JP3216950B2 - Substrate temperature controller - Google Patents

Substrate temperature controller

Info

Publication number
JP3216950B2
JP3216950B2 JP34501293A JP34501293A JP3216950B2 JP 3216950 B2 JP3216950 B2 JP 3216950B2 JP 34501293 A JP34501293 A JP 34501293A JP 34501293 A JP34501293 A JP 34501293A JP 3216950 B2 JP3216950 B2 JP 3216950B2
Authority
JP
Japan
Prior art keywords
temperature
substrate
shutter
pyrometer
temperature controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34501293A
Other languages
Japanese (ja)
Other versions
JPH07176494A (en
Inventor
英雄 杉浦
学 満原
龍三 伊賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP34501293A priority Critical patent/JP3216950B2/en
Publication of JPH07176494A publication Critical patent/JPH07176494A/en
Application granted granted Critical
Publication of JP3216950B2 publication Critical patent/JP3216950B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は化合物半導体薄膜作製に
用いる薄膜作製装置のための基板温度制御装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate temperature controller for a thin film forming apparatus used for forming a compound semiconductor thin film.

【0002】[0002]

【従来の技術】化合物半導体はコンピュータ用の高速素
子ばかりでなく光通信技術に不可欠なレーザなどの光素
子にも幅広く用いられている。これらの半導体素子の作
製には有機金属熱分解法,分子線エピタキシ法(MB
E),有機金属分子線エピタキシ法(MOMBE)など
の薄膜形成法が用いられる。このうちMBE,MOMB
Eは真空容器内の加熱された基板に、分子線状の原料を
照射して薄膜を蒸着する方法である。薄膜の品質は基板
温度に敏感であるため、基板温度を精密に制御する必要
がある。それには基板ホルダの温度を熱伝対で検知する
か、あるいは基板表面の温度をパイロメータで検知し、
これらの信号を温度制御器を介して加熱電源にフィード
バックする方法が一般的である。前者は基板ではなく基
板をのせたホルダの温度を測定しているのに対し、後者
は基板そのものの温度を測定する。このため熱伝対の温
度は基板温度のモニタであって、パイロメータの温度と
は必ずしも一致しない。本質的にはパイロメータの方が
正確な制御が可能と期待されるが、あとで述べる理由に
より実用になっていない。
2. Description of the Related Art Compound semiconductors are widely used not only for high-speed devices for computers but also for optical devices such as lasers which are indispensable for optical communication technology. These semiconductor devices are manufactured by metal organic pyrolysis, molecular beam epitaxy (MB).
E), a thin film forming method such as an organic metal molecular beam epitaxy method (MOMBE). MBE, MOMB
E is a method of irradiating a heated substrate in a vacuum vessel with a molecular beam-shaped raw material to deposit a thin film. Since the quality of the thin film is sensitive to the substrate temperature, it is necessary to precisely control the substrate temperature. To do this, the temperature of the substrate holder is detected with a thermocouple, or the temperature of the substrate surface is detected with a pyrometer,
A method of feeding back these signals to a heating power supply via a temperature controller is generally used. The former measures the temperature of the holder on which the substrate is mounted, not the substrate, whereas the latter measures the temperature of the substrate itself. Therefore, the temperature of the thermocouple is a monitor of the substrate temperature, and does not always match the temperature of the pyrometer. Essentially, pyrometers are expected to provide more accurate control, but are not practical for the reasons described below.

