JPH05178687A - Method for growing semiconductor crystal - Google Patents

Method for growing semiconductor crystal

Info

Publication number
JPH05178687A
JPH05178687A JP35791491A JP35791491A JPH05178687A JP H05178687 A JPH05178687 A JP H05178687A JP 35791491 A JP35791491 A JP 35791491A JP 35791491 A JP35791491 A JP 35791491A JP H05178687 A JPH05178687 A JP H05178687A
Authority
JP
Japan
Prior art keywords
growth
rheed
dummy
measurement
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35791491A
Other languages
Japanese (ja)
Inventor
Mitsunori Sugimoto
満則 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP35791491A priority Critical patent/JPH05178687A/en
Publication of JPH05178687A publication Critical patent/JPH05178687A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To provide the method for growing a semiconductor single crystal having the excellent controllability of the absolute film thickness. CONSTITUTION:A dummy GaAs substrate 2 having about 2mm size is used, is set at the center of a substrate holder 1 and is subjected to RHEED vibration measurement. As a result, the RHEED vibration measurement can be made in the same place at all times and, therefore, the influence of the local nonuniformity of a Ga beam 5 can be eliminated. As a result, the measurement of the growth speed with 0.3 to 0.6% accuracy is possible. The controllability of the film thickness is greatly improved as compared with the conventional beam flux measurement if the desired crystal growth is executed after this RHEED vibration measurement.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体の結晶成長、特
に分子線エピタキシー(MBE)を用いた半導体の結晶
成長方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor crystal growth method, and more particularly to a semiconductor crystal growth method using molecular beam epitaxy (MBE).

【0002】[0002]

【従来の技術】MBEによる結晶成長方法は、超薄膜を
制御性良く結晶成長できるため、量子井戸レーザや高移
動度トランジスタなどに用いられる結晶の成長に広く用
いられている。
2. Description of the Related Art The crystal growth method by MBE is widely used for the growth of crystals used in quantum well lasers, high-mobility transistors, etc., because it enables crystal growth of ultrathin films with good controllability.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
MBE法によれば、一枚のウェハーの結晶成長では、精
密に膜厚を制御できるものの、RUN to RUNで
の絶対膜厚の制御性は、必ずしも良好ではなかった。例
えば、GaAsの化合物半導体の結晶成長の例では、絶
対膜厚は、2〜3%程度のばらつきが、どうしてもでて
しまう欠点があった。
However, according to the conventional MBE method, although the film thickness can be precisely controlled in the crystal growth of one wafer, the absolute film thickness controllability in RUN to RUN is It wasn't always good. For example, in the example of crystal growth of a compound semiconductor of GaAs, there is a drawback that the absolute film thickness has a variation of about 2 to 3%.

【0004】そのため、例えば、面発光レーザのための
反射膜として、半導体多層膜(通常DBR反射膜と呼
ぶ)をMBE法で結晶成長する場合に、絶対膜厚が2〜
3%程度変動すると、中心波長が20〜30nm程度変
動するため、レーザ発振波長の制御性が悪いなどの問題
点があった。したがって、このような面発光レーザを成
長する場合を考えると、波長の制御性として10nm以
下が必要となっている。そのための絶対膜厚の制御性と
しては、1%以下の精度が必要となっていた。
Therefore, for example, when a semiconductor multilayer film (usually referred to as a DBR reflective film) is crystal-grown by the MBE method as a reflective film for a surface emitting laser, the absolute film thickness is 2 to 2.
When it fluctuates by about 3%, the central wavelength fluctuates by about 20 to 30 nm, which causes a problem that the controllability of the laser oscillation wavelength is poor. Therefore, considering the case of growing such a surface emitting laser, the controllability of the wavelength needs to be 10 nm or less. For this reason, the controllability of the absolute film thickness requires an accuracy of 1% or less.

