JPH11323451A - Production of high purity titanium - Google Patents

Production of high purity titanium

Info

Publication number
JPH11323451A
JPH11323451A JP13241198A JP13241198A JPH11323451A JP H11323451 A JPH11323451 A JP H11323451A JP 13241198 A JP13241198 A JP 13241198A JP 13241198 A JP13241198 A JP 13241198A JP H11323451 A JPH11323451 A JP H11323451A
Authority
JP
Japan
Prior art keywords
crude
reaction vessel
reaction
titanium
filament
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13241198A
Other languages
Japanese (ja)
Inventor
Yasutoku Yoshimura
泰徳 吉村
Shinji Shimozaki
新二 下崎
Yasuhide Inonami
保秀 伊野波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Technologies Co Ltd
Original Assignee
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Technologies Co Ltd filed Critical Osaka Titanium Technologies Co Ltd
Priority to JP13241198A priority Critical patent/JPH11323451A/en
Publication of JPH11323451A publication Critical patent/JPH11323451A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To monitor progress of a refining reaction and to stably produce high purity titanium by measuring the change in the weight of crude titanium used for precipitating titanium with iodine in a reaction vessel by a gravimeter provided on the outer part of the reaction vessel in the process of the reaction. SOLUTION: In a reaction vessel 1 capable of being sealed, a filament 2 made of high purity Ti wire is set so as to be capable of electric heating, and on the circumferences, crude Ti materials 3 so as to be formed into raw materials are arranged with prescribed gaps. The inside of the reaction vessel 1 is evacuated, the crude Ti materials 3 are heated to about 200 to 400 deg.C by a heater 4 for heating the reaction vessel, and the filament 2 has been electrically heated to about 1300 to 1500 deg.C, which is introduced from a gaseous iodine source gas introducing tube 8 into the reaction vessel 1, and the reaction vessel 1 is sealed. The crude Ti materials 3 are allowed to react with iodine to form TiI4 , and metallic Ti is precipitated into the surface of the filament. The crude Ti materials 3 are suspended from the outer part of the reaction vessel 1 by a suspending rod or held by a supporting rod, each is fitted with a gravimeter, and the change of the weight of the crude Ti materials 3 is measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ヨウ素を用いる一
般にはヨード法といわれる高純度チタンの製造方法に関
する。
The present invention relates to a method for producing high-purity titanium using iodine, which is generally called an iodine method.

【0002】[0002]

【従来の技術】近年のLSI(大規模集積回路:Large
Scale Integration)の集積度の増大により、電極用材
料や配線用材料としてモリブデン(Mo)、タングステ
ン(W)、チタン(Ti)およびそれらのシリサイドな
ど高融点金属の利用が進められている。これは微細加工
を高精度で行うことが出来るからであるが、それらの金
属の中で、比強度、加工性、耐食性の点で、Tiが最も
よいと考えられている。ただしこのような用途の場合、
信号の遅延や回路の誤動作を抑止するため、極めて高純
度のものが要求される。
2. Description of the Related Art Recent LSIs (Large Scale Integrated Circuits: Large)
Due to an increase in the degree of integration of Scale Integration, the use of refractory metals such as molybdenum (Mo), tungsten (W), titanium (Ti), and silicides thereof as materials for electrodes and wirings is being promoted. This is because fine processing can be performed with high precision, and among these metals, Ti is considered to be the best in terms of specific strength, workability, and corrosion resistance. However, in such a case,
In order to suppress signal delays and circuit malfunctions, extremely high purity is required.

【0003】金属Tiは、通常酸化物の鉱石からTiC
4を製造し、これを蒸留精製してクロール法といわれ
るMg還元法により製造するのが一般的である。通常の
用途には、この方法で十分な高純度の金属Tiが得られ
ているが、LSI用にはフォーナイン(99.99%)からシ
ックスナイン(99.9999%)の超高純度のものが必要とさ
れる。このような超高純度のTiを得るためには、ヨー
ド法と言われるTiを四ヨウ化チタン(TiI4)とし
て、これを熱分解する方法が主に採用されている。
[0003] Metallic Ti is usually produced from oxide ore to TiC.
to produce a l 4, it is common to manufacture the Mg reduction method is said to Kroll process by distillation purification. For ordinary applications, metal Ti with sufficiently high purity is obtained by this method, but for LSIs, ultra-high purity from four nines (99.99%) to six nines (99.9999%) is required. . In order to obtain such ultrahigh-purity Ti, a method of thermally decomposing Ti, which is referred to as iodine method, as titanium tetraiodide (TiI 4 ) is mainly employed.

【0004】図1は、ヨウ素を用いる精製法の装置の一
例を示す模式図で、この図によりその方法の概要を説明
する。密閉出来る容器1 の中に、中央部には通電により
加熱可能な、たとえば高純度Ti線製のフィラメント2
が設置され、それを取り囲むように周辺には原料となる
粗Ti材3 が置かれている。フィラメントと粗Ti材と
の間隙は5〜40mm程度である。容器内部を10-3Torr以下
の真空に排気した後、容器内の粗Tiを外部のヒーター
4により200〜400℃に加熱し、フィラメント2を1300〜1
500℃に加熱しておき、気体状のヨウ素(I2)を導入管
8 から容器内に導入し容器を密閉する。I2は粗Ti材3
と反応してTiI4が出来、この温度ではTiI4は十
分蒸気圧が高いので、析出基体であるフィラメント2 ま
で拡散していくと、その表面で熱分解して金属Tiが析
出する。
FIG. 1 is a schematic diagram showing an example of an apparatus for a purification method using iodine, and an outline of the method will be described with reference to FIG. In a container 1 that can be sealed, a filament 2 made of, for example, high-purity Ti
Is provided, and a crude Ti material 3 serving as a raw material is placed around it so as to surround it. The gap between the filament and the coarse Ti material is about 5 to 40 mm. After evacuating the container to a vacuum of 10 −3 Torr or less, the crude Ti in the container is heated by an external heater.
4 to 200-400 ° C, filament 2 from 1300 to 1
Heat to 500 ° C before introducing gaseous iodine (I 2 )
Introduce into the container from 8 and seal the container. I 2 is crude Ti material 3
Reacting with TiI 4 is possible, because TiI 4 has a high enough vapor pressure at this temperature, when diffuses to the filament 2 is deposited substrate, metal Ti is deposited by thermally decomposing at the surface.

【0005】これは、原理として下記の可逆反応を利用
している。
[0005] This utilizes the following reversible reaction in principle.

【0006】 Ti+2I2=TiI4 (1) ここで、Tiは固体であり、I2とTiI4とは気体なの
で、平衡状態における気相中のこれら気体の分圧をそれ
ぞれPIおよびPT4とすれば、この反応の平衡定数K1は K1=PT4/PI 2 (2) と表せる。K1は温度によって決まる定数で、(1)式の反
応では温度が高いほど小さくなる。低温ではK1の値が
大きいのでPIに対するPT4が高い状態、すなわち(1)式
においてTiI4が増大する方向のヨウ化反応が進み、
高温ではK1が小さいのでPIに対してPT4が低い状態、
すなわちTiI4が減少しI2が増加する(1)式の左方向
へのTiの析出反応が進む。
Ti + 2I 2 = TiI 4 (1) Here, Ti is a solid, and since I 2 and TII 4 are gases, the partial pressures of these gases in the gas phase in an equilibrium state are denoted by P I and P T4 , respectively. Then, the equilibrium constant K 1 for this reaction can be expressed as K 1 = P T4 / P I 2 (2). K 1 is a constant determined by the temperature, and in the reaction of equation (1), K 1 decreases as the temperature increases. The value of K 1 is large at low temperatures P T4 for P I high, namely (1) TiI 4 the direction of the iodide reaction proceeds to increase the expression,
Since K 1 is small at a high temperature P I P T4 is lower than the state,
That is, the precipitation reaction of Ti in the left direction of equation (1) in which TiI 4 decreases and I 2 increases increases.

【0007】したがって、図1に示すように相対的に低
温の粗Ti材1と高温のフィラメント2をある空間を隔
てて対向させ、そこにI2が存在すると、低温の粗Ti
側ではI2と反応してTiI4を生成していくが、その到
達平衡濃度比はフィラメントの高温に対しては高すぎる
ので、フィラメント上ではTiI4が分解してTiを析
出しI2を放出する。すなわちTiI4の生成と分解が同
時に進行するので、空間のI2とTiI4との濃度比は一
定値に保たれるという定常状態が維持される。気相中の
2は、粗Tiと反応してTiI4を形成するが、フィラ
メント上でTiI4が分解すると、生成したI2は粗Ti
の方に戻って、再度Tiと結合し循環使用されるので消
耗せず、原料の粗Tiが減少して次第にフィラメント上
に移行し析出するという形で定常的に精製反応が進行し
ていく。ここで、I2は粗Ti中のTiと主として反応
するので不純物は取り残され、さらにフィラメント上で
はTiI4のみが分解して他の化合物は分解しないの
で、その結果として高純度Tiが得られることになる。
Accordingly, is opposed with a space in a relatively low temperature of the crude Ti material 1 and the hot filament 2 as shown in FIG. 1, when there I 2 is present, the low temperature of the crude Ti
The side reacts with I 2 to produce TiI 4 , but its attained equilibrium concentration ratio is too high with respect to the high temperature of the filament, so that TiI 4 decomposes on the filament to precipitate Ti, and I 2 discharge. That is, since the generation and decomposition of TiI 4 proceed simultaneously, a steady state in which the concentration ratio of I 2 and TiI 4 in the space is maintained at a constant value is maintained. I 2 in the gas phase forms a TiI 4 reacts with coarse Ti, when TiI 4 on the filament is decomposed, the resulting I 2 is the crude Ti
Then, it is combined with Ti again and reused because it is circulated and used, so that the purification reaction constantly proceeds in a form in which the crude Ti of the raw material decreases and gradually moves onto the filament and precipitates. Here, since I 2 mainly reacts with Ti in the crude Ti, impurities are left behind, and only TiI 4 is decomposed on the filament and other compounds are not decomposed. As a result, high-purity Ti is obtained. become.

【0008】本発明者らの一人は、上述の精製方法を改
良し、より純度の高いTiをさらに効率よく製造するた
め、粗Tiの加熱温度を700〜900℃と高めフィラメント
ないしは析出基体の温度を従来よりも200℃程度低くし
て、TiI2のような低級ヨウ化チタンを利用する改良
方法を発明し特開平3-215633号公報に提示した。この場
合、反応容器内にTiI4を供給しつつ、一方で排気す
ることにより気相中の不純物を排除し、より一層高純度
なTiを得ている。また、析出基体の温度低下の結果と
して、フィラメントではなく高純度Ti管を析出基体に
用いて内部より間接的に加熱し、析出面積を大きくして
生産性を向上させる方法の発明も特開平4-246136号公報
に開示している。
One of the present inventors raised the heating temperature of crude Ti to 700 to 900 ° C. to improve the above-mentioned purification method and to produce Ti with higher purity more efficiently. And an improved method utilizing a lower titanium iodide such as TiI 2 was proposed in Japanese Patent Application Laid-Open No. 3-215633. In this case, while supplying TiI 4 into the reaction vessel, while exhausting gas on the other hand, impurities in the gas phase are eliminated, and Ti with higher purity is obtained. Further, as a result of the temperature decrease of the deposition substrate, a method of using a high-purity Ti tube instead of a filament as the deposition substrate and indirectly heating the inside from the inside to increase the deposition area and improve the productivity is also disclosed in Japanese Patent Application Laid-Open No. HEI 4 (1994) -104605. -246136.

【0009】このように精製反応は、TiI4や低級ヨ
ウ化チタンなどの蒸気圧の維持、反応の促進、不純物除
去等の目的で、高温の密閉容器内において 1Torr以下の
減圧下で行われる。このため、精製の途中の状態はほと
んど観測されず、直接通電加熱の場合はフィラメントの
電気抵抗の低下から多少は推測出来るが、通常は特定時
間経過後に冷却して取り出し、その状態から精製の途中
経過を推測するに過ぎなかった。しかしながら、精製過
程の進行状況の把握は、得られる高純度Tiの品質の確
保、精製設備の効率的利用、さらには異常な精製反応進
行の未然防止等のために極めて重要である。
As described above, the purification reaction is performed under a reduced pressure of 1 Torr or less in a high-temperature closed vessel for the purpose of maintaining the vapor pressure of TiI 4 or lower titanium iodide, promoting the reaction, removing impurities, and the like. For this reason, the state during the purification is hardly observed, and in the case of direct electric heating, it can be somewhat inferred from the decrease in the electric resistance of the filament. I just guessed the course. However, grasping the progress of the purification process is extremely important for ensuring the quality of the resulting high-purity Ti, efficiently using the purification equipment, and further preventing abnormal purification reaction progress.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、ヨウ
素を用いるチタンの精製法において、精製反応途中の進
行状況を監視するための手段を提供するものであり、そ
れによって高純度チタンの安定した製造を遂行出来るよ
うにすることである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a means for monitoring the progress of a purification reaction in the course of a titanium purification process using iodine. Is to be able to carry out the manufacturing.

【0011】[0011]

【課題を解決するための手段】ヨウ化物を用いる精製
は、高温の基体の上に高純度Tiが析出することによっ
て進行する。したがって、反応中の析出基体の重量を測
定出来れば、反応の進行が把握出来ると考えられる。と
ころが、析出基体には高温加熱のために大電流を流す配
電体、電気絶縁体、電流を減圧容器内に導くためのシー
ル等が付帯し、しかも高温になっていることから、反応
中の析出基体重量の測定には様々な困難がともなう。し
かし、この密閉容器内で起きている現象は、精製反応に
より基体上へTiが析出しその重量が増加するととも
に、粗Tiがヨウ素と反応しTiI4や低級ヨウ化物と
なって減少している。そして反応が定常状態で進行する
と、析出するTi量は粗Tiの減少量にほぼ等しいと考
えられる。ただし、精製の初期の雰囲気のガス組成が定
常に達していない場合、析出量と粗Tiの減少量とが一
致しない可能性があるが、これは一時的な現象である。
また、ヨウ素源としてTiI4を反応容器内に導入する
ことがあり、そのTi分が析出することも考えられる
が、TiI4の導入分は、それに相当する量を反応容器
から排除するように操業しており、その上導入量は計量
出来る。
SUMMARY OF THE INVENTION Purification using iodide proceeds by depositing high purity Ti on a high temperature substrate. Therefore, if the weight of the deposited substrate during the reaction can be measured, it is considered that the progress of the reaction can be grasped. However, the deposition substrate is provided with a power distribution body, an electric insulator, and a seal for guiding the current into the decompression vessel, etc., which carry a large current for high-temperature heating. There are various difficulties in measuring the substrate weight. However, the phenomenon occurring in this closed container is that Ti is precipitated on the substrate by the purification reaction and its weight increases, and the crude Ti reacts with iodine and decreases as TiI 4 or lower iodide. . When the reaction proceeds in a steady state, the amount of precipitated Ti is considered to be substantially equal to the amount of decrease in crude Ti. However, if the gas composition of the atmosphere in the initial stage of the refining does not reach a steady state, the amount of precipitation may not match the amount of decrease in crude Ti, but this is a temporary phenomenon.
In addition, TiI 4 may be introduced into the reaction vessel as an iodine source, and it is conceivable that the Ti component is precipitated. However, the introduced amount of TiI 4 is operated such that an amount corresponding to the TiI 4 is excluded from the reaction vessel. In addition, the amount of introduction can be measured.

【0012】そこで、粗Tiの重量減を測定することに
より精製反応の進行を把握することを試みた。粗Tiは
単に反応容器内に設置されているだけなので、その重量
計測は析出基体で行うよりも容易である。粗Tiの重量
計測は、反応容器内の粗Tiを容器外から保持し、その
保持機構に重量計を取り付けた。このようにして、精製
反応中の粗Tiの重量を連続して計測する方法を検討
し、高純度Tiの製造を実施した結果、精製の進行を十
分把握出来ることを確認したのである。ことに、Tiの
析出の進行にともなう精製速度の変化が明らかになり、
析出基体の加熱をこの析出量変化を見ながら調節するこ
とによって、効率的に精製反応を行わせることが出来る
ようになった。
Therefore, an attempt was made to grasp the progress of the purification reaction by measuring the weight loss of the crude Ti. Since the crude Ti is simply placed in the reaction vessel, its weight measurement is easier than that performed on the deposition substrate. For measuring the weight of the coarse Ti, the coarse Ti in the reaction vessel was held from outside the vessel, and a weighing scale was attached to the holding mechanism. Thus, a method of continuously measuring the weight of crude Ti during the purification reaction was examined, and as a result of producing high-purity Ti, it was confirmed that the progress of purification could be sufficiently grasped. In particular, the change in the purification rate with the progress of the precipitation of Ti became apparent,
By adjusting the heating of the deposition substrate while observing the change in the amount of deposition, the purification reaction can be efficiently performed.

【0013】すなわち本発明の要旨は、(1)ヨウ素を用
いるチタンの精製方法において、反応容器内の粗チタン
の重量変化を反応中に測定することを特徴とする高純度
Tiの製造方法、および(2)粗チタンを反応容器外から
懸架または支持し、その懸架または支持具に重量計を取
り付けて粗チタンの重量を測定することを特徴とする上
記(1)の高純度チタンの製造方法である。
That is, the gist of the present invention is to provide (1) a method for purifying titanium using iodine, wherein a change in weight of crude titanium in a reaction vessel is measured during the reaction; (2) The method for producing high-purity titanium according to (1), wherein the crude titanium is suspended or supported from outside the reaction vessel, and the weight of the crude titanium is measured by attaching a weighing scale to the suspension or support. is there.

【0014】[0014]

【発明の実施の形態】原料となる粗Tiは、金属単体、
スポンジチタンや切断片等を圧縮したもの、あるいは小
細片をMo等の耐食性金属で出来た籠に入れた状態、等
で反応容器内に設置される。この粗Tiの重量変化を精
度よく測定出来るものであれば、どんな方法でもかまわ
ないが、一つの方法として、反応容器の外部から粗Ti
を保持しその保持機構に重量計を設置する。
BEST MODE FOR CARRYING OUT THE INVENTION Crude Ti as a raw material is a simple metal,
A sponge titanium, a cut piece or the like is compressed, or a small piece is placed in a basket made of a corrosion-resistant metal such as Mo, and the like is placed in the reaction vessel. Any method can be used as long as the change in weight of the crude Ti can be measured with high accuracy.
And a weighing scale is installed on the holding mechanism.

【0015】例えば、図2に模式図を示すように懸架棒
10にて粗Ti3を吊し、懸架棒は真空シール11でシール
して秤量出来るように重量計12に取り付ける。高温のI
2は腐食性がはげしいので、懸架用冶具の粗チタンに接
続する反応容器内の部分は、Moなどの耐食性金属や、
Au、Pt、Taなどで表面をライニングした反応容器
内部と同様な耐熱材料等を用いる。真空シール11は、例
えばバイトンOリングなどを適用する。Oリングによる
シールの場合、減圧された反応容器内への大気漏洩阻止
のためには、十分締め付ける必要があり、また、シール
部分の温度が上がらないよう水冷しなければならない。
しかし、ある程度の摩擦は避けられないので、その摩擦
抵抗による誤差を出来るだけ小さくする。棒の径を細く
し懸架に必要なサイズ以上には太くせず、締め付けも強
すぎないようにすること、なども留意することが望まし
い。この懸架棒の真空シールには、ベローズを用いても
よい。
For example, as shown in FIG.
The crude Ti3 is suspended at 10, and the suspension rod is attached to the weighing scale 12 so that it can be weighed by being sealed with a vacuum seal 11. Hot I
2 is highly corrosive, so the part inside the reaction vessel connected to the crude titanium of the suspension jig is made of corrosion-resistant metal such as Mo,
A heat-resistant material similar to the inside of the reaction vessel whose surface is lined with Au, Pt, Ta, or the like is used. As the vacuum seal 11, for example, a Viton O-ring or the like is applied. In the case of sealing with an O-ring, it is necessary to tighten sufficiently to prevent atmospheric leakage into the depressurized reaction vessel, and water-cooling must be performed so that the temperature of the sealing portion does not rise.
However, since a certain amount of friction cannot be avoided, errors due to the frictional resistance are reduced as much as possible. It is also desirable to take care to reduce the diameter of the rod so that it is not thicker than necessary for suspension, and not to tighten too much. Bellows may be used for the vacuum seal of the suspension rod.

【0016】反応容器内の粗Tiは、上からの懸架では
なく下から支持して、それに重量計を設置してもよい。
例えば図3に模式図を示すが、粗Ti3を支持具および
支持棒13にて保持し、支持棒は真空ベローズ14でシール
し、反応容器外の重量計12で秤量出来るようにする。支
持冶具や支持棒、ベローズ等は、容器内雰囲気に接する
部分は耐食性材料や表面をライニングしたものとする。
この場合も、摩擦抵抗を十分低減出来るならば、Oリン
グによるシールでもよい。
The crude Ti in the reaction vessel may be supported from below rather than suspended from above, and a weighing scale may be installed thereon.
For example, a schematic diagram is shown in FIG. 3, where the crude Ti3 is held by a support and a support rod 13, and the support rod is sealed with a vacuum bellows 14 so that it can be weighed by a weighing scale 12 outside the reaction vessel. The support jig, the support rod, the bellows, and the like are provided with a corrosion-resistant material or a surface-lined portion in contact with the atmosphere in the container.
Also in this case, if the frictional resistance can be sufficiently reduced, a seal using an O-ring may be used.

【0017】[0017]

【実施例】図2に模式図を示した内径250mmの反応容器1
を用い、析出用フィラメント2は直径 1mm、有効長1000
mmのTiとし、粗Ti3 としてMoの円筒状網籠に入れ
たスポンジチタン 5kgを反応容器内に設置した。粗Ti
を入れた網籠は、直径 1mmのMo線10にて4ヶ所で吊
し、そのMo線はそれぞれOリング11でシールして炉外
に出し、秤量計12(最小目盛10g、最大10kg)にて粗T
i3 の重量変化を測定出来るようにした。
FIG. 2 is a schematic view of a reaction vessel 1 having an inner diameter of 250 mm.
The filament 2 for deposition has a diameter of 1 mm and an effective length of 1000
5 kg of titanium and 5 kg of titanium sponge placed in a cylindrical cylindrical basket of Mo as crude Ti3 were placed in the reaction vessel. Crude Ti
The wire baskets with are suspended at four places with Mo wires 10 having a diameter of 1 mm, and the Mo wires are sealed with O-rings 11 and are taken out of the furnace, and are weighed by a weighing scale 12 (minimum scale 10 g, maximum 10 kg). And coarse T
The change in weight of i3 can be measured.

【0018】炉内を真空排気後、粗Tiを外部ヒーター
4 により加熱して800℃とし、フィラメント2 は通電加
熱により1200℃に設定し、この状態でTiI4ガスを10g
/hの速度で導入した。
After the inside of the furnace is evacuated, the crude Ti is supplied to an external heater.
4 to 800 ° C. Filament 2 is set to 1200 ° C by energizing heating. In this state, 10 g of TiI 4 gas is added.
/ h introduced.

【0019】この従来どおりの条件にて、100時間の精
製を行い、反応炉からフィラメントを取り出し、重量を
測定した結果、3.3kgの高純度Tiが得られていた。そ
の間の重量変化について、本発明の方法によって測定し
た結果を図4中に従来条件として示す。次に上記の同じ
設備にて、同様な条件で反応を開始後、重量変化を監視
しつつ、粗Ti温度の上昇、フィラメント電流の増加等
を行って、析出速度の大きな低下のないように調整した
結果、図4の改善条件として示すように、同じ3.3kgの
高純度Tiを73時間で得ることが出来た。このように、
反応途中の経過を知ることが出来るので、これを利用し
て精製反応途中の条件の自動制御などを適用するするこ
とも可能になり、それによってさらに生産性の向上が期
待出来る。
Purification was performed for 100 hours under the same conditions as in the prior art, the filament was taken out of the reactor, and the weight was measured. As a result, 3.3 kg of high-purity Ti was obtained. FIG. 4 shows the results of the measurement of the weight change during that time according to the method of the present invention as conventional conditions. Next, in the same equipment as above, after starting the reaction under the same conditions, while monitoring the weight change, increase the crude Ti temperature, increase the filament current, etc., and adjust so that the deposition rate does not decrease significantly. As a result, the same 3.3 kg of high-purity Ti could be obtained in 73 hours, as shown as an improvement condition in FIG. in this way,
Since the progress of the reaction can be known, automatic control of the conditions during the purification reaction and the like can be applied by using the information, thereby further improving the productivity.

【0020】[0020]

【発明の効果】本発明によれば、ヨウ素を用いるチタン
の精製方法において、高純度チタンの精製反応進行の途
中状況を監視出来るので、そのデータに基づいて精製反
応の条件を制御することにより、生産効率を向上させる
ことが出来る。
According to the present invention, in the method of purifying titanium using iodine, the progress of the purification reaction of high-purity titanium can be monitored, so that the conditions of the purification reaction can be controlled based on the data. Production efficiency can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ヨウ素を用いる通常の高純度Tiの製造に用い
られる反応装置の構造を模式的に説明する図である。
FIG. 1 is a diagram schematically illustrating the structure of a reaction apparatus used for producing ordinary high-purity Ti using iodine.

【図2】反応中の粗Tiの重量変化を、上部からの懸架
で測定する方法について模式的に説明する図である。
FIG. 2 is a diagram schematically illustrating a method of measuring a change in weight of crude Ti during a reaction by suspending from above.

【図3】反応中の粗Tiの重量変化を、下部からの支持
により測定する方法について模式的に説明する図であ
る。
FIG. 3 is a diagram schematically illustrating a method of measuring a weight change of crude Ti during a reaction by supporting from below.

【図4】精製反応中の粗Tiの重量変化を測定した図で
ある。
FIG. 4 is a diagram showing a change in weight of crude Ti during a purification reaction.

【符号の説明】[Explanation of symbols]

1 反応容器 2 析出基体(フィラ
メント) 3 粗Ti材 4 反応容器加熱用ヒ
ーター 6 真空排気孔 8 ヨウ素源ガス導入
管 10 懸架用棒 11 Oリングシール 12 重量計 13 支持用棒 14 ベローズ
1 Reaction vessel 2 Precipitated substrate (filament) 3 Crude Ti material 4 Heater for heating the reaction vessel 6 Vacuum exhaust hole 8 Iodine source gas introduction pipe 10 Suspension rod 11 O-ring seal 12 Weight scale 13 Support rod 14 Bellows

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ヨウ素を用いるチタンの精製方法におい
て、反応容器内の粗チタンの重量変化を反応中に測定す
ることを特徴とする高純度チタンの製造方法。
1. A method for purifying titanium using iodine, wherein a change in weight of crude titanium in a reaction vessel is measured during the reaction.
【請求項2】粗チタンを反応容器外から懸架または支持
し、その懸架または支持具に重量計を取り付けて粗チタ
ンの重量を測定することを特徴とする請求項1の高純度
チタンの製造方法。
2. The method for producing high-purity titanium according to claim 1, wherein the crude titanium is suspended or supported from outside the reaction vessel, and the weight of the crude titanium is measured by attaching a weighing scale to the suspension or support. .
JP13241198A 1998-05-14 1998-05-14 Production of high purity titanium Pending JPH11323451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13241198A JPH11323451A (en) 1998-05-14 1998-05-14 Production of high purity titanium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13241198A JPH11323451A (en) 1998-05-14 1998-05-14 Production of high purity titanium

Publications (1)

Publication Number Publication Date
JPH11323451A true JPH11323451A (en) 1999-11-26

Family

ID=15080769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13241198A Pending JPH11323451A (en) 1998-05-14 1998-05-14 Production of high purity titanium

Country Status (1)

Country Link
JP (1) JPH11323451A (en)

Similar Documents

Publication Publication Date Title
WO2017221952A1 (en) Polycrystalline silicon rod and method for producing same
EP1061042A1 (en) Method for gas phase purification of carbon nanotubes by thermal treatment in diffusion furnace
US5700519A (en) Method for producing ultra high purity titanium films
EP0209954A2 (en) Melt consolidation of silicon powder
Carlson et al. Preparation of High‐Purity Vanadium Metalb by the Iodide Refining Process
JP3705623B2 (en) Silane decomposition / reduction reaction apparatus and method for producing high-purity crystalline silicon
JP2923260B2 (en) Single crystal pulling apparatus, high-purity graphite material and method for producing the same
JPH062637B2 (en) Single crystal pulling device
JPH11323451A (en) Production of high purity titanium
JPH0527566B2 (en)
JP2001220124A (en) Device for manufacturing silicon oxide powder
JPS62294177A (en) Production of high-purity metallic body
US5232485A (en) Method for obtaining high purity titanium
JP3607502B2 (en) Manufacturing method of high purity titanium
JP6931751B2 (en) Silicon core wire for polycrystalline silicon precipitation and its manufacturing method
JPH10158006A (en) Production of granular polysilicon
JPH0739614B2 (en) High-purity titanium purification method
JP3410380B2 (en) Single crystal pulling equipment and high purity graphite material
JPH07252551A (en) Method for refining high-purity titanium
JP7165304B2 (en) Method for producing high-purity polycrystalline silicon
JP2714580B2 (en) Chemical vapor deposition method and chemical vapor deposition apparatus
JPH03285076A (en) Method and device for producing tungsten parts
TW503218B (en) Tantalum sputtering target and method of manufacture
JP2001097708A (en) Production process for metallic silicon
CN116083729A (en) Metal purifying device and method and application thereof