【0003】熱伝対を用いた温度測定では、基板を回転
するため熱伝対はホルダに接触せず、ヒータとホルダの
中間におかれていることが多い。このため、ホルダの状
態、つまり、金属光沢の度合によって指示温度は大きく
変化する。InP,GaAsなどの基板表面には酸化膜
が形成されているが、その蒸発温度は本来一定であるに
もかかわらず、熱伝対の指示温度は各ホルダによって大
きく変化する。さらに、成長がはじまるとホルダにも膜
が蒸着されるためホルダからの熱輻射量が変わり、基板
温度を一定に保っても基板の表面温度は下がる。このよ
うに熱伝対を用いた場合の温度制御では、基板の加熱温
度をホルダごとに設定する必要があり、指示温度を一定
に保っても基板そのものの温度が一定に保たれるとは限
らないという欠点がある。
[0003] In temperature measurement using a thermocouple, the thermocouple does not come into contact with the holder because the substrate is rotated, and is often placed between the heater and the holder. Therefore, the indicated temperature greatly changes depending on the state of the holder, that is, the degree of metallic luster. Although an oxide film is formed on the surface of a substrate such as InP or GaAs, the indicated temperature of the thermocouple greatly changes depending on each holder, although the evaporation temperature is essentially constant. Further, when the growth starts, a film is deposited on the holder, so that the amount of heat radiation from the holder changes, and the surface temperature of the substrate decreases even if the substrate temperature is kept constant. In temperature control using a thermocouple in this way, it is necessary to set the heating temperature of the substrate for each holder, and even if the indicated temperature is kept constant, the temperature of the substrate itself is not necessarily kept constant There is a disadvantage that there is no.

【0004】化合物半導体はその名のとおり多数の元素
から構成される。MBE,MOMBE法では、真空容器
内に基板のほかに、各構成元素に対し1ないし2個の蒸
発源、ドーパント用の蒸発源が複数個備えられている。
各蒸発源の温度を精密に調整するとともに、各蒸発源の
直上に設けたシャッタを開閉することによって、所望の
構造で組成およびキャリア濃度の制御された膜を得てい
る。
[0004] As the name implies, a compound semiconductor is composed of many elements. In the MBE and MOMBE methods, one or two evaporation sources for each constituent element and a plurality of evaporation sources for dopants are provided in a vacuum vessel in addition to a substrate.
By precisely adjusting the temperature of each evaporation source and opening and closing a shutter provided immediately above each evaporation source, a film having a desired structure and a controlled composition and carrier concentration is obtained.

【0005】パイロメータの原理は加熱物体の輻射熱が
ステファン−ボルツマンの法則にしたがうことに基礎を
おいている。基板温度は各半導体材料のエミッシビティ
(黒体の場合が1)を考慮して決定される。しかしなが
ら、MBE,MOMBEの膜成長中にシャッタを開けた
際に、加熱された蒸発源から多量の熱輻射が放出され、
その熱輻射が基板で反射してパイロメータに入射し、正
確な温度の測定が不可能になる。つまり、シャッタを開
けた際に基板からの輻射熱以外に、蒸発源からの熱輻射
が入射するとパイロメータの表示値は上昇する。この信
号が加熱電源にフィードバックされ、実際に基板温度が
上昇していないにもかかわらず、温度を下げることにな
る。特に1000℃以上の高温に加熱された蒸発源ほど
影響が大きい。この影響を小さくするために、パイロメ
ータの設置場所を工夫したり、パイロメータの測定光の
波長範囲を20nm程度に狭くする方法が提案されてい
るが、問題は解決されていない。
[0005] The principle of the pyrometer is based on the fact that the radiant heat of a heated object follows the Stefan-Boltzmann law. The substrate temperature is determined in consideration of the emissivity (1 for a black body) of each semiconductor material. However, when the shutter is opened during the film growth of MBE and MOMBE, a large amount of heat radiation is emitted from the heated evaporation source,
The heat radiation is reflected by the substrate and is incident on the pyrometer, making accurate temperature measurement impossible. That is, when thermal radiation from the evaporation source enters in addition to radiation heat from the substrate when the shutter is opened, the display value of the pyrometer increases. This signal is fed back to the heating power supply, and the temperature is decreased even though the substrate temperature is not actually increased. In particular, the influence of the evaporation source heated to a high temperature of 1000 ° C. or more is greater. In order to reduce the influence, a method of devising a place where the pyrometer is installed and a method of narrowing the wavelength range of the measurement light of the pyrometer to about 20 nm have been proposed, but the problem has not been solved.