【0005】本発明の目的は、絶対膜厚制御性に優れた
半導体結晶成長方法を提供することにある。
An object of the present invention is to provide a semiconductor crystal growth method excellent in absolute film thickness controllability.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明による半導体結晶成長方法においては、成長
速度を測定する工程を有し、分子線エピタキシー装置を
用いて半導体結晶を成長する方法であって、成長速度を
測定する工程は、所望の結晶成長に先立って、基板ホル
ダーの中心に固定されたダミー半導体基板上で成長を行
い、このときの高速電子線回折強度変化を測定して所望
の結晶成長時の成長速度を補正する工程であり、前記ダ
ミー半導体基板の大きさは、3mm以内である。
In order to achieve the above object, a method for growing a semiconductor crystal according to the present invention comprises a step of measuring a growth rate and growing a semiconductor crystal using a molecular beam epitaxy apparatus. Therefore, in the process of measuring the growth rate, prior to the desired crystal growth, the growth is performed on the dummy semiconductor substrate fixed to the center of the substrate holder, and the change in the high-speed electron beam diffraction intensity at this time is measured to obtain the desired value. Is a step of correcting the growth rate during crystal growth, and the size of the dummy semiconductor substrate is within 3 mm.

【0007】[0007]

【作用】従来のMBEによる結晶成長においては、通
常、所望の成長の前に、材料となるビーム強度をイオン
ゲージによって測定して成長速度を補正している。しか
しながら、イオンゲージによる測定は、その日によっ
て、イオンゲージコントローラのアンプゲインや、イオ
ンゲージの測定場所のばらつきによって、測定結果に2
〜3%のばらつきがでる。このため成長速度を測定精度
が、成長膜厚のばらつきとなって、2〜3%の膜厚のば
らつきがでていた。
In the conventional crystal growth by MBE, the beam speed as a material is usually measured by an ion gauge before the desired growth to correct the growth rate. However, depending on the day, the measurement using the ion gauge may result in 2
~ 3% variation. For this reason, the accuracy of measuring the growth rate becomes a variation in the grown film thickness, resulting in a 2-3% variation in the film thickness.

【0008】本発明の結晶成長方法では、高速反射電子
線回折(RHEED)を用いる方法である。すなわち、
MBEによる結晶成長中に、RHEED測定を行うと、
電子線の回折強度が時間とともに周期的に変動し、それ
が1原子層の堆積速度に対応していることが知られてい
る。このような、RHEEDの回折強度変化をRHEE
D振動と呼んでいる。そこで、成長の初期段階におい
て、このRHEED振動を測定することによって、成長
速度を正確に知ることができる。
The crystal growth method of the present invention uses high-speed backscattered electron diffraction (RHEED). That is,
When RHEED measurement is performed during crystal growth by MBE,
It is known that the diffraction intensity of the electron beam fluctuates periodically with time, which corresponds to the deposition rate of one atomic layer. Such changes in the diffraction intensity of RHEED
It is called D vibration. Therefore, the growth rate can be accurately known by measuring the RHEED oscillation in the initial stage of growth.

【0009】しかしながら、通常のMBE成長では、ビ
ーム強度は、ウェハーの膜面内で±20%程度変化して
いるため、RHEED振動測定する場所のばらつきのた
めに、正確に成長速度を測定することは困難である。
However, in the ordinary MBE growth, the beam intensity changes by about ± 20% within the film surface of the wafer. Therefore, the growth rate must be accurately measured due to the variation in the location where the RHEED vibration measurement is performed. It is difficult.

【0010】本発明の方法では、RHEED振動測定を
いつも同じ場所で行うために、所望の成長に先立って、
ダミー基板上に成長し、その成長速度をRHEED振動
測定によって、測定する方法である。
In the method of the present invention, RHEED vibration measurements are always made at the same location, so that prior to desired growth,
It is a method of growing on a dummy substrate and measuring the growth rate by RHEED vibration measurement.

【0011】また、われわれの実験では、ダミー基板の
大きさが重要な要因となっていることが判った。すなわ
ち、小さいダミー基板の方が、場所のばらつきが小さく
なり、測定精度が上がることが判った。図2は、ダミー
基板の大きさと測定のばらつきの関係をわれわれの装置
において測定したものである。
Further, in our experiments, it was found that the size of the dummy substrate is an important factor. That is, it has been found that the smaller dummy substrate has a smaller variation in location and the measurement accuracy is improved. FIG. 2 shows the relationship between the size of the dummy substrate and the variation in measurement, which was measured by our device.

【0012】この実験では、MBE装置において、モリ
ブデン製の基板ホルダーの中央に固定したダミーGaA
s基板の上に、GaAsを結晶成長して、RHEED振
動測定を行った。同じ条件で3回繰り返してRHEED
振動測定を行った場合の測定値のばらつきを縦軸にとっ
たものである。
In this experiment, in the MBE apparatus, a dummy GaA fixed at the center of a molybdenum substrate holder was used.
GaAs was crystal-grown on the s substrate and RHEED vibration measurement was performed. RHEED repeated 3 times under the same conditions
The vertical axis shows the variation of the measured values when the vibration measurement is performed.

【0013】ダミー基板の大きさを3mmと2mmで比
較した結果、測定ばらつきの平均として、それぞれ0.
6%と0.2%のばらつきとなり、小さなダミー基板の
方が良好であった。従って上述したようなDBR反射膜
を成長する場合には、RUNto RUNのばらつきを
1%以下に抑える必要があるが、3mmの大きさ以下の
ダミーウェハーで十分であることが判る。また、2mm
の大きさでは、0.5%以下の精度で成長速度が測定で
きることが判る。
As a result of comparing the sizes of the dummy substrates between 3 mm and 2 mm, the average of the measurement variations is 0.
The variation was 6% and 0.2%, and the smaller dummy substrate was better. Therefore, when growing the DBR reflective film as described above, it is necessary to suppress the variation in RUN to RUN to 1% or less, but it is understood that a dummy wafer having a size of 3 mm or less is sufficient. Also, 2 mm
It is understood that the growth rate can be measured with an accuracy of 0.5% or less at the size of.

【0014】[0014]

【実施例】次に本発明の実施例について図面を用いて詳
細に説明する。図1は、本発明の一実施例のRHEED
振動測定の模式図である。図中、1は基板ホルダー,2
はGaAsダミー基板,3はGa,4はGaシャッタ
ー,5はGaビーム,6はAs,7はAsシャッター,
8はAsビームである。9はヒータ,10はRHEED
電子線,11は蛍光スクリーン,12はレンズ,13は
フォトダイオード,14はレコーダ,15はMBEチェ
ンバーである。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 shows the RHEED of one embodiment of the present invention.
It is a schematic diagram of vibration measurement. In the figure, 1 is a substrate holder, 2
Is a GaAs dummy substrate, 3 is Ga, 4 is a Ga shutter, 5 is a Ga beam, 6 is As, 7 is an As shutter,
8 is an As beam. 9 is a heater, 10 is RHEED
An electron beam, 11 is a fluorescent screen, 12 is a lens, 13 is a photodiode, 14 is a recorder, and 15 is an MBE chamber.

【0015】このダミー基板2の大きさは、2mmで、
基板ホルダー1の中央に固定してあるため、基板2を回
転しても、同じ場所でRHEED振動測定ができる。こ
のダミーGaAs基板2上でRHEED振動測定を行う
には、まずGaシャッター4とAsシャッター7とが閉
じた状態で、基板ホルダー1を成長の位置(図1の基板
ホルダー1の位置)にセットする。
The size of the dummy substrate 2 is 2 mm,
Since it is fixed to the center of the substrate holder 1, even if the substrate 2 is rotated, RHEED vibration measurement can be performed at the same place. In order to perform RHEED vibration measurement on this dummy GaAs substrate 2, first, the substrate holder 1 is set at the growth position (the position of the substrate holder 1 in FIG. 1) with the Ga shutter 4 and the As shutter 7 closed. ..

【0016】次に図1(a)に示すように、Asシャッ
ター7を開けて、Asビーム8をダミーGaAs基板2
に照射する。この状態で、ヒータ9に通電して、ダミー
GaAs基板2の温度を徐々に上げてゆく。
Next, as shown in FIG. 1A, the As shutter 7 is opened and the As beam 8 is directed to the dummy GaAs substrate 2.
To irradiate. In this state, the heater 9 is energized to gradually raise the temperature of the dummy GaAs substrate 2.

【0017】630℃付近まで上げると、ダミーGaA
s基板2の表面のGaAs酸化膜を蒸発させることがで
きる。これは、MBE成長で良く行われるAsサーマル
クリーニングと呼ばれる工程である。このようなAsの
サーマルクリーニングの後、図1(b)のようにGaシ
ャッター4をあけ、Gaビーム5をダミーGaAs基板
2に照射することによって、ダミーGaAs基板2上で
GaAsの成長を開始する。
When the temperature is raised to around 630 ° C., the dummy GaA
The GaAs oxide film on the surface of the s substrate 2 can be evaporated. This is a process called As thermal cleaning that is often performed in MBE growth. After such thermal cleaning of As, as shown in FIG. 1B, the Ga shutter 4 is opened, and the Ga beam 5 is irradiated to the dummy GaAs substrate 2 to start the growth of GaAs on the dummy GaAs substrate 2. ..

【0018】次に、RHEED振動測定を開始する。す
なわち、10〜20kV程度で加速されたRHEED電
子線10を照射してその回折強度の時間変化を測定す
る。回折強度は、RHEED電子線10の回折パターン
を観察する蛍光スクリーン11の光をフォトダイオード
13で電気信号に変換して、これをレコーダ14に記録
することができる。
Next, RHEED vibration measurement is started. That is, the RHEED electron beam 10 accelerated at about 10 to 20 kV is irradiated and the time change of the diffraction intensity is measured. The diffraction intensity can be recorded in the recorder 14 by converting the light of the fluorescent screen 11 for observing the diffraction pattern of the RHEED electron beam 10 into an electric signal by the photodiode 13.

【0019】通常のMBE装置では、Gaビーム5の強
度がGaシャッター4を開けた直後3分間程度は安定し
ないため、Gaシャッター4を開けて充分時間がたった
後のRHEED振動の周期を測定する必要がある。
In an ordinary MBE apparatus, the intensity of the Ga beam 5 is not stable for about 3 minutes immediately after opening the Ga shutter 4, so it is necessary to measure the cycle of RHEED vibration after the Ga shutter 4 is opened and a sufficient time has passed. There is.

【0020】以上説明したようなRHEED振動測定で
成長速度を正確に補正することができるため、ダミーG
aAs基板の成長直後に成長する所望の結晶成長におい
ては、絶対膜厚の制御性が格段に向上した。
Since the growth rate can be accurately corrected by the RHEED vibration measurement as described above, the dummy G
In the desired crystal growth immediately after the growth of the aAs substrate, the controllability of the absolute film thickness was significantly improved.

【0021】このダミーGaAs基板2を用いて成長し
た場合と、従来のビームフラックス測定を行った場合を
比較した結果を図3に示す。図3は、面発光レーザのD
BR反射膜をMBE成長した場合の中心波長の設定値
と、実測値とをプロットしたものである。従来のビーム
フラックス測定では、設定値と測定値の直線関係に対す
る測定値のばらつきが最大23nmであるのに対して、
RHEED振動測定は、最大6nmのばらつきで成長で
きていることが判る。
FIG. 3 shows the results of comparison between the case where the dummy GaAs substrate 2 is grown and the case where the conventional beam flux measurement is performed. FIG. 3 shows a surface emitting laser D
It is a plot of the set value of the center wavelength when the BR reflective film is MBE-grown and the measured value. In the conventional beam flux measurement, the variation of the measured value with respect to the linear relationship between the set value and the measured value is 23 nm at the maximum.
It can be seen that the RHEED vibration measurement can grow with a variation of maximum 6 nm.

【0022】このばらつき量は、成長速度の測定精度の
みならず、ビーム強度の時間的な安定度にも依存する。
そこで、さらに温度安定化のために、温度調整器の高精
度化を図った結果、最近では最大ズレ量として3nmの
値も得られている。この設定波長に対するばらつきは、
膜厚に換算すると、0.3%の絶対膜厚精度となる。
This variation amount depends not only on the measurement accuracy of the growth rate but also on the temporal stability of the beam intensity.
Therefore, as a result of further improving the accuracy of the temperature regulator for further stabilizing the temperature, a value of 3 nm has recently been obtained as the maximum deviation amount. The variation for this set wavelength is
When converted into a film thickness, the absolute film thickness accuracy is 0.3%.

【0023】このように、2〜3mm程度の小さなダミ
ー基板を用いることによって、RHEED振動測定によ
って、精度良く成長速度を測定できるため、絶対膜厚精
度が向上することが判った。この結果から、さらに小さ
なダミー基板を用いると、さらに測定精度が向上するこ
とが期待される。しかしながら、2mmよりも小さなダ
ミー基板(例えば1mm程度)では、十分な電子線回折
強度が得られないため、かえって測定精度が落ちること
が判った。
As described above, it was found that by using a small dummy substrate of about 2 to 3 mm, the growth rate can be accurately measured by the RHEED vibration measurement, so that the absolute film thickness accuracy is improved. From this result, it is expected that the measurement accuracy will be further improved by using a smaller dummy substrate. However, it has been found that a dummy substrate smaller than 2 mm (for example, about 1 mm) cannot obtain a sufficient electron beam diffraction intensity, so that the measurement accuracy is rather lowered.

【0024】現在のRHEED測定装置についている電
子線源のビーム系(〜0.1mm)では、2mm程度が
最適と考えられる。さらに、電子線の高輝度のものを用
いることによって、さらに小さなダミー基板でも十分な
RHEED振動測定ができて、さらに測定精度が向上す
るものと期待される。
In the beam system (~ 0.1 mm) of the electron beam source used in the current RHEED measuring device, it is considered that the optimum beam diameter is about 2 mm. Furthermore, it is expected that by using a high-intensity electron beam, sufficient RHEED vibration measurement can be performed even with a smaller dummy substrate, and the measurement accuracy will be further improved.

【0025】以上の実施例では、GaAsの成長速度の
測定を行ったがこれに限らず、AlGaAsやほかの半
導体,InP,SiなどのMBE成長にも、本発明は適
用可能である。
In the above embodiments, the growth rate of GaAs was measured, but the present invention is not limited to this, and the present invention is also applicable to MBE growth of AlGaAs, other semiconductors, InP, Si and the like.

【0026】[0026]

【発明の効果】以上のように本発明によれば、成長速度
を精度良く測定できるため、絶対膜厚の制御性がよい半
導体の結晶成長が実現できる。
As described above, according to the present invention, since the growth rate can be measured with high accuracy, crystal growth of a semiconductor with good controllability of absolute film thickness can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a),(b)は、本発明の一実施例の半導体
結晶成長方法の模式図である。
1A and 1B are schematic views of a semiconductor crystal growth method according to an embodiment of the present invention.

【図2】本発明を適用した場合のダミー基板の大きさと
成長速度の測定値のばらつきの関係を示した図である。
FIG. 2 is a diagram showing the relationship between the size of a dummy substrate and variations in measured growth rates when the present invention is applied.

【図3】DBR反射膜を成長した場合の設定波長と実測
波長との実験値を示す図である。
FIG. 3 is a diagram showing experimental values of set wavelengths and measured wavelengths when a DBR reflective film is grown.

【符号の説明】[Explanation of symbols]

1 基板ホルダー 2 ダミーGaAs基板 3 Ga 4 Gaシャッター 5 Gaビーム 6 As 7 Asシャッター 8 Asビーム 9 ヒータ 10 RHEED電子線 11 蛍光スクリーン 12 レンズ 13 フォトダイオード 14 レコーダ 15 MBEチェンバー 1 substrate holder 2 dummy GaAs substrate 3 Ga 4 Ga shutter 5 Ga beam 6 As 7 As shutter 8 As beam 9 heater 10 RHEED electron beam 11 fluorescent screen 12 lens 13 photodiode 14 recorder 15 MBE chamber

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 成長速度を測定する工程を有し、分子線
エピタキシー装置を用いて半導体結晶を成長する方法で
あって、 成長速度を測定する工程は、所望の結晶成長に先立っ
て、基板ホルダーの中心に固定されたダミー半導体基板
上で成長を行い、このときの高速電子線回折強度変化を
測定して所望の結晶成長時の成長速度を補正する工程で
あり、 前記ダミー半導体基板の大きさは、3mm以内であるこ
とを特徴とする半導体結晶成長方法。
1. A method of growing a semiconductor crystal by using a molecular beam epitaxy apparatus, which comprises a step of measuring a growth rate, wherein the step of measuring the growth rate comprises a step of forming a substrate holder prior to desired crystal growth. Is a step of performing growth on a dummy semiconductor substrate fixed at the center of the dummy semiconductor substrate, and measuring the change in high-speed electron beam diffraction intensity at this time to correct the growth rate at the time of desired crystal growth. Is within 3 mm, a semiconductor crystal growth method.
JP35791491A 1991-12-26 1991-12-26 Method for growing semiconductor crystal Pending JPH05178687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35791491A JPH05178687A (en) 1991-12-26 1991-12-26 Method for growing semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35791491A JPH05178687A (en) 1991-12-26 1991-12-26 Method for growing semiconductor crystal

Publications (1)

Publication Number Publication Date
JPH05178687A true JPH05178687A (en) 1993-07-20

Family

ID=18456592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35791491A Pending JPH05178687A (en) 1991-12-26 1991-12-26 Method for growing semiconductor crystal

Country Status (1)

Country Link
JP (1) JPH05178687A (en)

Similar Documents

Publication Publication Date Title
US4960720A (en) Method of growing compound semiconductor thin film using multichamber smoothing process
US5219632A (en) Compound semiconductor single crystals and the method for making the crystals, and semiconductor devices employing the crystals
US5879962A (en) III-V/II-VI Semiconductor interface fabrication method
JPH05178687A (en) Method for growing semiconductor crystal
JP3189056B2 (en) Semiconductor substrate pretreatment method and apparatus having its function
JP2674474B2 (en) Vapor growth method for strained quantum well semiconductor lasers
JP2006253414A (en) Method for forming semiconductor thin film on si substrate and its structure
US5213654A (en) Vapor-phase epitaxial growth method for semiconductor crystal layers
JPS61225817A (en) Apparatus for molecular beam epitaxial growth
JPH0689860A (en) Method of semiconductor crystal growth and molecular beam epitaxy device
JP3216950B2 (en) Substrate temperature controller
JPH06291065A (en) Method for growing semiconductor crystal
JP2705682B2 (en) Molecular beam crystal growth method
JPH05182910A (en) Molecular beam epitaxtially growing method
JP2705680B2 (en) Molecular beam crystal growth method
JP2759298B2 (en) Thin film formation method
JPS6116511A (en) Molecular beam crystal growing device
JP3939115B2 (en) Compound semiconductor crystal growth method
JPS60223185A (en) Manufacture of semiconductor laser
JPS6356199B2 (en)
JPS63224239A (en) Production of semiconductor single crystal on sapphire substrate
JPH10326944A (en) Manufacture of semiconductor device
JPH0770483B2 (en) Method for growing single crystal epitaxial layer having substantially smooth surface by molecular beam epitaxial growth method
JPH0374838A (en) Epitaxial growth method
JPH05339095A (en) Substrate holder for mercury cadmium tellurium thin film of molecular beam epitaxy device