JPH07173551A - Method for refining high-purity titanium - Google Patents

Method for refining high-purity titanium

Info

Publication number
JPH07173551A
JPH07173551A JP34389693A JP34389693A JPH07173551A JP H07173551 A JPH07173551 A JP H07173551A JP 34389693 A JP34389693 A JP 34389693A JP 34389693 A JP34389693 A JP 34389693A JP H07173551 A JPH07173551 A JP H07173551A
Authority
JP
Japan
Prior art keywords
titanium
raw material
precipitation
final
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34389693A
Other languages
Japanese (ja)
Other versions
JP3535202B2 (en
Inventor
Yasutoku Yoshimura
泰徳 吉村
Takashi Onishi
隆 大西
Makoto Kuramoto
誠 蔵本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Sitix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Sitix Corp filed Critical Sumitomo Sitix Corp
Priority to JP34389693A priority Critical patent/JP3535202B2/en
Publication of JPH07173551A publication Critical patent/JPH07173551A/en
Application granted granted Critical
Publication of JP3535202B2 publication Critical patent/JP3535202B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To refine high-purity titanium through one reaction by using titanium tetraiodide as the gaseous reactant. CONSTITUTION:A raw material part 2a, an intermediate deposition part 2b and a final deposition part 2c are arranged in a reactor 1. The heating temp. is successively raised from the raw material part 2a toward the final deposition part 2c, and titanium tetraiodide is supplied into the reactor 1. The raw material part 2a is etched, and high-purity titanium is deposited on the surface of the intermediate deposition part 2b on the raw material part 2a side. The surface of the intermediate deposition part 2b on the final deposition part 2c side is etched, and high-purity titanium is further deposited on the final deposition part 2c.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、沃土法による高純度チ
タンの精製方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for purifying high-purity titanium by the iodine method.

【0002】[0002]

【従来の技術】近年のLSIの急速な集積度の増大によ
り、LSIに使用される電極材料は、より高純度で高融
点なものに移行しつつある。例えば、電極配線の細線化
による信号遅延を解決するために、従来多用されてきた
ポリシリコンに替わって、より低抵抗な高純度・高融点
金属材料が注目を集めている。LSIの電極に使用され
る高純度・高融点金属材料としては、モリブデン,タン
グステン,チタンあるいはそれらのシリサイドがあり、
なかでもチタンは優れた比強度、加工性および耐食性を
有することから、特に有望とされている。
2. Description of the Related Art Due to the recent rapid increase in the degree of integration of LSIs, the electrode materials used in LSIs are shifting to those having higher purity and higher melting points. For example, in order to solve the signal delay due to the thinning of the electrode wiring, a high-purity / high-melting-point metal material having a lower resistance has been attracting attention in place of polysilicon which has been widely used conventionally. Examples of high-purity and high-melting point metal materials used for LSI electrodes include molybdenum, tungsten, titanium, and their silicides.
Among them, titanium is particularly promising because it has excellent specific strength, workability and corrosion resistance.

【0003】チタンが半導体用電極材料として使用され
るためには、高純度であることが必須である。高純度チ
タンを得るための精製方法としては、沃土法が代表的で
ある。沃土法による従来の高純度チタン精製方法では、
反応器内で下記の反応が進行する。 粗Ti+2I2 →TiI4 (合成反応) TiI4 →高純度Ti+2I2 (熱分解反応)
In order for titanium to be used as an electrode material for semiconductors, high purity is essential. The iodine method is typical as a refining method for obtaining high-purity titanium. In the conventional high-purity titanium purification method by the iodine method,
The following reaction proceeds in the reactor. Crude Ti + 2I 2 → TiI 4 (synthesis reaction) TiI 4 → high-purity Ti + 2I 2 (pyrolysis reaction)