【0006】[0006]

【発明が解決しようとする課題】基板表面からの熱輻射
スペクトルを利用して基板温度を測定し、その基板温度
を制御する場合、近くの熱源からの熱輻射が当該基板表
面で反射され基板温度測定に悪影響を与える。これを防
ぐため、本発明の温度制御装置は、温度測定を乱す恐れ
のある熱源のスイッチが入っている間、基板表面の温度
を測定せずに、メモリ回路に記憶されているデータを基
に一定の温度制御信号を出力するところに特徴がある。
すなわち、本発明の目的は、パイロメータを用いる基板
温度制御装置において、高温の蒸発源からの熱輻射に影
響されない基板温度制御装置を提供することにある。
When a substrate temperature is measured using a heat radiation spectrum from the substrate surface and the substrate temperature is controlled, heat radiation from a nearby heat source is reflected on the substrate surface and the substrate temperature is controlled. Affects measurement. In order to prevent this, the temperature control device of the present invention does not measure the temperature of the substrate surface while switching on the heat source that may disturb the temperature measurement, and based on the data stored in the memory circuit. The feature is that a constant temperature control signal is output.
That is, an object of the present invention is to provide a substrate temperature control device using a pyrometer that is not affected by heat radiation from a high-temperature evaporation source.

【0007】[0007]

【課題を解決するための手段】本発明の基板温度制御装
置は基板の温度を測定するパイロメータと、このパイロ
メータからの測定値が与えられ、かつ前記基板の温度を
制御する温度制御器と、この温度制御器からの温度制御
信号を記憶するメモリと、前記温度制御器に接続され、
かつ外部信号によって動作する切り替えスイッチと、
記基板上の形成膜へのドーパント用の蒸発源上に設けら
れた開閉自在なシャッタと、を備え、前記シャッタ閉に
おいては前記パイロメータからの測定値に基づき前記温
度制御器を介し前記基板の温度を制御し、前記シャッタ
開においては前記切り替えスイッチを切り替え、前記メ
モリに記憶された、シャッタ開直前の温度の平均値に対
応する温度制御信号により前記温度制御器を駆動しその
出力を一定にして前記基板の温度を制御する、構成と
し、上記目的を達成している。
A substrate temperature control device according to the present invention includes a pyrometer for measuring a temperature of a substrate, a temperature controller which receives a measurement value from the pyrometer and controls the temperature of the substrate, and A memory that stores a temperature control signal from the temperature controller, and is connected to the temperature controller;
And a changeover switch operated by an external signal, before
On the evaporation source for the dopant to the film formed on the substrate
A shutter for openably that, the provided, said shutter closing
The temperature based on the measurement value from the pyrometer.
Controlling the temperature of the substrate via a temperature controller;
To open, switch the changeover switch and
The average value of the temperature stored immediately before the shutter was
The temperature controller is driven by a corresponding temperature control signal and
The above object is achieved by controlling the temperature of the substrate while keeping the output constant .

【0008】[0008]

【作用】シャッタが閉じた状態のときは温度制御器の機
能は出力を時々刻々変化させる機能とする。シャッタが
開くとその信号に同期して出力を一定(その値はメモリ
内の平均値)とする制御に切り替える。このため、パイ
ロメータの読み値は大きく変動しても、基板の温度は一
定のままに保たれる。
When the shutter is closed, the function of the temperature controller is to change the output momentarily. When the shutter is opened, the control is switched to a control that keeps the output constant (the value is an average value in the memory) in synchronization with the signal. Thus, even if the reading of the pyrometer fluctuates significantly, the temperature of the substrate is kept constant.

【0009】[0009]

【実施例】本発明の実施例について説明する。図1は本
発明の実施例を説明するための構成図である。1は真空
容器、2は基板、3はパイロメータ、4は温度制御器、
5は加熱電源、6はヒータ、7はフォスフィン用バル
ブ、8はリン用蒸発源、9はTMI用バルブ、10は蒸
発源、11はスズ用シャッタ、12はスズ用蒸発源、1
3はメモリ回路、14はアルシン用バルブ、15はTE
G用バルブ、16はベリリウム用シャッタ、17はベリ
リウム用蒸発源、18は切り替えスイッチ、19は熱伝
対である。
An embodiment of the present invention will be described. FIG. 1 is a configuration diagram for explaining an embodiment of the present invention. 1 is a vacuum vessel, 2 is a substrate, 3 is a pyrometer, 4 is a temperature controller,
5 is a heating power supply, 6 is a heater, 7 is a phosphine valve, 8 is a phosphorus evaporation source, 9 is a TMI valve, 10 is an evaporation source, 11 is a tin shutter, 12 is a tin evaporation source, 1
3 is a memory circuit, 14 is a valve for arsine, 15 is TE
A G valve, 16 is a beryllium shutter, 17 is a beryllium evaporation source, 18 is a changeover switch, and 19 is a thermocouple.

【0010】MOMBEを用いてInP基板上にInG
aAs/InGaAsP−MQWレーザを作製した例に
ついて説明する。リンの原料にはフォスフィン、ヒ素の
原料にはアルシン、インジウムの原料にはトリメチルイ
ンジウム(TMI)、ガリウムの原料にトリエチルガリ
ウム(TEG)、p型ドーパントにはベリリウム、n型
ドーパントにはスズを用いた。真空容器1内におかれた
InP基板2の温度をパイロメータ3を用いて測定す
る。パイロメータ3に接続した温度制御器4を505℃
にセットすると加熱電源5に信号が送られ、ヒータ6が
加熱される。基板2が約300℃に達したとき、フォス
フィン用バルブ7を開け、蒸発源8で熱分解して、基板
2にリンを照射した。505℃の状態が5分経過した時
点で、TMI用バルブ9を開けて、蒸発源10から出射
し、基板上にInPを蒸着した。1秒後にシャッタ11
を開けて蒸発源12からスズを出射して、InP膜にス
ズをドープした。スズ用蒸発源12の温度は770℃と
した。このときのシャッタの開閉にともなうパイロメー
タの測定値の変動は1度以下であった。
[0010] InG is formed on an InP substrate by using MOMBE.
An example in which an aAs / InGaAsP-MQW laser is manufactured will be described. Phosphine for phosphorus, arsine for arsenic, trimethylindium (TMI) for indium, triethylgallium (TEG) for gallium, beryllium for p-type dopant, and tin for n-type dopant. Was. The temperature of the InP substrate 2 placed in the vacuum vessel 1 is measured using a pyrometer 3. Temperature controller 4 connected to pyrometer 3 at 505 ° C
, A signal is sent to the heating power supply 5 to heat the heater 6. When the temperature of the substrate 2 reached about 300 ° C., the phosphine valve 7 was opened, the substrate 2 was thermally decomposed by the evaporation source 8, and the substrate 2 was irradiated with phosphorus. When the state at 505 ° C. had elapsed for 5 minutes, the TMI valve 9 was opened, the light was emitted from the evaporation source 10, and InP was deposited on the substrate. Shutter 11 after 1 second
Then, tin was emitted from the evaporation source 12 to dope the InP film with tin. The temperature of the tin evaporation source 12 was 770 ° C. At this time, the fluctuation of the measured value of the pyrometer due to the opening and closing of the shutter was 1 degree or less.

【0011】温度制御器4から送り出される出力信号は
0.1秒ごとに変化するが、その平均値はメモリ回路1
3にセーブされ1分ごとに順次書き換えられる構造とな
っている。30分経過後、スズ用シャッタ11を閉じ、
続いてアルシン用バルブ14とTEG用バルブ15を開
けてInGaAsP膜を6分間成長した(1000Åの
厚さに相当)。つぎにフォスフィン用バルブ7を閉じ、
InGaAsを80Å、続いて、フォスフィンのバルブ
7を開けて、InGaAsPを100Å成長、これらの
操作を6回繰り返した。その後、InGaAsPを10
00Å成長した。アルシンとTEGのバルブ14、15
を閉じてInP膜を30秒成長したのち、ベリリウムの
シャッタ16を開けた。17のベリリウム用蒸発源(1
000℃に加熱)からベリリウムが出射され、InP膜
にドープされる。このとき、シャッタ16を開くと同時
に切り替えスイッチ18が働き、温度制御器4の機能が
出力一定動作にかわる。そのときの出力値はメモリ回路
13に記憶されていたシャッタを開く直前の平均値で指
定される。パイロメータの読み値はシャッタを開くと同
時に530℃に増加したが、モニタを用いた熱伝対19
の読み値の変動は1度以下であった。ベリリウムドープ
InPを1.5μm成長したのち、コンタクト層となる
ベリリウムドープInGaAsを2000Å蒸着した。
The output signal sent from the temperature controller 4 changes every 0.1 second.
3 and are rewritten sequentially every minute. After a lapse of 30 minutes, the tin shutter 11 is closed,
Subsequently, the valve 14 for arsine and the valve 15 for TEG were opened, and an InGaAsP film was grown for 6 minutes (corresponding to a thickness of 1000 °). Next, the phosphine valve 7 is closed,
InGaAs was grown at 80 °, the phosphine valve 7 was opened, and InGaAsP was grown at 100 °. These operations were repeated six times. After that, InGaAsP is
00 grew. Arsine and TEG valves 14, 15
Was closed and the InP film was grown for 30 seconds, and then the beryllium shutter 16 was opened. 17 beryllium evaporation sources (1
(Heated to 000 ° C.) to emit beryllium and dope the InP film. At this time, the changeover switch 18 operates at the same time when the shutter 16 is opened, and the function of the temperature controller 4 is changed to the constant output operation. The output value at that time is specified by the average value immediately before opening the shutter stored in the memory circuit 13. The pyrometer reading increased to 530 ° C. at the same time as opening the shutter.
The variation in the readings was less than 1 degree. After growing 1.5 μm of beryllium-doped InP, beryllium-doped InGaAs serving as a contact layer was deposited at 2000 °.

【0012】図2に上記の膜成長中のパイロメータの表
示温度の時間経過を、図3に19の熱伝対の指示値の時
間変化を示す。図2ではベリリウムのシャッタが開いた
とき表示温度が急激に上昇するが、図3の熱伝対の指示
値はほとんど変化しないことがわかる。図3の表示温度
は560℃であり、実際の温度とはかなり異なるがその
理由はすでに述べた。本方法で作製したレーザのしきい
値電流密度は1kA/cmであった。これに対し、本
方法を用いなかった場合の電流密度は2kA/cm
上に増加した。
FIG. 2 shows the elapsed time of the display temperature of the pyrometer during the film growth, and FIG. 3 shows the time change of the indicated value of the thermocouple in FIG. In FIG. 2, the display temperature rises sharply when the beryllium shutter is opened, but it can be seen that the indicated value of the thermocouple in FIG. 3 hardly changes. The display temperature in FIG. 3 is 560 ° C., which is considerably different from the actual temperature, but the reason has already been described. The threshold current density of the laser manufactured by this method was 1 kA / cm 2 . On the other hand, the current density when this method was not used increased to 2 kA / cm 2 or more.

【0013】本発明の実施例ではMOMBE法において
1つのドーパントのシャッタに同期させて温度制御器の
機能の切り替えを行ったが、複数のシャッタに同期させ
ることは容易である。MBE法ではアルミニウムをはじ
めとして多くの蒸発源が1000℃以上に加熱されるた
め、本方法が特に有効である。
In the embodiment of the present invention, in the MOMBE method, the function of the temperature controller is switched in synchronization with one dopant shutter, but it is easy to synchronize with a plurality of shutters. The MBE method is particularly effective because many evaporation sources including aluminum are heated to 1000 ° C. or higher.

【0014】[0014]

【発明の効果】以上のように本発明によれば、基板の温
度を測定するパイロメータと、このパイロメータからの
測定値が与えられ、かつ前記基板の温度を制御する温度
制御器と、この温度制御器からの温度制御信号を記憶す
るメモリと、前記温度制御器に接続され、かつ外部信号
によって動作する切り替えスイッチと、前記基板上の形
成膜へのドーパント用の蒸発源上に設けられた開閉自在
なシャッタと、を備え、前記シャッタ閉においては前記
パイロメータからの測定値に基づき前記温度制御器を介
し前記基板の温度を制御し、前記シャッタ開においては
前記切り替えスイッチを切り替え、前記メモリに記憶さ
れた、シャッタ開直前の温度の平均値に対応する温度制
御信号により前記温度制御器を駆動しその出力を一定に
して前記基板の温度を制御する構成としたから、パイロ
メータを用いた基板温度制御装置において、高温の蒸発
源からの熱輻射に影響されない装置を得ることができ
る。
As described above, according to the present invention, a pyrometer for measuring the temperature of a substrate, a temperature controller which receives a measured value from the pyrometer and controls the temperature of the substrate, a memory for storing a temperature control signal from vessel, which is connected to a temperature controller, and a changeover switch operated by an external signal, the shape on the substrate
Openable and closable on evaporation source for dopant for film formation
And a shutter when the shutter is closed.
Via the temperature controller based on the measurement value from the pyrometer
Controlling the temperature of the substrate, and
Toggle the changeover switch to store the data in the memory.
Temperature control corresponding to the average temperature immediately before the shutter opens.
Drives the temperature controller by a control signal and keeps its output constant
Since the configuration is such that the temperature of the substrate is controlled, a device that is not affected by heat radiation from a high-temperature evaporation source can be obtained in a substrate temperature control device using a pyrometer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を説明するための構成図であ
る。
FIG. 1 is a configuration diagram for explaining an embodiment of the present invention.

【図2】膜成長中のパイロメータの表示温度の時間経過
を示す。
FIG. 2 shows a time course of a display temperature of a pyrometer during film growth.

【図3】膜成長中の熱伝対の表示温度の時間経過を示
す。
FIG. 3 shows the time course of the indicated temperature of the thermocouple during film growth.

【符号の説明】[Explanation of symbols]

1 真空容器 2 基板 3 パイロメータ 4 温度制御器 5 加熱電源 6 ヒータ 7 フォスフィン用バルブ 8 リン用蒸発源 9 TMI用バルブ 10 蒸発源 11 スズ用シャッタ 12 スズ用蒸発源 13 メモリ回路 14 アルシン用バルブ 15 TEG用バルブ 16 ベリリウム用シャッタ 17 ベリリウム用蒸発源 18 切り替えスイッチ 19 熱伝対 REFERENCE SIGNS LIST 1 vacuum vessel 2 substrate 3 pyrometer 4 temperature controller 5 heating power supply 6 heater 7 phosphine valve 8 phosphorus evaporation source 9 TMI valve 10 evaporation source 11 tin shutter 12 tin evaporation source 13 memory circuit 14 arsine valve 15 TEG Valve 16 Beryllium shutter 17 Beryllium evaporation source 18 Selector switch 19 Thermocouple

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−291915(JP,A) 特開 平7−78772(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/205 H01L 21/203 H01L 21/324 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-3-291915 (JP, A) JP-A-7-78772 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21/205 H01L 21/203 H01L 21/324

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板の温度を測定するパイロメータと、こ
のパイロメータからの測定値が与えられ、かつ前記基板
の温度を制御する温度制御器と、この温度制御器からの
温度制御信号を記憶するメモリと、前記温度制御器に接
続され、かつ外部信号によって動作する切り替えスイッ
チと、前記基板上の形成膜へのドーパント用の蒸発源上
に設けられた開閉自在なシャッタと、を備え、前記シャ
ッタ閉においては前記パイロメータからの測定値に基づ
き前記温度制御器を介し前記基板の温度を制御し、前記
シャッタ開においては前記切り替えスイッチを切り替
え、前記メモリに記憶された、シャッタ開直前の温度の
平均値に対応する温度制御信号により前記温度制御器を
駆動しその出力を一定にして前記基板の温度を制御す
る、ことを特徴とする基板温度制御装置。
1. A pyrometer for measuring the temperature of a substrate, a temperature controller to which a measured value from the pyrometer is given and for controlling the temperature of the substrate, and a memory for storing a temperature control signal from the temperature controller. Connected to the temperature controller.
A changeover switch connected to the substrate and operated by an external signal , and an evaporation source for a dopant to a formed film on the substrate.
And an openable and closable shutter provided on the finisher
When the shutter is closed, based on the measured value from the pyrometer,
Controlling the temperature of the substrate via the temperature controller,
Toggle the switch when the shutter is open
Of the temperature immediately before the shutter is opened, which is stored in the memory.
The temperature controller is activated by a temperature control signal corresponding to the average value.
Driving and controlling the temperature of the substrate by keeping the output constant
That, the substrate temperature control apparatus characterized by.
JP34501293A 1993-12-20 1993-12-20 Substrate temperature controller Expired - Fee Related JP3216950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34501293A JP3216950B2 (en) 1993-12-20 1993-12-20 Substrate temperature controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34501293A JP3216950B2 (en) 1993-12-20 1993-12-20 Substrate temperature controller

Publications (2)

Publication Number Publication Date
JPH07176494A JPH07176494A (en) 1995-07-14
JP3216950B2 true JP3216950B2 (en) 2001-10-09

Family

ID=18373691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34501293A Expired - Fee Related JP3216950B2 (en) 1993-12-20 1993-12-20 Substrate temperature controller

Country Status (1)

Country Link
JP (1) JP3216950B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5048033B2 (en) * 2009-10-01 2012-10-17 旭化成エレクトロニクス株式会社 Manufacturing method of semiconductor thin film element

Also Published As

Publication number Publication date
JPH07176494A (en) 1995-07-14

Similar Documents

Publication Publication Date Title
EP0545238B1 (en) Method of epitaxially growing a semiconductor crystal
US4372989A (en) Process for producing coarse-grain crystalline/mono-crystalline metal and alloy films
Richards et al. Molecular beam epitaxy growth of GaAsBi using As2 and As4
JP4705079B2 (en) III-V / II-VI Semiconductor Interface Manufacturing Method
US4640720A (en) Method of manufacturing a semiconductor device
JP3216950B2 (en) Substrate temperature controller
Jackson et al. In situ monitoring and control for MBE growth of optoelectronic devices
Huang et al. GaNyAs1-x-yBix Alloy Lattice Matched to GaAs with 1.3 µm Photoluminescence Emission
Lee et al. Accurate measurement of MBE substrate temperature
Parry et al. Room-temperature Cd-diffused InAsSbP diodes for methane gas detection
US5379719A (en) Method of deposition by molecular beam epitaxy
Katzer et al. Comparison of optical pyrometry and infrared transmission measurements on indium‐free mounted substrates during molecular‐beam epitaxial growth
Boieriu et al. Low-temperature activation of As in Hg 1− x Cd x Te (211) grown on Si by molecular beam epitaxy
Savchuk et al. The effect of laser treatment on the morphology and structure of CdSb-Cd1-хMnхTe and CdSb-In4 (Se3) 1-х Тe3х thin film heterojunctions
Skauli et al. Improved substrate temperature control for growth of twin‐free cadmium mercury telluride by molecular beam epitaxy
Strite et al. Reliable substrate temperature measurements for high temperature AlGaAs molecular‐beam epitaxy growth
JP2759298B2 (en) Thin film formation method
JPH0831410B2 (en) Method for manufacturing semiconductor device
Hernando et al. Temperature control in InGaAs-based quantum well structures grown by molecular beam epitaxy on GaAs (1 0 0) and GaAs (1 1 1) B substrates
JPH06177038A (en) Formation method for mercury cadmium tellurium thin film based on molecular beam and substrate holder thereof
Rothfritz et al. Chemical beam epitaxial growth of GaInAs (P)/InP heterostructures for laser applications
JPS6214519B2 (en)
JPH01117016A (en) Hetero structure forming method
JPH05339095A (en) Substrate holder for mercury cadmium tellurium thin film of molecular beam epitaxy device
JPS6294923A (en) Method of impurity doping for semiconductor material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees