JPH07176494A - Substrate temperature controller - Google Patents

Substrate temperature controller

Info

Publication number
JPH07176494A
JPH07176494A JP5345012A JP34501293A JPH07176494A JP H07176494 A JPH07176494 A JP H07176494A JP 5345012 A JP5345012 A JP 5345012A JP 34501293 A JP34501293 A JP 34501293A JP H07176494 A JPH07176494 A JP H07176494A
Authority
JP
Japan
Prior art keywords
temperature
substrate
pyrometer
signal
temperature controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5345012A
Other languages
Japanese (ja)
Other versions
JP3216950B2 (en
Inventor
Hideo Sugiura
英雄 杉浦
Manabu Mitsuhara
学 満原
Ryuzo Iga
龍三 伊賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP34501293A priority Critical patent/JP3216950B2/en
Publication of JPH07176494A publication Critical patent/JPH07176494A/en
Application granted granted Critical
Publication of JP3216950B2 publication Critical patent/JP3216950B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a substrate temperature controller which is not affected by influence of heat radiation from a high-temperature evaporation source in the controller using a pyrometer. CONSTITUTION:The substrate temperature controller comprises a pyrometer 3 for measuring a temperature of a substrate 2, a temperature control unit 4 receiving a measured value from the pyrometer 3 to control the temperature of the substrate 2, a memory 13 for storing a temperature control signal from the unit 4, and a changeover switch 18 for operating according to an external signal, wherein a signal from the pyrometer 3 or a signal from the memory 13 is applied to the unit 4 by an operation of the switch 18.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は化合物半導体薄膜作製に
用いる薄膜作製装置のための基板温度制御装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate temperature control device for a thin film forming apparatus used for forming a compound semiconductor thin film.

【0002】[0002]

【従来の技術】化合物半導体はコンピュータ用の高速素
子ばかりでなく光通信技術に不可欠なレーザなどの光素
子にも幅広く用いられている。これらの半導体素子の作
製には有機金属熱分解法,分子線エピタキシ法(MB
E),有機金属分子線エピタキシ法(MOMBE)など
の薄膜形成法が用いられる。このうちMBE,MOMB
Eは真空容器内の加熱された基板に、分子線状の原料を
照射して薄膜を蒸着する方法である。薄膜の品質は基板
温度に敏感であるため、基板温度を精密に制御する必要
がある。それには基板ホルダの温度を熱伝対で検知する
か、あるいは基板表面の温度をパイロメータで検知し、
これらの信号を温度制御器を介して加熱電源にフィード
バックする方法が一般的である。前者は基板ではなく基
板をのせたホルダの温度を測定しているのに対し、後者
は基板そのものの温度を測定する。このため熱伝対の温
度は基板温度のモニタであって、パイロメータの温度と
は必ずしも一致しない。本質的にはパイロメータの方が
正確な制御が可能と期待されるが、あとで述べる理由に
より実用になっていない。
2. Description of the Related Art Compound semiconductors are widely used not only in high speed devices for computers but also in optical devices such as lasers which are indispensable for optical communication technology. For manufacturing these semiconductor elements, metal organic thermal decomposition method, molecular beam epitaxy method (MB
E), a thin film forming method such as metal organic molecular beam epitaxy (MOMBE). Of these, MBE and MOMB
E is a method of irradiating a heated substrate in a vacuum container with a molecular beam source material to deposit a thin film. Since the quality of the thin film is sensitive to the substrate temperature, it is necessary to precisely control the substrate temperature. To do this, either detect the temperature of the substrate holder with a thermocouple or the temperature of the substrate surface with a pyrometer,
It is common practice to feed these signals back to the heating power supply via a temperature controller. The former measures the temperature of the holder on which the substrate is placed, not the substrate, whereas the latter measures the temperature of the substrate itself. Therefore, the temperature of the thermocouple is a monitor of the substrate temperature and does not always match the temperature of the pyrometer. In essence, it is expected that a pyrometer will allow more accurate control, but it has not been put to practical use for the reasons described later.

【0003】熱伝対を用いた温度測定では、基板を回転
するため熱伝対はホルダに接触せず、ヒータとホルダの
中間におかれていることが多い。このため、ホルダの状
態、つまり、金属光沢の度合によって指示温度は大きく
変化する。InP,GaAsなどの基板表面には酸化膜
が形成されているが、その蒸発温度は本来一定であるに
もかかわらず、熱伝対の指示温度は各ホルダによって大
きく変化する。さらに、成長がはじまるとホルダにも膜
が蒸着されるためホルダからの熱輻射量が変わり、基板
温度を一定に保っても基板の表面温度は下がる。このよ
うに熱伝対を用いた場合の温度制御では、基板の加熱温
度をホルダごとに設定する必要があり、指示温度を一定
に保っても基板そのものの温度が一定に保たれるとは限
らないという欠点がある。
In temperature measurement using a thermocouple, since the substrate is rotated, the thermocouple is not in contact with the holder and is often placed between the heater and the holder. Therefore, the indicated temperature greatly changes depending on the state of the holder, that is, the degree of metallic luster. An oxide film is formed on the surface of a substrate of InP, GaAs, etc., and although the evaporation temperature is essentially constant, the indicated temperature of the thermocouple varies greatly depending on each holder. Further, when the growth starts, a film is vapor-deposited on the holder as well, the amount of heat radiation from the holder changes, and the surface temperature of the substrate decreases even if the substrate temperature is kept constant. In such temperature control using a thermocouple, it is necessary to set the heating temperature of the substrate for each holder, and even if the indicated temperature is kept constant, the temperature of the substrate itself is not always kept constant. It has the drawback of not having it.

【0004】化合物半導体はその名のとおり多数の元素
から構成される。MBE,MOMBE法では、真空容器
内に基板のほかに、各構成元素に対し1ないし2個の蒸
発源、ドーパント用の蒸発源が複数個備えられている。
各蒸発源の温度を精密に調整するとともに、各蒸発源の
直上に設けたシャッタを開閉することによって、所望の
構造で組成およびキャリア濃度の制御された膜を得てい
る。
As its name implies, compound semiconductors are composed of many elements. In the MBE / MOMBE method, in addition to the substrate, one or two evaporation sources for each constituent element and a plurality of evaporation sources for dopants are provided in the vacuum container.
By precisely adjusting the temperature of each evaporation source and opening and closing a shutter provided directly above each evaporation source, a film having a desired structure and controlled composition and carrier concentration is obtained.

【0005】パイロメータの原理は加熱物体の輻射熱が
ステファン−ボルツマンの法則にしたがうことに基礎を
おいている。基板温度は各半導体材料のエミッシビティ
(黒体の場合が1)を考慮して決定される。しかしなが
ら、MBE,MOMBEの膜成長中にシャッタを開けた
際に、加熱された蒸発源から多量の熱輻射が放出され、
その熱輻射が基板で反射してパイロメータに入射し、正
確な温度の測定が不可能になる。つまり、シャッタを開
けた際に基板からの輻射熱以外に、蒸発源からの熱輻射
が入射するとパイロメータの表示値は上昇する。この信
号が加熱電源にフィードバックされ、実際に基板温度が
上昇していないにもかかわらず、温度を下げることにな
る。特に1000℃以上の高温に加熱された蒸発源ほど
影響が大きい。この影響を小さくするために、パイロメ
ータの設置場所を工夫したり、パイロメータの測定光の
波長範囲を20nm程度に狭くする方法が提案されてい
るが、問題は解決されていない。
The principle of the pyrometer is based on the fact that the radiant heat of the heated object follows the Stefan-Boltzmann law. The substrate temperature is determined in consideration of the emissivity of each semiconductor material (1 in the case of a black body). However, when the shutter is opened during the film growth of MBE and MOMBE, a large amount of heat radiation is emitted from the heated evaporation source,
The heat radiation is reflected by the substrate and enters the pyrometer, making it impossible to measure the temperature accurately. That is, when thermal radiation from the evaporation source enters in addition to the radiation heat from the substrate when the shutter is opened, the display value of the pyrometer increases. This signal is fed back to the heating power supply, and the temperature is lowered even though the substrate temperature has not actually risen. In particular, an evaporation source heated to a high temperature of 1000 ° C. or higher has a great influence. In order to reduce this influence, a method of devising the installation location of the pyrometer and a method of narrowing the wavelength range of the measuring light of the pyrometer to about 20 nm have been proposed, but the problem has not been solved.

【0006】[0006]

【発明が解決しようとする課題】基板表面からの熱輻射
スペクトルを利用して基板温度を測定し、その基板温度
を制御する場合、近くの熱源からの熱輻射が当該基板表
面で反射され基板温度測定に悪影響を与える。これを防
ぐため、本発明の温度制御装置は、温度測定を乱す恐れ
のある熱源のスイッチが入っている間、基板表面の温度
を測定せずに、メモリ回路に記憶されているデータを基
に一定の温度制御信号を出力するところに特徴がある。
すなわち、本発明の目的は、パイロメータを用いる基板
温度制御装置において、高温の蒸発源からの熱輻射に影
響されない基板温度制御装置を提供することにある。
When the substrate temperature is measured by utilizing the thermal radiation spectrum from the substrate surface and the substrate temperature is controlled, the thermal radiation from the nearby heat source is reflected on the substrate surface and the substrate temperature is reduced. It adversely affects the measurement. In order to prevent this, the temperature control device of the present invention does not measure the temperature of the substrate surface while the heat source that may disturb the temperature measurement is switched on, and based on the data stored in the memory circuit. It is characterized in that it outputs a constant temperature control signal.
That is, an object of the present invention is to provide a substrate temperature control device using a pyrometer, which is not affected by heat radiation from a high temperature evaporation source.

【0007】[0007]

【課題を解決するための手段】本発明の基板温度制御装
置はパイロメータと、温度制御器と、メモリ回路と、切
り替えスイッチからなり、各構成要素は以下のような機
能を持つことを特徴とする。すなわち、パイロメータは
基板温度を測定し、その測定値を温度制御器に出力す
る。温度制御器は、パイロメータで測定した測定温度と
設定温度の差を検知した後、測定温度の方が高ければ加
熱電源に向けて出力を下げる信号を、低ければ出力を増
やす信号を時々刻々出力する通常の温度制御機能と、メ
モリ回路に記憶されている一定の出力信号を出力する機
能を備えており、切り替えスイッチからの信号により両
機能を切り替える。メモリ回路は、温度制御中における
温度制御器の出力の平均値を記憶し、切り替えスイッチ
からの信号により記憶している温度制御信号を温度制御
器に出力する。切り替えスイッチは、外部からの信号
(例えばシャッタの開閉信号)により温度制御器とメモ
リ回路の動作を切り替える。
The substrate temperature control device of the present invention comprises a pyrometer, a temperature controller, a memory circuit, and a changeover switch, and each component has the following functions. . That is, the pyrometer measures the substrate temperature and outputs the measured value to the temperature controller. After detecting the difference between the measured temperature measured by the pyrometer and the set temperature, the temperature controller outputs a signal to decrease the output toward the heating power source if the measured temperature is higher, and a signal to increase the output if it is lower. It has a normal temperature control function and a function to output a constant output signal stored in a memory circuit, and switches both functions by a signal from a changeover switch. The memory circuit stores the average value of the output of the temperature controller during temperature control, and outputs the stored temperature control signal to the temperature controller according to the signal from the changeover switch. The changeover switch switches the operation of the temperature controller and the memory circuit according to a signal from the outside (for example, a shutter opening / closing signal).

【0008】[0008]

【作用】シャッタが閉じた状態のときは温度制御器の機
能を出力を時々刻々変化させる機能とする。シャッタが
開くとその信号に同期して出力を一定(その値はメモリ
内の平均値)とする制御に切り替える。このため、パイ
ロメータの読み値は大きく変動しても、基板の温度は一
定のままに保たれる。
When the shutter is closed, the function of the temperature controller is to change the output momentarily. When the shutter is opened, the output is switched to a constant control (its value is the average value in the memory) in synchronization with the signal. Therefore, the temperature of the substrate is kept constant even if the reading of the pyrometer fluctuates greatly.

【0009】[0009]

【実施例】本発明の実施例について説明する。図1は本
発明の実施例を説明するための構成図である。1は真空
容器、2は基板、3はパイロメータ、4は温度制御器、
5は加熱電源、6はヒータ、7はフォスフィン用バル
ブ、8はリン用蒸発源、9はTMI用バルブ、10は蒸
発源、11はスズ用シャッタ、12はスズ用蒸発源、1
3はメモリ回路、14はアルシン用バルブ、15はTE
G用バルブ、16はベリリウム用シャッタ、17はベリ
リウム用蒸発源、18は切り替えスイッチ、19は熱伝
対である。
EXAMPLES Examples of the present invention will be described. FIG. 1 is a block diagram for explaining an embodiment of the present invention. 1 is a vacuum container, 2 is a substrate, 3 is a pyrometer, 4 is a temperature controller,
5 is a heating power source, 6 is a heater, 7 is a phosphine valve, 8 is a phosphorus evaporation source, 9 is a TMI valve, 10 is an evaporation source, 11 is a tin shutter, 12 is a tin evaporation source, 1
3 is a memory circuit, 14 is a valve for arsine, and 15 is TE.
A G valve, 16 a beryllium shutter, 17 a beryllium evaporation source, 18 a changeover switch, and 19 a thermocouple.

【0010】MOMBEを用いてInP基板上にInG
aAs/InGaAsP−MQWレーザを作製した例に
ついて説明する。リンの原料にはフォスフィン、ヒ素の
原料にはアルシン、インジウムの原料にはトリメチルイ
ンジウム(TMI)、ガリウムの原料にトリエチルガリ
ウム(TEG)、p型ドーパントにはベリリウム、n型
ドーパントにはスズを用いた。真空容器1内におかれた
InP基板2の温度をパイロメータ3を用いて測定す
る。パイロメータ3に接続した温度制御器4を505℃
にセットすると加熱電源5に信号が送られ、ヒータ6が
加熱される。基板2が約300℃に達したとき、フォス
フィン用バルブ7を開け、蒸発源8で熱分解して、基板
2にリンを照射した。505℃の状態が5分経過した時
点で、TMI用バルブ9を開けて、蒸発源10から出射
し、基板上にInPを蒸着した。1秒後にシャッタ11
を開けて蒸発源12からスズを出射して、InP膜にス
ズをドープした。スズ用蒸発源12の温度は770℃と
した。このときのシャッタの開閉にともなうパイロメー
タの測定値の変動は1度以下であった。
InG on InP substrate using MONBE
An example of producing an aAs / InGaAsP-MQW laser will be described. Phosphine is used as a raw material of phosphorus, arsine is used as a raw material of arsenic, trimethylindium (TMI) is used as a raw material of indium, triethylgallium (TEG) is used as a raw material of gallium, beryllium is used as a p-type dopant, and tin is used as an n-type dopant. I was there. The temperature of the InP substrate 2 placed in the vacuum container 1 is measured using the pyrometer 3. Set the temperature controller 4 connected to the pyrometer 3 to 505 ° C.
When set to, a signal is sent to the heating power source 5 and the heater 6 is heated. When the temperature of the substrate 2 reached about 300 ° C., the phosphine valve 7 was opened, and the substrate 2 was thermally decomposed and the substrate 2 was irradiated with phosphorus. When 5 minutes had passed at 505 ° C., the TMI valve 9 was opened, the light was emitted from the evaporation source 10, and InP was vapor-deposited on the substrate. Shutter 11 after 1 second
Then, tin was emitted from the evaporation source 12 to dope the InP film with tin. The temperature of the evaporation source 12 for tin was 770 ° C. At this time, the fluctuation of the measured value of the pyrometer due to the opening and closing of the shutter was less than 1 degree.

【0011】温度制御器4から送り出される出力信号は
0.1秒ごとに変化するが、その平均値はメモリ回路1
3にセーブされ1分ごとに順次書き換えられる構造とな
っている。30分経過後、スズ用シャッタ13を閉じ、
続いてアルシン用バルブ14とTEG用バルブ15を開
けてInGaAsP膜を6分間成長した(1000Åの
厚さに相当)。つぎにフォスフィン用バルブ7を閉じ、
InGaAsを80Å、続いて、フォスフィンのバルブ
を開けて、InGaAsPを100Å成長、これらの操
作を6回繰り返した。その後、InGaAsPを100
0Å成長した。アルシンとTEGのバルブを閉じてIn
P膜を30秒成長したのち、ベリリウムのシャッタ16
を開けた。17のベリリウム用蒸発源(1000℃に加
熱)からベリリウムが出射され、InP膜にドープされ
る。このとき、シャッタ16を開くと同時に切り替えス
イッチ18が働き、温度制御器4の機能が出力一定動作
にかわる。そのときの出力値はメモリ回路13に記憶さ
れていたシャッタを開く直前の平均値で指定される。パ
イロメータの読み値はシャッタを開くと同時に530℃
に増加したが、モニタを用いた熱伝対の読み値の変動は
1度以下であった。ベリリウムドープInPを1.5μ
m成長したのち、コンタクト層となるベリリウムドープ
InGaAsを2000Å蒸着した。
The output signal sent from the temperature controller 4 changes every 0.1 seconds, and the average value thereof is the memory circuit 1.
It is saved in 3 and is rewritten sequentially every 1 minute. After 30 minutes, close the tin shutter 13
Subsequently, the valve 14 for arsine and the valve 15 for TEG were opened to grow an InGaAsP film for 6 minutes (corresponding to a thickness of 1000 Å). Next, close the phosphine valve 7,
InGaAs was grown to 80 Å, then the phosphine valve was opened, and InGaAsP was grown to 100 Å, and these operations were repeated 6 times. After that, 100 InGaAsP
It grew to 0Å. Close the valves for arsine and TEG
After growing the P film for 30 seconds, the beryllium shutter 16
Opened. Beryllium is emitted from the beryllium evaporation source 17 (heated to 1000 ° C.) and doped into the InP film. At this time, the changeover switch 18 is activated at the same time when the shutter 16 is opened, and the function of the temperature controller 4 changes to the constant output operation. The output value at that time is designated by the average value stored in the memory circuit 13 immediately before the shutter is opened. The reading of the pyrometer is 530 ° C at the same time when the shutter is opened.
However, the fluctuation of the reading value of the thermocouple using the monitor was less than 1 degree. Beryllium-doped InP 1.5μ
After m growth, 2000 liters of beryllium-doped InGaAs to be a contact layer was vapor-deposited.

【0012】図2に上記の膜成長中のパイロメータの表
示温度の時間経過を、図3に19の熱伝対の指示値の時
間変化を示す。図2ではベリリウムのシャッタが開いた
とき表示温度が急激に上昇するが、図3の熱伝対の指示
値はほとんど変化しないことがわかる。図3の表示温度
は560℃であり、実際の温度とはかなり異なるがその
理由はすでに述べた。本方法で作製したレーザのしきい
値電流密度は1kA/cm2 であった。これに対し、本
方法を用いなかった場合の電流密度は2kA/cm2
上に増加した。
FIG. 2 shows the elapsed time of the display temperature of the pyrometer during the film growth, and FIG. 3 shows the time change of the indicated value of the thermocouple 19. It can be seen from FIG. 2 that the display temperature rises sharply when the beryllium shutter is opened, but the thermocouple indicated value in FIG. 3 hardly changes. The display temperature in FIG. 3 is 560 ° C., which is considerably different from the actual temperature, but the reason has already been described. The threshold current density of the laser manufactured by this method was 1 kA / cm 2 . On the other hand, the current density without this method increased to 2 kA / cm 2 or more.

【0013】[0013]

【発明の効果】本発明の実施例ではMOMBE法におい
て1つのドーパントのシャッタに同期させて温度制御器
の機能の切り替えを行ったが、複数のシャッタに同期さ
せることは容易である。MBE法ではアルミニウムをは
じめとして多くの蒸発源が1000℃以上に加熱される
ため、本方法が特に有効である。叙上のように本発明に
よれば、パイロメータを用いた基板温度制御装置におい
て、高温の蒸発源からの熱輻射に影響されない装置をう
ることができる。
According to the embodiment of the present invention, the function of the temperature controller is switched in synchronization with one shutter of the dopant in the MOMBE method, but it is easy to synchronize with a plurality of shutters. In the MBE method, since many evaporation sources including aluminum are heated to 1000 ° C. or higher, this method is particularly effective. As described above, according to the present invention, it is possible to obtain a substrate temperature control device using a pyrometer that is not affected by heat radiation from a high-temperature evaporation source.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を説明するための構成図であ
る。
FIG. 1 is a configuration diagram for explaining an embodiment of the present invention.

【図2】膜成長中のパイロメータの表示温度の時間経過
を示す。
FIG. 2 shows a time course of a display temperature of a pyrometer during film growth.

【図3】膜成長中の熱伝対の表示温度の時間経過を示
す。
FIG. 3 shows a time course of a display temperature of a thermocouple during film growth.

【符号の説明】[Explanation of symbols]

1 真空容器 2 基板 3 パイロメータ 4 温度制御器 5 加熱電源 6 ヒータ 7 フォスフィン用バルブ 8 リン用蒸発源 9 TMI用バルブ 10 蒸発源 11 スズ用シャッタ 12 スズ用蒸発源 13 メモリ回路 14 アルシン用バルブ 15 TEG用バルブ 16 ベリリウム用シャッタ 17 ベリリウム用蒸発源 18 切り替えスイッチ 19 熱伝対 1 Vacuum Container 2 Substrate 3 Pyrometer 4 Temperature Controller 5 Heating Power Supply 6 Heater 7 Phosphine Valve 8 Phosphorus Evaporation Source 9 TMI Valve 10 Evaporation Source 11 Tin Shutter 12 Tin Evaporation Source 13 Memory Circuit 14 Arsine Valve 15 TEG Valve 16 Beryllium shutter 17 Beryllium evaporation source 18 Changeover switch 19 Thermocouple