【0004】しかし、合成反応の温度が200〜400
℃と低いために、副生成物である高融点の低級沃化チタ
ン(TiI2 ,TiI3 )が固体状態で発生しやすい。
発生した低級沃化チタンは粗チタン表面を覆い、反応の
継続を阻げる。一方、熱分解反応の温度は1300〜1
500℃と非常に高く、チタン析出ガス源としての四沃
化チタンに含まれる金属不純物の熱分解を促し、析出チ
タンの高純度化を制限する原因になる。これらのため、
6ナインと呼ばれるような超高純度のチタンを長時間連
続して析出させることは不可能であった。以下、6ナイ
ンレベルの純度を6N級、同様に5ナインレベル、4ナ
インレベルの各純度を5N級、4N級とそれぞれ称す。
However, the temperature of the synthetic reaction is 200-400.
Since it is as low as ℃, by-products such as high melting point lower titanium iodide (TiI 2 , TiI 3 ) are easily generated in the solid state.
The generated lower titanium iodide covers the surface of the crude titanium and prevents the reaction from continuing. On the other hand, the temperature of the thermal decomposition reaction is 1300 to 1
The temperature is as high as 500 ° C., which promotes thermal decomposition of metal impurities contained in titanium tetraiodide as a titanium deposition gas source, and becomes a cause of limiting purification of precipitated titanium to high purity. Because of these
It was impossible to continuously deposit ultra-high purity titanium called 6-nine for a long time. Hereinafter, the 6-nine-level purity is referred to as 6N grade, and similarly, the 5-nine level and 4-nine level purities are referred to as 5N-grade and 4N-grade, respectively.

【0005】上記従来法の問題を解決するために、本出
願人は「反応器内に粗チタンを保持し、その粗チタンに
四沃化チタンを反応させて低級沃化チタンを合成すると
ともに、合成された低級沃化チタンを熱分解して高純度
チタンを析出させる高純度チタンの精製方法」を先に開
発し、特開平3−215633号公報により提案した。
この新しい方法では、反応器内で下記の反応が進行す
る。 粗Ti+TiI4 →2TiI2 (合成反応) 2TiI2 →高純度Ti+TiI4 (熱分解反応)
In order to solve the above-mentioned problems of the conventional method, the applicant of the present invention said, "Keeping crude titanium in a reactor and reacting titanium tetraiodide with the crude titanium to synthesize lower titanium iodide, A method for purifying high-purity titanium, in which the synthesized lower titanium iodide is thermally decomposed to precipitate high-purity titanium, was first developed and proposed in JP-A-3-215633.
In this new method, the following reactions proceed in the reactor. Crude Ti + TiI 4 → 2TiI 2 (synthesis reaction) 2TiI 2 → high-purity Ti + TiI 4 (pyrolysis reaction)

【0006】粗チタンと四沃化チタンとの反応による低
級沃化チタンの合成は、四沃化チタンの合成よりも高温
の700〜900℃程度で行われ、低級沃化チタンが直
接ガス状で得られる。また、低級沃化チタンの合成温度
では、未反応および熱分解に伴って生成した四沃化チタ
ンもガス状態に維持される。従って、反応器内の沃化ガ
ス(低級沃化チタンおよび四沃化チタン)が粗チタン表
面を覆うおそれがなく、その合成反応が安定して継続さ
れる。
The synthesis of lower titanium iodide by the reaction of crude titanium and titanium tetraiodide is carried out at about 700 to 900 ° C., which is higher than the synthesis of titanium tetraiodide, and the lower titanium iodide is directly in a gaseous state. can get. Further, at the synthesis temperature of lower titanium iodide, titanium tetraiodide produced by unreacted and thermal decomposition is also maintained in a gas state. Therefore, there is no fear that the iodide gas (lower titanium iodide and titanium tetraiodide) in the reactor will cover the surface of the crude titanium, and the synthesis reaction will continue stably.

【0007】合成された低級沃化チタンは、四沃化チタ
ンよりも熱分解が容易で、熱分解温度を1100〜13
00℃程度に下げることができる。従って、チタン析出
ガス源としての低級沃化チタンに含まれる金属不純物の
熱分解が阻止され、金属不純物が析出チタンに混入する
おそれがなくなる。
The synthesized lower titanium iodide is more easily thermally decomposed than titanium tetraiodide and has a thermal decomposition temperature of 1100 to 13
It can be lowered to around 00 ° C. Therefore, the thermal decomposition of the metal impurities contained in the lower titanium iodide as the titanium deposition gas source is prevented, and there is no risk that the metal impurities are mixed into the deposited titanium.

【0008】[0008]

【発明が解決しようとする課題】しかし、この新しい高
純度チタンの精製では、1回の反応プロセスで得られる
高純度化率は、1/10〜1/30程度であり、5N級
の高純度チタンを精製する場合でも、4N級という比較
的高純度の原料チタンが必要になる。また、3N級の粗
チタンから精製される高純度チタンは4N級にとどま
る。そのため、3N級の粗チタンから5N級の高純度チ
タンを精製する場合は、反応プロセスを2回繰り返す必
要があり、その繰り返しによる歩留りの低下および精製
コストの上昇が問題となる。
However, in the purification of this new high-purity titanium, the high-purification rate obtained in one reaction process is about 1/10 to 1/30, and the high-purity of 5N class is high. Even when purifying titanium, raw material titanium having a relatively high purity of 4N grade is required. High-purity titanium refined from 3N-grade crude titanium remains in 4N-grade. Therefore, in the case of purifying 5N-grade high-purity titanium from 3N-grade crude titanium, the reaction process needs to be repeated twice, which causes problems such as reduction in yield and increase in purification cost.

【0009】本発明の目的は、上記問題を解決し、低純
度の原料チタンから6N級以上の超高純度チタンを1回
の精製プロセスで効率よく製造することができる高純度
チタンの精製方法を提供することにある。
An object of the present invention is to solve the above-mentioned problems and to provide a method for purifying high-purity titanium capable of efficiently producing ultra-high-purity titanium of 6N grade or higher from low-purity raw material titanium in one purification process. To provide.

【0010】[0010]

【課題を解決するための手段】本発明の高純度チタンの
精製方法は、同一反応器内に、チタンからなる原料部
と、1または複数の中間析出部と、最終析出部とを順番
に配列し、その反応器内に四沃化チタンを供給すると共
に、原料部から最終析出部へ配列順に保持温度が高くな
るように各部を加熱保持することを特徴とする。
According to the method for purifying high-purity titanium of the present invention, a raw material part made of titanium, one or more intermediate depositing parts, and a final depositing part are sequentially arranged in the same reactor. Then, titanium tetraiodide is supplied into the reactor, and each part is heated and held so that the holding temperature becomes higher from the raw material part to the final precipitation part in the order of arrangement.

【0011】望ましくは、原料部と共に、中間析出部お
よび最終析出部の両方もしくは中間析出部のみをチタン
により構成し、その純度を原料部から最終析出部へ配列
順に高くする。
It is desirable that both the intermediate depositing portion and the final depositing portion, or only the intermediate depositing portion be made of titanium together with the raw material portion, and the purity thereof be increased from the raw material portion to the final depositing portion in the order of arrangement.

【0012】更に望ましくは、中間析出部より原料部側
の空間と、最終析出部側の空間と、複数の中間析出部を
使用する場合は更に中間析出部間の空間とをそれぞれ独
立させて、各空間の間でガスの往来が生じないようにす
る。
More preferably, the space on the raw material side of the intermediate depositing portion, the space on the final depositing portion side, and the space between the intermediate depositing portions when a plurality of intermediate depositing portions are used are made independent from each other, Prevent gas from flowing between spaces.

【0013】図1に本発明の特に望ましい実施態様を示
す。
FIG. 1 shows a particularly preferred embodiment of the present invention.

【0014】円筒状の反応器1内には、低級チタンから
なる円板状の原料部2aと、それより高純度のチタンか
らなる円板状の中間析出部2bと、更に高純度のチタン
からなる円板状の最終析出部2cとが、下から上へ間隔
をあけて順番に配置されている。
In the cylindrical reactor 1, a disk-shaped raw material part 2a made of lower titanium, a disk-shaped intermediate precipitation part 2b made of titanium of higher purity than that, and a titanium of higher purity are used. And the disc-shaped final deposition portion 2c are sequentially arranged from the bottom to the top with a space therebetween.

【0015】ここで、原料部2a、中間析出部2b、最
終析出部2cの各外径は、反応器1の内径より小さい。
従って、各部の外側には隙間が存在している。そして、
特に、中間析出部2bと反応器1との間の隙間を環状の
隔板4で塞ぐことにより、反応器1内は、中間析出部2
bを挟んで、原料部2a側の空間3aと、最終析出部2
c側の空間3cとに2分されている。
Here, the outer diameters of the raw material portion 2a, the intermediate precipitation portion 2b, and the final precipitation portion 2c are smaller than the inner diameter of the reactor 1.
Therefore, there is a gap outside each part. And
In particular, by closing the gap between the intermediate precipitation portion 2b and the reactor 1 with the annular partition plate 4, the inside of the reactor 1 is filled with the intermediate precipitation portion 2b.
The space 3a on the raw material part 2a side and the final deposition part 2 are sandwiched between
It is divided into a space 3c on the c side.

【0016】一方、反応器1の外側には、原料部2aを
加熱する環状の第1ヒータ5aと、中間析出部2bを加
熱する環状の第2ヒータ5bと、最終析出部2cを加熱
する環状の第3ヒータ5cとが、各部の外周側に位置し
て3段に配置されている。
On the other hand, outside the reactor 1, an annular first heater 5a for heating the raw material portion 2a, an annular second heater 5b for heating the intermediate depositing portion 2b, and an annular heater for heating the final depositing portion 2c. No. 3 heater 5c is located on the outer peripheral side of each part and is arranged in three stages.

【0017】精製を行うには、例えば原料部2aとして
3N級のチタンを選択し、中間析出部2bとして4N級
のチタンを選択する。また、最終析出部2cとしては5
N級のチタンを選択する。そして、空間3a,3cを、
トラップ6a,6cを介して真空ポンプ7a,7cによ
り所定の真空度まで減圧する。
To carry out purification, for example, 3N grade titanium is selected as the raw material part 2a and 4N grade titanium is selected as the intermediate precipitation part 2b. In addition, as the final deposition portion 2c, 5
Select N grade titanium. Then, the spaces 3a and 3c are
Through the traps 6a and 6c, the vacuum pumps 7a and 7c reduce the pressure to a predetermined degree of vacuum.

【0018】次いで、原料部2a、中間析出部2b、最
終析出部2cを、ヒータ5a,5b,5cにより独立に
加熱保持する。加熱保持温度は、原料部2a、中間析出
部2b、最終析出部2cの各温度をTa,Tb,Tcと
して、Ta<Tb<Tcとする。すなわち、原料部2a
から最終析出部2cへ配列順に高温とする。そして、前
記真空度および温度を保持しながら、空間3a,3c内
にTiI4 供給器8a,8cから流量計9a,9cを介
して四沃化チタンガスを徐々に供給する。
Next, the raw material portion 2a, the intermediate depositing portion 2b and the final depositing portion 2c are independently heated and held by the heaters 5a, 5b and 5c. The heating and holding temperature is Ta <Tb <Tc, where Ta, Tb, and Tc are the temperatures of the raw material part 2a, the intermediate precipitation part 2b, and the final precipitation part 2c. That is, the raw material part 2a
To the final precipitation portion 2c in the order of arrangement, the temperature is increased. Then, while maintaining the vacuum degree and temperature, titanium tetraiodide gas is gradually supplied into the spaces 3a and 3c from the TiI 4 supply units 8a and 8c through the flowmeters 9a and 9c.

【0019】これにより、空間3a、すなわち原料部2
a側の空間においては、対峙する2つの材料のうち、原
料部2aより中間析出部2bの方が高温のため、原料部
2aの近傍では、 低級Ti+TiI4 →2TiI2 の合成反応が起こり、これに対応して、中間析出部2b
の原料部2a側の表面近傍では、 2TiI2 →中級Ti+TiI4 の熱分解反応が起こる。
As a result, the space 3a, that is, the raw material part 2
In the space on the a side, of the two materials facing each other, the intermediate precipitation portion 2b is higher in temperature than the raw material portion 2a, so that a synthesis reaction of lower Ti + TiI 4 → 2TiI 2 occurs near the raw material portion 2a, Corresponding to the intermediate precipitation portion 2b
In the vicinity of the surface of the raw material portion 2a side, a thermal decomposition reaction of 2TiI 2 → intermediate Ti + TiI 4 occurs.

【0020】これらにより、原料部2aがエッチングさ
れ、中間析出部2bの原料部2a側の表面に高純度化さ
れたチタンが析出する。ここにおける高純度化率は、1
/10〜1/30である。従って、原料部2aが3N級
チタン、中間析出部2bが4N級チタンの場合、原料部
2aのエッチングに伴って、中間析出部2bは原料部2
a側に析出成長する。
As a result, the raw material portion 2a is etched, and highly purified titanium is deposited on the surface of the intermediate deposition portion 2b on the raw material portion 2a side. The high purification rate here is 1
/ 10 to 1/30. Therefore, when the raw material portion 2a is 3N-grade titanium and the intermediate precipitation portion 2b is 4N-grade titanium, the intermediate precipitation portion 2b is changed to the raw material portion 2 as the raw material portion 2a is etched.
Precipitation grows on the a side.

【0021】一方、空間3c、すなわち最終析出部2c
側の空間においては、対峙する2つの材料のうち、中間
析出部2bより最終析出部2cの方が高温のため、中間
析出部2bの最終析出部2c側の表面近傍では、 中級Ti+TiI4 →2TiI2 の合成反応が起こる。これに対応して、最終析出部2b
の近傍では、 2TiI2 →高級Ti+TiI4 の熱分解反応が起こる。
On the other hand, the space 3c, that is, the final deposition portion 2c
In the space on the side, of the opposed two materials, for towards the final deposit part 2c from the intermediate deposit part 2b is hot, near the surface of the final deposit part 2c of the intermediate deposit part 2b is intermediate Ti + TiI 4 → 2TiI Two synthetic reactions occur. Corresponding to this, the final deposition portion 2b
In the vicinity of, a thermal decomposition reaction of 2TiI 2 → higher Ti + TiI 4 occurs.

【0022】これらにより、中間析出部2bの最終析出
部2c側の表面がエッチングされ、最終析出部2cには
高純度化されたチタンが析出する。ここにおける高純度
化率も、1/10〜1/30である。従って、中間析出
部2bが4N級チタン、最終析出部2cが5N級チタン
の場合は、中間析出部2bの最終析出部2c側の表面の
エッチングに伴って、最終析出部2cが析出成長する。
As a result, the surface of the intermediate deposit 2b on the final deposit 2c side is etched, and highly purified titanium is deposited on the final deposit 2c. The high purification rate here is also 1/10 to 1/30. Therefore, when the intermediate precipitation portion 2b is 4N-class titanium and the final precipitation portion 2c is 5N-class titanium, the final precipitation portion 2c is deposited and grown as the surface of the intermediate precipitation portion 2b on the final precipitation portion 2c side is etched.

【0023】すなわち、これら沃化物とチタンの反応
は、沃化チタンあるいは沃素分圧、組成、温度により、
エッチング反応と析出反応のうち、いずれかを起こさせ
ることができる。前記のように2枚の板を対峙させた場
合、各々のチタンが析出、エッチングを起こす要因は、
絶対的な温度よりも温度差が重要な因子となる。つま
り、高い温度域にあるTiが析出反応、低い温度域にあ
るTiが沃化反応を起こすのである。よって2a,2b
間では2aは沃化反応で2bは析出反応で、また2b,
2c間では2bは沃化反応で2cは析出反応で、それぞ
れ反応が進行することになる。
That is, the reaction between these iodides and titanium depends on titanium iodide or iodine partial pressure, composition and temperature.
Either an etching reaction or a precipitation reaction can occur. When the two plates are faced to each other as described above, the factors that cause the precipitation and etching of each titanium are:
The temperature difference is a more important factor than the absolute temperature. That is, Ti in the high temperature region causes a precipitation reaction and Ti in the low temperature region causes an iodide reaction. Therefore, 2a, 2b
In between, 2a is an iodination reaction, 2b is a precipitation reaction, and 2b,
Between 2c, 2b is an iodide reaction and 2c is a precipitation reaction, and the respective reactions proceed.

【0024】かくして、原料部2aはエッチングによる
消費を続ける。中間析出部2bは原料部2a側で成長が
続くが、最終析出部2c側では消費が続き、操業条件の
設定により体積を見掛け上一定に維持できる。最終析出
部2cは析出成長のみを続ける。この中間析出部2bを
媒介とした2段反応により、原料部2aが(1/10〜
1/30)2 に高純度化されて最終析出部2cに析出さ
れる。
Thus, the raw material part 2a continues to be consumed by etching. The intermediate precipitation portion 2b continues to grow on the raw material portion 2a side, but continues to be consumed on the final precipitation portion 2c side, and the volume can be maintained apparently constant by setting the operating conditions. The final precipitation portion 2c continues only precipitation growth. Due to the two-step reaction mediated by this intermediate precipitation part 2b, the raw material part 2a becomes (1/10
It is highly purified to 1/30) 2 and deposited in the final deposition portion 2c.

【0025】従って、原料部2aとして3N級のチタン
を使用すれば、そのチタンを1回の反応プロセスで5N
級のチタンに精製できる。原料部2aのグレードを上げ
たり、中間析出部2bの数を増やして、3段以上の反応
を行えば、更に高純度のチタンを得ることができる。
Therefore, if 3N grade titanium is used as the raw material part 2a, the titanium can be converted to 5N in one reaction process.
It can be refined to grade titanium. Higher purity titanium can be obtained by increasing the grade of the raw material part 2a or increasing the number of intermediate precipitation parts 2b to carry out the reaction in three or more stages.

【0026】また、空間3a,3c内の各反応では、前
述した通り合成温度を高くでき、熱分解温度を低くでき
るので、長時間の反応継続および不純物の混入抑制が可
能となる。
In each reaction in the spaces 3a and 3c, the synthesis temperature can be raised and the thermal decomposition temperature can be lowered as described above, so that the reaction can be continued for a long time and impurities can be suppressed.

【0027】各反応に使用されたガスは、真空ポンプ7
a,7cにより空間3a,3c外へ徐々に排出され、ト
ラップ6a,6cに捕集される。
The gas used in each reaction is a vacuum pump 7.
It is gradually discharged to the outside of the spaces 3a and 3c by a and 7c, and is collected in the traps 6a and 6c.

【0028】本実施態様では、エッチングを受ける中間
析出部2bにはチタンが必要であり、当該中間析出部2
bに析出されるチタンとほぼ同じ純度のチタンが望まし
いが、エッチングを受けない最終析出部2cにはチタン
を使用する必要がなく、析出チタンを汚染する危険のな
いTa,Mo,W等の高融点材料を用いることも可能で
ある。
In the present embodiment, titanium is required for the intermediate precipitation portion 2b to be etched, and the intermediate precipitation portion 2 is required.
Titanium of approximately the same purity as the titanium deposited in b is desirable, but it is not necessary to use titanium in the final deposited portion 2c that is not subjected to etching, and there is no danger of contaminating the deposited titanium, such as Ta, Mo, W, etc. It is also possible to use melting point materials.

【0029】また、各部の加熱は、外部加熱によらずに
通電による直接加熱を採用してもよく、更に両方を併用
してもよい。
As for the heating of each part, direct heating by energization may be adopted instead of external heating, or both may be used in combination.

【0030】[0030]

【作用】このように、本発明の高純度チタンの精製方法
では、中間析出部を媒介とした原料部から最終析出部へ
の多段析出反応により、1回の反応プロセスで高純度の
チタン精製が可能となる。また、原料チタンの純度を下
げることが可能となる。
As described above, in the method for purifying high-purity titanium of the present invention, high-purity titanium can be purified in one reaction process by the multistage precipitation reaction from the raw material part to the final precipitation part through the intermediate precipitation part. It will be possible. Further, it becomes possible to reduce the purity of the raw material titanium.

【0031】原料部、中間析出部、最終析出部の各部温
度Ta,Tb,Tcは、Ta<Tb<Tcの関係を満足
する必要があるが、最高温度は金属不純物の熱分解を抑
えるため1300℃以下に制限するのが望ましく、最低
温度は低級沃化チタン(TiI2 ,TiI3 )の凝縮反
応を抑えるため、700℃以上を確保するのが望まし
い。
The temperatures Ta, Tb, and Tc of the raw material portion, the intermediate precipitation portion, and the final precipitation portion must satisfy the relationship of Ta <Tb <Tc, but the maximum temperature is 1300 to suppress thermal decomposition of metal impurities. It is desirable to limit the temperature to below ℃, and to keep the minimum temperature above 700 ℃ in order to suppress the condensation reaction of lower titanium iodide (TiI 2 , TiI 3 ).

【0032】よってTa,Tb,Tcはそれぞれ700
<Ta<900℃,900<Tb<1100℃,110
0<Tc<1300℃が最も望ましい。このような温度
条件において、原料部2aでは沃化反応が、最終析出部
では析出反応が、中間析出部では、そのいずれかの反応
が効率よく進行する。
Therefore, Ta, Tb, and Tc are each 700
<Ta <900 ° C, 900 <Tb <1100 ° C, 110
Most preferably, 0 <Tc <1300 ° C. Under such temperature conditions, the iodide reaction in the raw material part 2a, the precipitation reaction in the final precipitation part, and either of the reactions in the intermediate precipitation part proceed efficiently.

【0033】各部間の温度差(Tc−Tb,Tb−T
a)は30〜300℃が望ましい。30℃未満あるいは
300℃超では、合成反応と熱分解反応が一方向に生じ
にくくなる。
Temperature difference between each part (Tc-Tb, Tb-T
A) is preferably 30 to 300 ° C. If the temperature is lower than 30 ° C. or higher than 300 ° C., the synthesis reaction and the thermal decomposition reaction hardly occur in one direction.

【0034】また、各部の加熱保持温度および各空間へ
の原料ガス供給量は、中間析出部でエッチングと析出が
バランスし、中間析出部が体積を一定に保つように調整
するがよい。そうすれば、原料の低級チタンの補給を続
ける間、反応が続行される。
Further, the heating and holding temperature of each part and the amount of raw material gas supplied to each space are preferably adjusted so that etching and deposition are balanced in the intermediate deposition part and the volume of the intermediate deposition part is kept constant. Then, the reaction is continued while the supply of the low-grade titanium as the raw material is continued.

【0035】各空間の真空度は10-1〜10-3Torrが望
ましい。10-3Torr未満ではチタンの析出が起こりにく
く、10-1Torr超では沃化チタンの拡散が律速となり析
出速度が低下する。
The vacuum degree in each space is preferably 10 -1 to 10 -3 Torr. If it is less than 10 -3 Torr, precipitation of titanium is less likely to occur, and if it exceeds 10 -1 Torr, diffusion of titanium iodide is rate-determining and the precipitation rate is reduced.

【0036】[0036]

【実施例】以下に本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0037】図1に示す態様で本発明を実施した。原料
部、中間析出部、最終析出部には表1に示す組成のチタ
ン板を用いた。チタン板の直径は100mmとした。各
部の加熱保持温度はTa=800℃、Tb=1000
℃、Tc=1150℃とした。加熱には電気抵抗加熱に
よる外部加熱を用いた。各空間の真空度は約10-2Torr
とした。四沃化チタンガスの供給量は各空間とも30g
/hとした。
The present invention was carried out in the manner shown in FIG. A titanium plate having the composition shown in Table 1 was used for the raw material part, the intermediate precipitation part, and the final precipitation part. The diameter of the titanium plate was 100 mm. The heating and holding temperature of each part is Ta = 800 ° C. and Tb = 1000.
C and Tc = 1150 ° C. External heating by electric resistance heating was used for heating. The degree of vacuum in each space is about 10 -2 Torr
And The amount of titanium tetraiodide gas supplied is 30 g in each space.
/ H.

【0038】反応を100h継続した結果、原料部の厚
さは6mm減少し、逆に最終析出部の厚さは6mm増大
した。他方、中間析出部の厚さは反応前と差がなかっ
た。最終析出部に析出したチタンの分析結果を表1に併
記する。
As a result of continuing the reaction for 100 hours, the thickness of the raw material portion was reduced by 6 mm, and conversely, the thickness of the final deposited portion was increased by 6 mm. On the other hand, the thickness of the intermediate deposited portion did not differ from that before the reaction. Table 1 also shows the analysis results of titanium deposited in the final deposited portion.

【0039】[0039]

【表1】 [Table 1]

【0040】4N級のチタンから1回の反応プロセス
(100h)で6N級のチタンが0.2kg精製された。
0.2 kg of 6N grade titanium was purified from 4N grade titanium in one reaction process (100 hours).

【0041】[0041]

【発明の効果】以上の説明から明らかなように、本発明
の高純度チタンの精製方法は、反応ガスとして四沃化チ
タンを使用し、しかも、その反応を多段に行うので、1
回の反応プロセスで高純度な精製が可能である。従っ
て、高純度のチタンを経済性よく精製できる。また、原
料チタンのグレードを低下させることができるので、こ
の点からも経済性を高めることができる。
As is apparent from the above description, the method for purifying high-purity titanium according to the present invention uses titanium tetraiodide as a reaction gas, and the reaction is performed in multiple stages.
High-purity purification is possible in one reaction process. Therefore, highly pure titanium can be purified economically. Further, since the grade of the raw material titanium can be reduced, the economical efficiency can be improved also from this point.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施態様を示す模式図である。FIG. 1 is a schematic view showing one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 反応器 2a 原料部 2b 中間析出部 2c 最終析出部 3a,3c 空間 5a,5b,5c ヒータ 7a,7c 真空ポンプ 8a,8c TiI4 供給器1 Reactor 2a Raw material part 2b Intermediate precipitation part 2c Final precipitation part 3a, 3c Space 5a, 5b, 5c Heater 7a, 7c Vacuum pump 8a, 8c TiI 4 feeder

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 同一反応器内に、チタンからなる原料部
と、1または複数の中間析出部と、最終析出部とを順番
に配列し、その反応器内に四沃化チタンを供給すると共
に、原料部から最終析出部へ配列順に保持温度が高くな
るように各部を加熱保持することを特徴とする高純度チ
タンの精製方法。
1. A raw material part made of titanium, one or a plurality of intermediate precipitation parts, and a final precipitation part are sequentially arranged in the same reactor, and titanium tetraiodide is supplied into the reactor. A method for purifying high-purity titanium, characterized in that each part is heated and held so that the holding temperature becomes higher in the order of arrangement from the raw material part to the final precipitation part.
【請求項2】 各部の保持温度を700〜1300℃の
範囲内に管理し、且つ各部間の温度差を30〜300℃
の範囲内に管理することを特徴とする請求項1に記載の
高純度チタンの精製方法。
2. The holding temperature of each part is controlled within the range of 700 to 1300 ° C., and the temperature difference between the parts is 30 to 300 ° C.
The method for purifying high-purity titanium according to claim 1, wherein the purification method is controlled within the range.
【請求項3】 原料部と共に、中間析出部および最終析
出部の両方もくしは中間析出部のみをチタンにより構成
し、その純度を原料部から最終析出部へ配列順に高くす
ることを特徴とする請求項1または2に記載の高純度チ
タンの精製方法。
3. Along with the raw material part, both the intermediate depositing part and the final depositing part or only the intermediate depositing part are made of titanium, and the purity is increased in the order of arrangement from the raw material part to the final depositing part. The method for purifying high-purity titanium according to claim 1 or 2.
【請求項4】 中間析出部より原料部側の空間と、最終
析出部側の空間と、複数の中間析出部を使用する場合は
更に中間析出部間の空間とをそれぞれ独立させて、各空
間の間でガスの往来が生じないようにすることを特徴と
する請求項3に記載の高純度チタンの精製方法。
4. A space on the side of the raw material part from the intermediate precipitation part, a space on the side of the final precipitation part, and a space between the intermediate precipitation parts when a plurality of intermediate precipitation parts are used are made independent of each other, and each space is separated. The method for purifying high-purity titanium according to claim 3, wherein gas is prevented from flowing between them.
JP34389693A 1993-12-16 1993-12-16 Purification method of high purity titanium Expired - Fee Related JP3535202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34389693A JP3535202B2 (en) 1993-12-16 1993-12-16 Purification method of high purity titanium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34389693A JP3535202B2 (en) 1993-12-16 1993-12-16 Purification method of high purity titanium

Publications (2)

Publication Number Publication Date
JPH07173551A true JPH07173551A (en) 1995-07-11
JP3535202B2 JP3535202B2 (en) 2004-06-07

Family

ID=18365081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34389693A Expired - Fee Related JP3535202B2 (en) 1993-12-16 1993-12-16 Purification method of high purity titanium

Country Status (1)

Country Link
JP (1) JP3535202B2 (en)

Also Published As

Publication number Publication date
JP3535202B2 (en) 2004-06-07

Similar Documents

Publication Publication Date Title
EP1437327B1 (en) Method for producing silicon
JP3865033B2 (en) Continuous production method and continuous production apparatus for silicon oxide powder
JP5291282B2 (en) Tubular reaction vessel and method for producing silicon using the reaction vessel
AU2010252965B2 (en) Method for producing titanium metal
JPWO2003106338A1 (en) Reactor for silicon production
JP5571537B2 (en) Metal titanium manufacturing apparatus and metal titanium manufacturing method
US4477277A (en) Process for producing high-purity metals
JP3535202B2 (en) Purification method of high purity titanium
AU2011236279B2 (en) Metal titanium production device and metal titanium production method
US5108490A (en) Method of refining high purity titanium
JP4295823B2 (en) Method for reducing and purifying high-purity metal from vaporizable metal compound by magnetron capacitively coupled plasma and apparatus therefor
JPH0762183B2 (en) High-purity titanium purification method
JP2928907B2 (en) High purity precipitated titanium material and method for producing the same
JPH07252551A (en) Method for refining high-purity titanium
JPS59121109A (en) Production of high purity silicon
US20240084480A1 (en) Chemical vapor deposition reactor in polysilicon production process
JPH11323450A (en) Production of titanium of high purity
JP3177816B2 (en) Purification method of high purity titanium
JP2003063810A (en) Method for producing gallium nitride powder and apparatus for producing gallium nitride powder
JPH0343204B2 (en)
JPH10298674A (en) Method for refining high purity titanium
JPH0420879B2 (en)
JP2013071881A (en) Method for producing polycrystalline silicon
JPH11323451A (en) Production of high purity titanium

Legal Events

Date Code Title Description
A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040311

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees