余分な多硫化アン
モニウム溶液を超純水やメタノールなどの有機溶媒で洗
浄したのちに同じように乾燥を行った場合にも、浮遊汚
染物質によって端面が汚染されてしまうと考えられる。
Further, even when the excess ammonium polysulfide solution remaining on the semiconductor surface is washed with ultrapure water or an organic solvent such as methanol and then dried in the same manner, the end faces are contaminated by the floating contaminants. It is thought to end.

【0008】これらの場合、汚染物質のために半導体レ
ーザの歩留まりが硫黄処理をしない場合と比べて減少し
てしまう。
In these cases, the yield of the semiconductor laser is reduced due to the contaminants as compared with the case where the sulfur treatment is not performed.

【0009】そこで本発明は、CODレベル劣化の少な
い高出力半導体レーザーの製造方法を提供することを目
的とする。
Therefore, an object of the present invention is to provide a method of manufacturing a high-power semiconductor laser with less COD level deterioration.

【0010】[0010]

【課題を解決するための手段】本発明は、以上の問題点
に鑑みてなされたもので,共振ミラー面である端面が形
成された半導体レーザを多硫化アンモニウム溶液あるい
は硫化アンモニウム溶液に浸した後に、引き続き20℃
以上の多硫化アンモニウム溶液あるいは硫化アンモニウ
ム溶液からの蒸気中にて半導体レーザ表面の乾燥を行
う。この後、第1の方法では引き続き、温度300℃以
下で保護膜を端面に堆積する。第2の方法では、真空中
において温度150℃以上400℃以下で10分間以上
の熱処理を施し、引き続き温度300℃以下で保護膜を
端面に堆積するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and is obtained by immersing a semiconductor laser having an end face, which is a resonant mirror surface, in an ammonium polysulfide solution or an ammonium sulfide solution. , 20 ℃ continuously
The surface of the semiconductor laser is dried in the vapor from the above ammonium polysulfide solution or ammonium sulfide solution. After that, in the first method, subsequently, the protective film is deposited on the end face at a temperature of 300 ° C. or lower. In the second method, heat treatment is performed in vacuum at a temperature of 150 ° C. or higher and 400 ° C. or lower for 10 minutes or longer, and then a protective film is deposited on the end face at a temperature of 300 ° C. or lower.

【0011】[0011]

【作用】本発明は硫化アンモニウム溶液や多硫化アンモ
ニウム溶液中に浸された半導体レーザを乾燥する間、半
導体レーザの端面表面に汚染物質の付着するのを防ぐと
ともに、溶液からの蒸気に含まれる硫黄原子が端面表面
に供給されて、端面表面に結合する硫黄原子の分布が均
一になるよう促進されると考えられる。このため、CO
Dレベルが向上するなど特性の改善が見られる半導体レ
ーザチップの歩留まりは、硫黄処理を行わない半導体レ
ーザの歩留まりよりも減少しない。
The present invention prevents contaminants from adhering to the end surface of the semiconductor laser while drying the semiconductor laser dipped in the ammonium sulfide solution or the ammonium polysulfide solution, and at the same time, prevents sulfur contained in the vapor from the solution. It is considered that the atoms are supplied to the end surface to promote the uniform distribution of the sulfur atoms bonded to the end surface. Therefore, CO
The yield of the semiconductor laser chip, in which the characteristics are improved such as the D level is improved, is not lower than the yield of the semiconductor laser that is not subjected to the sulfur treatment.

【0012】また、温度150℃以上400℃以下の真
空中における熱処理によって堆積時に起こる表面からの
硫黄原子の遊離を抑制する。このとき硫黄原子は結合力
の弱いV族原子から結合力の強いIII族原子へ移る。
従ってCODレベルはさらに向上することが期待され
る。
Further, the release of sulfur atoms from the surface during deposition is suppressed by heat treatment in a vacuum at a temperature of 150 ° C. or higher and 400 ° C. or lower. At this time, the sulfur atom moves from the group V atom having a weak bonding force to the group III atom having a strong bonding force.
Therefore, it is expected that the COD level will be further improved.

【0013】また、堆積速度を低い値に制限することに
よって半導体レーザー表面の破壊や硫黄原子の遊離を抑
制することができるため、さらにCODレベルを向上す
ることが出来る。
Further, by limiting the deposition rate to a low value, destruction of the semiconductor laser surface and release of sulfur atoms can be suppressed, so that the COD level can be further improved.

【0014】[0014]

【実施例】以下、図面を用いた実施例により詳細に説明
する。
Embodiments will now be described in detail with reference to the drawings.

【0015】ここで用いた試料はストライプ幅4μm、
横モード制御型、AlGaInP系の可視光半導体レー
ザーである。図1と図2に本実施例において用いられる
治具と実施の方法を示す。
The sample used here has a stripe width of 4 μm,
It is a lateral mode control type AlGaInP-based visible light semiconductor laser. 1 and 2 show a jig used in this embodiment and a method for carrying it out.

【0016】半導体レーザ・ウエハからへき開によって
共振ミラー面となる端面を形成した後、密閉容器1に入
れられた温度20℃以上の多硫化アンモニウム溶液2中
にレーザ保持治具3に保持された半導体レーザ4の端面
表面を5分間浸した後、直ちにレーザ保持治具3で半導
体レーザ4を多硫化アンモニウム2から引き上げて、多
硫化アンモニウム蒸気5中で乾燥を行う。半導体レーザ
の端面表面に一様に硫黄が付着されたならば、密閉容器
1から半導体レーザ4を取り出し、直ちに温度300℃
以下で半導体レーザ4の片側の端面に保護膜を堆積した
後、続けてもう片側の端面にも保護膜を堆積する。
After the end face to be the resonance mirror surface is formed by cleavage from the semiconductor laser wafer, the semiconductor held by the laser holding jig 3 in the ammonium polysulfide solution 2 at a temperature of 20 ° C. or higher placed in the closed container 1. After soaking the end surface of the laser 4 for 5 minutes, the semiconductor laser 4 is immediately pulled up from the ammonium polysulfide 2 by the laser holding jig 3 and dried in the ammonium polysulfide vapor 5. If sulfur is evenly adhered to the end surface of the semiconductor laser, the semiconductor laser 4 is taken out of the closed container 1 and immediately heated to 300 ° C.
Hereinafter, after depositing a protective film on one end face of the semiconductor laser 4, the protective film is subsequently deposited on the other end face.

【0017】ここで、密閉容器1中から半導体レーザ4
を取り出してから、半導体レーザの端面に保護膜を堆積
するまでに経過した時間は、20℃、1気圧の下で24
時間以下でなければならない。なぜならば、端面表面に
付着している硫黄は昇華するうえ、こうして付着してい
る硫黄原子は端面表面のV族原子と結合しており、その
結合力は比較的弱い。従って、前述の硫黄処理の効果を
得るためには、端面表面に付着している硫黄原子が全て
遊離してしまう前に保護膜を形成する必要がある。
Here, from the inside of the closed container 1, the semiconductor laser 4
The time that elapses from the time when the protective film is deposited on the end face of the semiconductor laser to the time when it is taken out is 24
Must be less than or equal to time. This is because the sulfur attached to the end surface is sublimated, and the sulfur atoms attached in this way are bonded to the group V atoms on the end surface, and the bonding force is relatively weak. Therefore, in order to obtain the effect of the above-described sulfur treatment, it is necessary to form the protective film before all the sulfur atoms attached to the end surface are released.

【0018】図3に半導体レーザの注入電流と光出力と
の関係を示す。本発明の方法に従って作製された半導体
レーザの結果11と、前述の従来の硫黄処理の方法に従
って作製された半導体レーザの結果12、そして半導体
レーザの端面に処理を行わない場合13を比較する。
FIG. 3 shows the relationship between the injection current and the optical output of the semiconductor laser. The result 11 of the semiconductor laser manufactured according to the method of the present invention, the result 12 of the semiconductor laser manufactured according to the above-described conventional sulfur treatment method, and the case 13 in which the end surface of the semiconductor laser is not treated are compared.

【0019】本発明の方法によるとCODレベルは34
mWであり、従来の硫黄処理によって作製された半導体
レーザのCODレベルと同じである。これに対し、端面
処理を全く行わない場合のCODレベルは20mWであ
る。従って、本発明の方法にしたがって作製された半導
体レーザのCODレベルは従来の硫黄処理と同じにな
り、端面処理を行わないものに比べて70%向上してい
ることがわかる。ここで端面に堆積される保護膜の厚さ
は、保護膜を堆積する前に比べて端面の反射率が変わら
ないように最適化されている。
According to the method of the present invention, the COD level is 34
mW, which is the same as the COD level of the semiconductor laser manufactured by the conventional sulfur treatment. On the other hand, the COD level when no end face treatment is performed is 20 mW. Therefore, it can be seen that the COD level of the semiconductor laser manufactured according to the method of the present invention is the same as that in the conventional sulfur treatment, and is 70% higher than that in the case where the end face treatment is not performed. Here, the thickness of the protective film deposited on the end face is optimized so that the reflectance of the end face does not change as compared with that before the protective film is deposited.

【0020】次に、半導体レーザを温度70℃、光出力
10mWにて1000時間動作後、動作電流、動作電
圧、発振波長、スロープ効率の劣化率を比較する。
Next, after operating the semiconductor laser for 1000 hours at a temperature of 70 ° C. and an optical output of 10 mW, the deterioration rates of the operating current, operating voltage, oscillation wavelength and slope efficiency are compared.

【0021】本発明にしたがって作製された半導体レー
ザの劣化率は0.5%であった。これに対し、従来の硫
黄処理にしたがって作製された場合の劣化率は3%であ
り、また端面処理を全く行わない半導体レーザの劣化率
は1%であった。従来の硫黄処理によると多硫化アンモ
ニウム溶液から引き上げてから乾燥までの間に雰囲気中
の汚染物質が端面に付着し、乾燥する過程で部分的に汚
染の大きい部分ができたり、端面表面の硫黄原子の分布
が不均一になるため、端面処理を全く行わない場合に比
べて各半導体レーザ・チップ間の特性のばらつきが大き
い。
The deterioration rate of the semiconductor laser manufactured according to the present invention was 0.5%. On the other hand, the deterioration rate in the case of being manufactured according to the conventional sulfur treatment was 3%, and the deterioration rate of the semiconductor laser not subjected to the end face treatment was 1%. According to the conventional sulfur treatment, the pollutants in the atmosphere adhere to the end face between the time when it is pulled out of the ammonium polysulfide solution and the time when it is dried, and in the process of drying, there is a large amount of contaminated part, and the sulfur atoms on the end face surface are formed. Is uneven, the characteristics of the semiconductor laser chips differ greatly from each other as compared with the case where no end face treatment is performed.

【0022】これに対して、本発明の方法にしたがって
作製された場合、端面表面に乾燥中に汚染物質が付着す
ることなく、均一に硫黄原子が端面表面に分布するため
であると考えられる。
On the other hand, it is considered that the sulfur atom is uniformly distributed on the end face surface without contaminants adhering to the end face surface during the drying, when manufactured by the method of the present invention.

【0023】また、温度20℃の多硫化アンモニウム溶
液中に、へき開によって共振ミラー面となる端面が形成
された半導体レーザを5分間浸す。この後、溶液中から
半導体レーザを引き上げて多硫化アンモニウムの蒸気中
で乾燥を行う。そして直ちに温度150℃以上400℃
以下の真空中に半導体レーザを放置した後、引き続き片
側の端面に300℃以下で保護膜を堆積し、続いてもう
一方の端面に保護膜を堆積する。
Further, a semiconductor laser having an end face serving as a resonant mirror surface formed by cleavage is dipped in an ammonium polysulfide solution at a temperature of 20 ° C. for 5 minutes. Then, the semiconductor laser is pulled out from the solution and dried in the vapor of ammonium polysulfide. Immediately above the temperature of 150 ℃ to 400 ℃
After leaving the semiconductor laser in the following vacuum, a protective film is continuously deposited on one end face at 300 ° C. or lower, and then a protective film is deposited on the other end face.

【0024】図4において、注入電流と光出力の関係に
ついて、上記のように多硫化アンモニウム蒸気中で乾燥
を行った後、350℃の真空中で熱処理を行い両端面に
保護膜を堆積して作製された半導体レーザの結果21
と、熱処理を伴わない場合の結果22を比較する。35
0℃まで昇温した場合にはCODレベルは51mWまで上
昇した。これに対して熱処理を伴わない場合のCODレ
ベルは34mWであり、本発明の方法によると、未処理の
場合の1.5倍の光出力が得られる。
Referring to FIG. 4, regarding the relationship between the injection current and the light output, after drying in ammonium polysulfide vapor as described above, heat treatment was performed in vacuum at 350 ° C. to deposit a protective film on both end faces. Result of fabricated semiconductor laser 21
And the result 22 without heat treatment are compared. 35
When the temperature was raised to 0 ° C, the COD level rose to 51 mW. On the other hand, the COD level without heat treatment is 34 mW, and according to the method of the present invention, the light output is 1.5 times that of the untreated case.

【0025】これは、硫黄原子が結合力の弱いV族原子
から結合力の強いIII族原子に結合の相手が変わるた
め、保護膜の堆積時に硫黄原子が表面から遊離してしま
うのを抑制することが可能になったものと考えられる。
従って、硫黄処理の効果によって表面準位が低減したた
めCODレベルが上昇した。また、半導体レーザーの表
面に硫黄原子の膜ができることは、保護膜の堆積による
表面の破壊を抑制すると考えられる。
This is because the sulfur atom changes its binding partner from the group V atom having a weak binding force to the group III atom having a strong binding force, so that the sulfur atom is prevented from being released from the surface during the deposition of the protective film. It is thought that it has become possible.
Therefore, the COD level increased because the surface level was reduced by the effect of the sulfur treatment. Further, the formation of a film of sulfur atoms on the surface of the semiconductor laser is considered to suppress the surface destruction due to the deposition of the protective film.

【0026】なお、この熱処理を伴った(NH4)2SX
による端面処理の効果は、昇温温度が150℃以上、4
00℃以下であれば同様に得られることがわかった。昇
温温度が150℃以下になると、硫黄原子は結合力の弱
いV族原子から結合力の強いIII族原子に移ることがほ
とんど出来なくなるため、CODレベルが低下してしま
う。また、昇温温度が400℃以上になると電極に用い
られている金属の合金化が促進され接触抵抗が増大する
だけではなく、レーザーの構成原子である燐などのV族
原子が飛散してしまいレーザーに欠陥が生じるため、光
出力が著しく減少する。V族原子が砒素の場合、砒素は
燐に比べて結合力が強いため熱処理によって飛散するこ
とは少ない。従って、昇温温度の範囲はV族原子が燐で
ある場合に比べて広くなる。
(NH4) 2SX accompanied by this heat treatment
The effect of the end surface treatment is that the temperature rise is 150 ° C or higher, 4
It was found that the same result can be obtained if the temperature is 00 ° C. or lower. When the temperature rises to 150 ° C. or lower, the sulfur atom can hardly move from the group V atom having a weak binding force to the group III atom having a strong binding force, so that the COD level is lowered. Further, when the temperature rises to 400 ° C. or higher, alloying of the metal used in the electrode is promoted to increase contact resistance, and group V atoms such as phosphorus, which is a constituent atom of the laser, are scattered. Since the laser is defective, the light output is significantly reduced. When the group V atom is arsenic, arsenic has a stronger bonding force than phosphorus, and is less likely to be scattered by heat treatment. Therefore, the range of the temperature rising temperature is wider than that when the group V atom is phosphorus.

【0027】また、本実施例ではAlGaInP系半導
体レーザーを用いたが、III-V族の他の半導体レーザー
に対しても熱処理を伴った(NH4)2SXによる端面処
理によって同様な効果が得られることはもちろんであ
る。
Although the AlGaInP type semiconductor laser is used in this embodiment, the same effect can be obtained by the end face treatment with (NH4) 2SX accompanied by heat treatment on other semiconductor lasers of the III-V group. Of course.

【0028】また、堆積速度を速くした場合、半導体レ
ーザー表面に付着している硫黄原子を遊離させ、半導体
レーザー表面を破壊してしまうため、硫黄処理によるC
ODレベルの向上の効果がみられないか、あるいはCO
Dレベルの低下を招く。
Further, when the deposition rate is increased, sulfur atoms adhering to the surface of the semiconductor laser are liberated and the surface of the semiconductor laser is destroyed, so that C by sulfur treatment is applied.
There is no improvement in OD level, or CO
This causes a decrease in D level.

【0029】[0029]

【発明の効果】以上説明したように、本発明により半導
体レーザーの歩留まりを減少させることなく、効率よく
CODレベルの高い半導体レーザを作製することが可能
である。
As described above, according to the present invention, it is possible to efficiently manufacture a semiconductor laser having a high COD level without reducing the yield of the semiconductor laser.

【図面の簡単な説明】[Brief description of drawings]

【図1】半導体レーザを多硫化アンモニウム溶液中に浸
す一例を表す図
FIG. 1 is a diagram showing an example of immersing a semiconductor laser in an ammonium polysulfide solution.

【図2】半導体レーザを多硫化アンモニウム蒸気中で乾
燥させる一例を表す図
FIG. 2 is a diagram showing an example of drying a semiconductor laser in ammonium polysulfide vapor.

【図3】多硫化アンモニウム蒸気中で乾燥を行って作製
された半導体レーザの注入電流と光出力との関係を表す
特性図
FIG. 3 is a characteristic diagram showing a relationship between an injection current and an optical output of a semiconductor laser manufactured by drying in a vapor of ammonium polysulfide.

【図4】多硫化アンモニウム蒸気中で乾燥を行った後3
50℃の真空中で熱処理を行って作製された半導体レー
ザの注入電流と光出力との関係を表す特性図
[Fig. 4] After drying in vapor of ammonium polysulfide, 3
A characteristic diagram showing the relationship between the injection current and the optical output of a semiconductor laser manufactured by performing heat treatment in a vacuum at 50 ° C.

【符号の説明】[Explanation of symbols]

1 密閉容器 2 多硫化アンモニウム溶液 3 レーザ保持治具 4 半導体レーザ 11 多硫化アンモニウム蒸気中で乾燥を行った場合の
結果 12 窒素雰囲気中で乾燥を行った場合の結果 13 全く端面処理を行わない場合の結果 21 多硫化アンモニウム蒸気中で乾燥した後、真空中
で350℃で熱処理された結果 22 多硫化アンモニウム蒸気中で乾燥した後、熱処理
を行わずに作製された結果
1 Closed container 2 Ammonium polysulfide solution 3 Laser holding jig 4 Semiconductor laser 11 Results when drying in vapor of ammonium polysulfide 12 Results when drying in nitrogen atmosphere 13 When no end surface treatment is performed Results 21 Results of drying in ammonium polysulfide vapor and heat treatment at 350 ° C. in vacuum 22 Results of drying in ammonium polysulfide vapor and without heat treatment

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】pn接合面に垂直に作られた共振ミラーの
表面を(NH4)2S(硫化アンモニウム)あるいは(N
H4)2SX(多硫化アンモニウム)中に浸す工程と、多
硫化アンモニウム溶液の蒸気中で乾燥する工程と、前記
共振ミラー表面に保護膜を堆積する工程とを備えた半導
体レーザーの製造方法。
1. A (NH4) 2S (ammonium sulfide) or (N4) 2S (ammonium sulfide) or (N4)
H4) A method for manufacturing a semiconductor laser comprising a step of immersing in 2SX (ammonium polysulfide), a step of drying in a vapor of an ammonium polysulfide solution, and a step of depositing a protective film on the surface of the resonant mirror.
【請求項2】pn接合面に垂直に作られた共振ミラーの
表面に保護膜を堆積する工程の前に、真空中で150℃
以上400℃以下の温度で熱処理をする工程を含む請求
項1記載の半導体レーザーの製造方法。
2. Prior to the step of depositing a protective film on the surface of a resonant mirror made perpendicular to the pn junction surface, at 150 ° C. in vacuum.
The method for manufacturing a semiconductor laser according to claim 1, further comprising a step of performing heat treatment at a temperature of 400 ° C. or lower.
JP11868792A 1992-05-12 1992-05-12 Manufacture of semiconductor laser Pending JPH05315711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11868792A JPH05315711A (en) 1992-05-12 1992-05-12 Manufacture of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11868792A JPH05315711A (en) 1992-05-12 1992-05-12 Manufacture of semiconductor laser

Publications (1)

Publication Number Publication Date
JPH05315711A true JPH05315711A (en) 1993-11-26

Family

ID=14742705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11868792A Pending JPH05315711A (en) 1992-05-12 1992-05-12 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPH05315711A (en)

Similar Documents

Publication Publication Date Title
US5799028A (en) Passivation and protection of a semiconductor surface
US5171706A (en) Method for the production of a semiconductor laser device
Kamiyama et al. Improvement of catastrophic optical damage level of AlGaInP visible laser diodes by sulfur treatment
US6703254B2 (en) Method for manufacturing semiconductor laser device
US5260231A (en) Method for the production of a semiconductor laser
JPH05315711A (en) Manufacture of semiconductor laser
JP3778769B2 (en) Method of stabilizing compound semiconductor surface, method of manufacturing semiconductor laser device using the same, and semiconductor device such as semiconductor laser device
US5208468A (en) Semiconductor laser device with a sulfur-containing film provided between the facet and the protective film
JPS63178574A (en) Manufacture of semiconductor laser device
JPS62237722A (en) Method of keeping surface structure on semiconductor surface
JP3129973B2 (en) Semiconductor laser device
EP0381521B1 (en) A semiconductor laser device and a method for the production of the same
JP3641403B2 (en) Semiconductor laser device and manufacturing method thereof
JP3287311B2 (en) Method of manufacturing semiconductor laser device
JP2650769B2 (en) Method of manufacturing semiconductor laser device
KR100460375B1 (en) Semiconductor laser diode array and method for manufacturing the facet thereof
JPH07176819A (en) Manufacture of semiconductor laser device
JP2775117B2 (en) Method for forming protective film
GB2309582A (en) Method and apparatus for manufacturing a semiconductor device with a nitride layer
JP3194842B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPH05299769A (en) Manufacture of semiconductor laser
KR100991302B1 (en) Semiconductor laser diode and method of manufacturing the same
JPH05102601A (en) Semiconductor laser element
JPH04133382A (en) Processing method for end face of semiconductor laser
GB2299709A (en) Method for producing a semiconductor device