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板の温度を測定するパイロメータと、
前記パイロメータからの測定値が与えられ、かつ前記基
板の温度を制御する温度制御器と、前記温度制御器から
の温度制御信号を記憶するメモリと、外部信号によって
動作する切り替えスイッチとを備え、前記切り替えスイ
ッチの動作によって前記温度制御器に前記パイロメータ
からの信号あるいは前記メモリからの信号のいずれかを
与えることを特徴とする基板温度制御装置。
1. A pyrometer for measuring the temperature of a substrate,
A temperature controller that receives a measurement value from the pyrometer and controls the temperature of the substrate, a memory that stores a temperature control signal from the temperature controller, and a changeover switch that operates according to an external signal are provided, and A substrate temperature control device, wherein either the signal from the pyrometer or the signal from the memory is given to the temperature controller by the operation of the changeover switch.
JP34501293A 1993-12-20 1993-12-20 Substrate temperature controller Expired - Fee Related JP3216950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34501293A JP3216950B2 (en) 1993-12-20 1993-12-20 Substrate temperature controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34501293A JP3216950B2 (en) 1993-12-20 1993-12-20 Substrate temperature controller

Publications (2)

Publication Number Publication Date
JPH07176494A true JPH07176494A (en) 1995-07-14
JP3216950B2 JP3216950B2 (en) 2001-10-09

Family

ID=18373691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34501293A Expired - Fee Related JP3216950B2 (en) 1993-12-20 1993-12-20 Substrate temperature controller

Country Status (1)

Country Link
JP (1) JP3216950B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050467A (en) * 2009-10-01 2010-03-04 Asahi Kasei Electronics Co Ltd Method of manufacturing semiconductor thin-film element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050467A (en) * 2009-10-01 2010-03-04 Asahi Kasei Electronics Co Ltd Method of manufacturing semiconductor thin-film element

Also Published As

Publication number Publication date
JP3216950B2 (en) 2001-10-09

Similar Documents

Publication Publication Date Title
EP0545238B1 (en) Method of epitaxially growing a semiconductor crystal
US5556462A (en) Growth method by repeatedly measuring flux in MBE chamber
US4806321A (en) Use of infrared radiation and an ellipsoidal reflection mirror
US6521042B1 (en) Semiconductor growth method
US5879962A (en) III-V/II-VI Semiconductor interface fabrication method
EP0168071B1 (en) Semiconductor device manufacture using molecular beam epitaxy with source temperature control
Jackson et al. In situ monitoring and control for MBE growth of optoelectronic devices
JP3216950B2 (en) Substrate temperature controller
Huang et al. GaNyAs1-x-yBix Alloy Lattice Matched to GaAs with 1.3 µm Photoluminescence Emission
Preobrazhenskii et al. Measurements of parameters of the low-temperature molecular-beam epitaxy of GaAs
US5379719A (en) Method of deposition by molecular beam epitaxy
Lee et al. Accurate measurement of MBE substrate temperature
Katzer et al. Comparison of optical pyrometry and infrared transmission measurements on indium‐free mounted substrates during molecular‐beam epitaxial growth
JPS5948786B2 (en) Molecular beam crystal growth method
Boieriu et al. Low-temperature activation of As in Hg 1− x Cd x Te (211) grown on Si by molecular beam epitaxy
JP2006253414A (en) Method for forming semiconductor thin film on si substrate and its structure
Strite et al. Reliable substrate temperature measurements for high temperature AlGaAs molecular‐beam epitaxy growth
JPH0831410B2 (en) Method for manufacturing semiconductor device
Rothfritz et al. Chemical beam epitaxial growth of GaInAs (P)/InP heterostructures for laser applications
CN117587503A (en) Method for marking substrate temperature in molecular beam epitaxy
Michel et al. Molecular beam epitaxial growth of InSb pin photodetectors on GaAs and Si
JPH05178687A (en) Method for growing semiconductor crystal
Cohen et al. A Molecular Beam Epitaxy Growth Technique for Quality 1.5-2.5 Micrometers near Infrared Sensing Devices.
Hernando et al. Temperature control in InGaAs-based quantum well structures grown by molecular beam epitaxy on GaAs (1 0 0) and GaAs (1 1 1) B substrates
Talghader et al. Molecular beam epitaxy growth method for vertical‐cavity surface‐emitting laser resonators based on substrate thermal emission

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees