TW503218B - Tantalum sputtering target and method of manufacture - Google Patents

Tantalum sputtering target and method of manufacture Download PDF

Info

Publication number
TW503218B
TW503218B TW88108622A TW88108622A TW503218B TW 503218 B TW503218 B TW 503218B TW 88108622 A TW88108622 A TW 88108622A TW 88108622 A TW88108622 A TW 88108622A TW 503218 B TW503218 B TW 503218B
Authority
TW
Taiwan
Prior art keywords
molybdenum
tungsten
item
tantalum
purity
Prior art date
Application number
TW88108622A
Other languages
Chinese (zh)
Inventor
Harry Rosenberg
Bahri Ozturk
Guan-Gxin Wang
Wesley Larue
Original Assignee
Alta Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alta Group Inc filed Critical Alta Group Inc
Application granted granted Critical
Publication of TW503218B publication Critical patent/TW503218B/en

Links

Abstract

Described is a method for producing high purity tantalum, the high purity tantalum so produced and sputtering targets of high purity tantalum. The method involves purifying starting materials followed by subsequent refining into high purity tantalum.

Description

503218 4888pif2.doc/0 12 -經濟部中央標準局員工消費合作社印製 A7 B7 ___五、發明説明(/ ) 本發明是有關於一種製造高純度鉬的方法與裝置,以 及以此法所形成之高純度鉅。本發明特別是有關於一種高 純度钽的製造方法。 發明背景 在電子工業中,組目前已經廣泛的應用於製造高效電 容器。這主要歸因於在陽極電鍍金屬上的氧化薄膜具有強 且穩定的介電性質。所以加工而成的細箔與粉末都常被用 於製造主電容器。此外,應用於微電路中的薄膜電容器都 是以陽極電鍍鉅薄膜的方式來形成的,而陽極電鍍鉅薄膜 通常都是以濺鍍的方法製造。在新世代的晶片中,也可以 在Ar-N2的環境中進行钽的濺鍍,以形成超薄的TaN層, 作爲矽基底與銅層之間的阻障層,以確保內連線的截面可 以利用到銅高導電性的特性。根據報導,TaN薄膜的微結 構與表面質地對於沉積的條件並不像TiN那麼敏感。因 此,對於以銅爲金屬化製程之材料的晶片製程而言,以TaN 作爲擴散阻障要比ΉΝ好得多。對微電子工業中這些薄 膜的應用而言,高純度的钽濺鍍靶是很需要的。 目前世界上所生產的鉬金屬大部分都是從K2TaF7進行 鈉還原反應而來。此外,也有一^些技術在商業上並沒有被 大量採用的趨勢,這些技術包括氧化钽(Ta205)與諸如鈣或 鋁等金屬還原劑以及諸如碳與碳化氮等非金屬還原劑進行 還原反應,五氯化鉬(TaCl5)與鎂、鈉或氫氣進行還原反應 以及五氯化钽的熱解離反應等。 4 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 83. 3· !0,000 (請先閲讀背面之注意事項再填寫本頁) C. -訂' 503218 4888pif2.doc/012 A7 B7 標 準 局 貝 五、發明説明()) 經過還原的鉅係以粉末、團狀或是整塊金屬的形式存 在。其中常會含有相當量的氧氣與其他的雜質,這些雜質 包括了還原劑以及存在於鉬起始物中之不純物等等。常用 以移除鉬中之雜質的方法爲電子束熔化法。這是因爲大部 分的金屬雜質與彳11於間隙中的氣體都會因爲在鉬的熔點 (攝氏2996度)時的蒸氣壓很高而在電子束熔化的過程中被 热化。除了銀、鶴、銷、軸以及社之外,基本上所有的元 素都可以此法去除。在以直接蒸發的方法移除金屬雜質與 氮氣時,氧氣也會跟著被移除。而移除氧氣的機制包括形 成氧化碳、氧化鋁、水以及其他的次氧化物,之後汽化這 些化合物。鉬的純度可以藉由重複電子束熔化法而得到進 一步的改善。在其他包括真空電弧熔化、真空熔渣、熔鹽 電精煉以及精煉鉅的碘化物等的精煉製程中,精煉鉬的碘 化物爲移除鉬與鎢最可靠的技術。 上述的精煉技術並不能有效的將鈮從钽中移除。這是 因爲在自然界中的鈮與鉬結合地相當緊密。因此,在置備 非常高純度的钽時,鈮的移除爲關鍵的步驟。要將钽與鈮 分開,目前實際上使用的方法是在進行還原反應之前藉著 溶劑淬取、氯化以及部分結晶法等技術來進行。 鉅靶的製程步驟包括將鑄塊鍛造成條狀、對條狀的钽 的表面進行機械加工、將條狀的鉅切成片狀、將鉬片冷軋 成靶心、對靶心進行回火、最後修整以及與支撐板結合。 費 合 作 製 本紙張尺度適用中國國家標準(CMS ) Μ規格(210Χ297公釐) 83. 3. 10,000 (請先聞讀背面之注意事項再填寫本頁) . •經濟部中央標準局貝工消費合作社印装 503218 4888pif2.doc/012 A7 B7 _ 五、發明説明(夕) 發明槪述 本發明提供一種製造高純度鉬濺鍍靶的方法與裝置以 及以此法製造的高純度鉬。 此方法包括純化K2TaF7,並還原純化後的K2TaF7,以 製造鉅粉,藉著與碘反應以及最後進行的電子束熔化法來 精鍊钽,以形成高純度的钽鑄塊。 起始物爲量產的心1^?7鹽,其製造方法爲將鉬礦溶於 氫氟酸與硫酸的混合物中並接著進行過濾,以甲基異丁基 酮(MIBK)淬取溶劑,並進行K2TaF7的結晶。這樣的步驟 可以重複進行數次,以降低雜質的含量,尤其是鈮的含量。 在液相液相還原蒸餾器中使純化過之心丁&?7進行鈉還 原反應’在此蒸餾器中,K2TaF7與稀釋液(氯化鈉與氯化 鉀)都被加熱致大約攝氏1000度。接著,將熔化的鈉注入 蒸餾器中’以使其與K2TaF7進行反應。攪拌反應劑,以 加速此還原反應。經過冷卻後,將反應生成的物質拿出蒸 餾器、壓碎、過濾並加以淸洗,以將鉬粉從鹽類混合物中 分離出來。 参旦的精錬步驟是以碘化製程或是電子束熔化法來完 成°這兩種方法可以擇一或是依序進行。但是電子束熔化 法最好爲最後的步驟,因爲其所產生的鑄塊適合於進行進 一步物理性冶金步驟,以達到製造靶的目的。 胃被電子束鎔化的鑄條鍛造成條狀,並對其表面進行 機器加工’將鍛造出來的鉬條切成片狀,再進一步冷軋成 革巴心。在鈍氣環境中進行回火,以形成再結晶後的微結構。 6 本紙張尺度適用中國國家標率(CNS ) A4規格(210X297公釐) 83.3.10,000 (請先閲讀背面之注意事項再填寫本頁) -訂 經濟部中央標準局員工消費合作社印裝 503218 4888pif2.doc/012 A7 B7 五、發明説明(If ) 接著,對靶心進行機械加工,以完成其最終型態並與銅或 隹呂的支撐板結合。 進行化學分析以確認此製程所製造的鉅。得到下述之 化學特性的方法是以輝光放電質譜技術(GDMS)來偵測金 屬元素,並以LECO氣相分析儀來偵測非金屬元素。 以重量計算,在本發明之高純度钽材料中,全部金屬 雜質只有500ppm,氧含量小於大約l〇〇ppm,鉬與鎢的含 量不超過50ppm,鈾與钍的含量不超過l〇ppb。而製造鉬 與鎢的總含量小於5ppm的鉅也是可達成的。 圖式之簡單說明 第1圖爲用於K2TaF7進行鈉還原反應之液體液體反應 蒸餾器的示意圖; 第2圖爲碘化反應槽的示意圖; \ 第3圖爲具有蒸餾裝置之碘化反應槽的示意圖; 第4A圖與第4B圖爲組祀的不意圖,以及 第5圖爲鉬棒之導電度相對於作用時間的曲線圖。 圖式之標號說明 1 ··塡充反應器 2 :第一管柱一Tal5凝結器 3 ··第二管柱一Nbl5凝結器 4 :沈積反應器 5 :碘供給裝置 6 :真空/循環裝置 8 :絲極 12 :攪拌裝置 14 :反應器 16 :蓋子 (請先閲讀背面之注意事項再填寫本頁) 訂 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 83. 3. !〇,〇〇〇 503218 經濟部中央標準局貝工消費合作社印裝 4888pif2.doc/012 A7 五、發明説明(t ) 18 真空 20 鈉輸入端 22 爐管 24 鉬襯裡反應槽 26 鉬塡充物 28 鉬屏板 30 鉬絲極 32 蓋子 34 電饋通線 36 碘供給裝置 42 銅或鋁的支撐板 44 靶心 詳細說明 在自然界中,鉬通常會與鈮、錫以及其他元素產生緊密 結合。在鉅的製程中最常用做起始物質的礦物爲钽鐵礦、 錫錳鉬礦、Micolite與鈮釔礦。這些礦物是以濕式計量法、 磁性或是靜電的方法來濃縮。在氫氟酸與硫酸的混合液中 溶解濃縮物。過濾此溶液’並接著在淬取溶劑的設備中將 鈮與其他雜質分開。鉬的濃縮物將轉移至水溶液中,並以 氨水使其沉澱,以形成钽酸(Τ^〇5ΧΗ2〇) ’在高溫中鍛燒 以產生氧化鉅。另一種方法則是藉著將氟化鉀與氯化鉀加 入淬取溶劑後之熱水溶液中’以使钽再結晶爲K2TaF7。以 這些方法所得之不純的K2TaF7需要進一步的純化,才能 成爲電子工業中所使用之鉬的來源。 通常,仏2丁&?7可以用下的步驟來純化: 將工業級的K2TaF7溶於氫氟酸中,其中氫氟酸比如爲 百分之49的氫氟酸溶液。此外’也可以使用氫氟酸與硫 酸的混和液來進行此溶解步驟。K2TaF7溶解的量取決於溫 度及氫氟酸的濃度。有鑑於在室溫下其溶解速率非常慢, 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X29*7公釐) (請先閲讀背面之注意事項再填寫本頁) -裝· -訂 503218 4888pif2.doc/012 A7 B7 經濟部中决標準局貝工消費合作社印裂 五、發明説明(G ) 在適當的容器中將混合液加熱至比如爲攝氏90度。將含 有ITaF7的溶液蓋起來並持續攪拌,以避免因爲蒸發所 導致的流失。溶解的時間大約爲1小時。將攝氏65度的 氯化鉀ί谷液加入K^TaF?溶液中,並攪拌所形成之溶液, 直到冷卻至室溫。由於在室溫下K2TaF7的溶解度非常低, 因此溶液中的鉅會以K2TaF?的形式沉澱出來。過濾此沉 澱物,並加以淸洗與乾燥。此時,仍然會有一些鈮、鎢、 鉬、锆、鈾與钍留在溶液中。對於爲了得到極高純度的鉬 而言,重複此溶解與沉澱的步驟相當有用。諸如鈮、鎢、 鉬、鈾與钍等以電子束熔化法難以移除的元素,都可以藉 由此法輕易的移除。 K2TaF7可以藉由熔鹽電解法或是鈉還原反應而還原成 金屬鉬。電解還原的速率是很慢的,因此要將大量的K2TaF7 還原成钽金屬可採用鈉還原法。整個還原反應式可以寫成 K2TaF7+5Na(/)=Ta〇s)+2KF+5NaF (1) 請參照第1圖,其繪示一種還原爐管。進行此還原反 應的方式爲將K2TaF7與諸如氯化鉀、氯化鈉、氯化鋰、 氯化緦與氯化鈣等稀釋過的鹽類放入配備有攪拌裝置12 的反應器14中。將反應器14置於爐管中,加熱至超過鹽 類混合物之熔點的溫度,通常爲大約攝氏1000度。一方 面控制溫度,另一方面將熔化的鈉注入反應器14中並加 以攪拌。經過冷卻之後,將反應產生的物質在從反應器Η --------------^------βΐ (請先聞讀背面之注意事項再填寫本頁) _ 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) 83. 3. 10,000 503218 4888pif2.doc/012 A7 B7 五、發明説明(7) 中移出,壓碎並以稀酸過濾,以得到钽金屬粉 爐管中壓縮並且熔化這些粉末。 在電子束 央 標 準 局 貝 費 合 作 社 印 製 2)碘化製程 金屬钽是對可大量獲得之K2TaF7進行鈉還原反應而來 的,此步驟類似於用以製造海綿鉅的Himter製程。大部分 存在於K2TaF7中的雜質,諸如鐵、鎳、鈦、鎢與鉬等, 仍然存在於由鈉還原反應所製造的金屬中。此金屬是以粉 末的形式存在,且其氧含量非常高。 在此描述的方法可以從碎片或不純的鉅金屬製造出高 純度的鉅。此步驟是基於化學轉換反應,在此化學轉換反 應中,不純的坦金屬與碘氣體在較低的溫度進行反應,以 形成鉬化碘(合成區),钽化碘隨即在較高的溫度中於熱絲 極上分解以產生非常純的金屬(沉積或熱分解區)。根據下 列反應,不純的鉅可以在合成區中轉變成氣相物質: Ta(s,不純)+5/2 I2(g)=TaI5(g)(合成反應) (2) • Ta(s,不純)+5I(g)= Tal5 (g)(合成反應)(3) 其他的钽碘化合物質比如Tal3與Tal2也會進行類似的 反應。根據下列的反應,這些鉬的氣態化合物會擴散到熱 分解區並進行分解,以形成純的钽金屬: 10 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 83. 3.1〇,〇〇0 請 先 閲503218 4888pif2.doc / 0 12-Printed A7 B7 by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs ___ V. Description of the Invention (/) The present invention relates to a method and device for manufacturing high-purity molybdenum, and formed by this method Extremely high purity. The present invention particularly relates to a method for manufacturing high-purity tantalum. BACKGROUND OF THE INVENTION In the electronics industry, the group has been widely used in manufacturing high-efficiency capacitors. This is mainly due to the strong and stable dielectric properties of the oxide film on the anodized metal. Therefore, processed fine foils and powders are often used to make main capacitors. In addition, thin film capacitors used in microcircuits are formed by anodized giant films, and anodized giant films are usually manufactured by sputtering. In new-generation wafers, tantalum sputtering can also be performed in an Ar-N2 environment to form an ultra-thin TaN layer as a barrier layer between the silicon substrate and the copper layer to ensure the cross-section of the interconnect. It is possible to take advantage of the high conductivity of copper. According to reports, the microstructure and surface texture of TaN films are not as sensitive to the deposition conditions as TiN. Therefore, for wafer processes using copper as the metallization process material, TaN is much better than ZN. For these thin film applications in the microelectronics industry, high-purity tantalum sputtering targets are needed. Most of the molybdenum metals produced in the world are derived from the sodium reduction reaction of K2TaF7. In addition, there are also some technologies that are not commercially adopted. These technologies include tantalum oxide (Ta205) and metal reducing agents such as calcium or aluminum, and non-metal reducing agents such as carbon and nitrogen carbide. Molybdenum pentachloride (TaCl5) performs reduction reaction with magnesium, sodium or hydrogen, and thermal dissociation reaction of tantalum pentachloride. 4 This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) 83. 3 ·! 0,000 (Please read the notes on the back before filling this page) C.-Order '503218 4888pif2.doc / 012 A7 B7 Standard local shell V. Description of the invention ()) The reduced giant system exists in the form of powder, lumps or monolithic metal. It often contains a considerable amount of oxygen and other impurities, including impurities such as reducing agents and impurities present in the molybdenum starting material. A common method to remove impurities in molybdenum is the electron beam melting method. This is because most of the metal impurities and the gas in the interstitial space are heated during the melting of the electron beam because of the high vapor pressure at the melting point of molybdenum (2996 degrees Celsius). Except for silver, cranes, pins, shafts, and agencies, basically all elements can be removed this way. When metal impurities and nitrogen are removed by direct evaporation, oxygen is also removed. The mechanism for removing oxygen includes the formation of carbon oxides, alumina, water, and other suboxides, which are then vaporized. The purity of molybdenum can be further improved by repeating the electron beam melting method. In other refining processes including vacuum arc melting, vacuum slag, molten salt electrorefining, and refining giant iodide, the refining of molybdenum iodide is the most reliable technique for removing molybdenum and tungsten. The above refining techniques are not effective in removing niobium from tantalum. This is because niobium and molybdenum are quite tightly bound in nature. Therefore, the removal of niobium is a critical step when preparing very high-purity tantalum. In order to separate tantalum from niobium, the method currently used is actually carried out by techniques such as solvent quenching, chlorination, and partial crystallization before performing the reduction reaction. The process steps of the giant target include forging the ingot into a strip, machining the surface of the bar tantalum, cutting the strip into a sheet, cold rolling the molybdenum sheet into the bull's eye, tempering the bull's eye, and finally Trim and combine with support plate. The paper size of the paper based on the fee-based cooperative system applies the Chinese National Standard (CMS) M specification (210 × 297 mm) 83. 3. 10,000 (please read the precautions on the back before filling out this page). 503218 4888pif2.doc / 012 A7 B7 _ V. Description of the Invention (Even) Invention Description The present invention provides a method and device for manufacturing a high-purity molybdenum sputtering target, and a high-purity molybdenum manufactured by this method. This method includes purifying K2TaF7, and reducing the purified K2TaF7 to make giant powder, and refining tantalum by reacting with iodine and finally performing an electron beam melting method to form a high-purity tantalum ingot. The starting material is the mass-produced heart salt, which is prepared by dissolving molybdenum ore in a mixture of hydrofluoric acid and sulfuric acid and then filtering, and quenching the solvent with methyl isobutyl ketone (MIBK). And K2TaF7 was crystallized. This step can be repeated several times to reduce the content of impurities, especially niobium. In the liquid-phase liquid-phase reduction distillation apparatus, the purified heart D &? 7 is subjected to sodium reduction reaction. In this distillation apparatus, K2TaF7 and the diluent (sodium chloride and potassium chloride) are heated to about 1000 degrees Celsius. degree. Next, molten sodium was poured into the still 'to cause it to react with K2TaF7. The reactants are stirred to accelerate the reduction reaction. After cooling, the material produced by the reaction is taken out of the evaporator, crushed, filtered, and washed to separate the molybdenum powder from the salt mixture. The saccharification step of Shendan is completed by iodization process or electron beam melting method. These two methods can be selected one by one or sequentially. However, the electron beam melting method is preferably the last step because the ingot produced is suitable for further physical metallurgical steps to achieve the purpose of manufacturing the target. The stomach is forged into a strip shape by an electron beam cast iron, and the surface is machined ', and the forged molybdenum strip is cut into flakes and further cold rolled into a leather core. Tempering in an inert atmosphere to form the microstructure after recrystallization. 6 This paper size applies to China National Standards (CNS) A4 specifications (210X297 mm) 83.3.10,000 (Please read the notes on the back before filling out this page)-Order printed by the Ministry of Economic Affairs Central Standards Bureau Consumer Consumption Cooperative 503218 4888pif2. doc / 012 A7 B7 V. Description of the invention (If) Next, the bulls eye is machined to complete its final form and combined with the support plate of copper or balu. Chemical analysis was performed to confirm the giants produced by this process. The method of obtaining the following chemical characteristics is to detect metal elements by glow discharge mass spectrometry (GDMS), and to detect non-metal elements by LECO gas phase analyzer. By weight, in the high-purity tantalum material of the present invention, all metal impurities are only 500 ppm, the oxygen content is less than about 100 ppm, the content of molybdenum and tungsten does not exceed 50 ppm, and the content of uranium and thorium does not exceed 10 ppb. It is also possible to make giants with a total content of molybdenum and tungsten of less than 5 ppm. Brief description of the drawings. Figure 1 is a schematic diagram of a liquid-liquid reactive distillation apparatus for K2TaF7 for sodium reduction reaction; Figure 2 is a schematic diagram of an iodination reaction tank; Figure 3 is a diagram of an iodization reaction tank with a distillation device Schematic diagrams; Figures 4A and 4B are the intentions of the group, and Figure 5 is a graph of the conductivity of the molybdenum rod versus the action time. Explanation of the reference numerals in the figure 1 ·· filled reactor 2: first tube column Tal5 condenser 3 ·· second tube column Nbl5 condenser 4: deposition reactor 5: iodine supply device 6: vacuum / circulation device 8 : Silk pole 12: Stirring device 14: Reactor 16: Cover (please read the precautions on the back before filling this page) The size of the paper is applicable to China National Standard (CNS) A4 (210X297 mm) 83. 3.! 〇, 〇〇〇〇503218 Printed by the Shelling Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 4888pif2.doc / 012 A7 V. Description of the invention (t) 18 Vacuum 20 Sodium input 22 Furnace tube 24 Molybdenum-lined reaction tank 26 Molybdenum charge 28 Molybdenum screen 30 Molybdenum wire 32 Lid 34 Electric feedthrough 36 Iodine supply device 42 Support plate of copper or aluminum 44 Bullseye Detailed description In nature, molybdenum is usually closely combined with niobium, tin and other elements. The most commonly used starting materials in giant processes are tantalite, tin-manganese-molybdenum, Micolite and niobium-yttrium. These minerals are concentrated by wet metering, magnetic or electrostatic methods. The concentrate was dissolved in a mixed solution of hydrofluoric acid and sulfuric acid. This solution 'is filtered and the niobium is then separated from the other impurities in a device that quenches the solvent. The concentrate of molybdenum will be transferred to an aqueous solution and precipitated with ammonia to form tantalic acid (T ^ 05 × Η20) ', which is calcined at high temperature to produce oxidized giants. Another method is to recrystallize tantalum to K2TaF7 by adding potassium fluoride and potassium chloride to a hot aqueous solution after quenching the solvent. The impure K2TaF7 obtained by these methods requires further purification before it can become a source of molybdenum used in the electronics industry. In general, H2 2 &? 7 can be purified by the following steps: Dissolve industrial grade K2TaF7 in hydrofluoric acid, where the hydrofluoric acid is, for example, a 49% hydrofluoric acid solution. Alternatively, a solution of hydrofluoric acid and sulfuric acid may be used for this dissolution step. The amount of K2TaF7 dissolved depends on the temperature and the concentration of hydrofluoric acid. In view of the very slow dissolution rate at room temperature, this paper size applies the Chinese National Standard (CNS) Α4 specification (210X29 * 7 mm) (Please read the precautions on the back before filling this page) -Packing · -Order 503218 4888pif2.doc / 012 A7 B7 Printed by the Shellfish Consumer Cooperative of the Bureau of Standards and Decisions of the Ministry of Economic Affairs. 5. Description of the Invention (G) The mixture is heated in a suitable container to, for example, 90 degrees Celsius. Cover the solution containing ITaF7 and keep stirring to avoid loss due to evaporation. The dissolution time is about 1 hour. Add potassium chloride chloride solution at 65 ° C to K ^ TaF? Solution, and stir the resulting solution until cooled to room temperature. Since the solubility of K2TaF7 is very low at room temperature, the giants in solution will precipitate out as K2TaF ?. The precipitate was filtered, washed and dried. At this point, some niobium, tungsten, molybdenum, zirconium, uranium, and tritium remain in the solution. For extremely high purity molybdenum, repeating this dissolution and precipitation step is quite useful. Elements such as niobium, tungsten, molybdenum, uranium, and thorium, which are difficult to remove by the electron beam melting method, can be easily removed by this method. K2TaF7 can be reduced to metallic molybdenum by molten salt electrolysis or sodium reduction. The rate of electrolytic reduction is very slow, so sodium reduction can be used to reduce a large amount of K2TaF7 to tantalum metal. The entire reduction reaction equation can be written as K2TaF7 + 5Na (/) = Ta〇s) + 2KF + 5NaF (1) Please refer to Figure 1, which shows a reduction furnace tube. This reduction reaction is carried out by putting K2TaF7 and diluted salts such as potassium chloride, sodium chloride, lithium chloride, thallium chloride and calcium chloride into a reactor 14 equipped with a stirring device 12. The reactor 14 is placed in a furnace tube and heated to a temperature above the melting point of the salt mixture, typically about 1000 degrees Celsius. On the one hand, the temperature was controlled, and on the other hand, molten sodium was injected into the reactor 14 and stirred. After cooling down, the reaction product will be removed from the reactor Η -------------- ^ ------ βΐ (Please read the precautions on the back before filling in this page) _ This paper size is in accordance with China National Standard (CNS) A4 (210X297 mm) 83. 3. 10,000 503218 4888pif2.doc / 012 A7 B7 V. Remove from the description of the invention (7), crush and filter with dilute acid to These powders are obtained by compressing and melting these powders in a tantalum metal powder furnace tube. Printed at the Central Bureau of Electron Beam Co., Ltd. 2) Iodization process Tantalum metal is produced by sodium reduction of a large amount of K2TaF7, which is similar to the Himter process used to make sponge giants. Most of the impurities in K2TaF7, such as iron, nickel, titanium, tungsten, and molybdenum, are still present in metals produced by sodium reduction reactions. This metal is in the form of powder and has a very high oxygen content. The method described herein can produce high-purity giants from fragments or impure giant metals. This step is based on a chemical conversion reaction. In this chemical conversion reaction, the impure tantalum metal reacts with iodine gas at a lower temperature to form molybdenum iodide (synthesis zone), and the iodine tantalum is then at a higher temperature Decomposes on the hot wire electrode to produce a very pure metal (deposition or thermal decomposition zone). Impure giants can be converted into gaseous substances in the synthesis zone according to the following reactions: Ta (s, impure) +5/2 I2 (g) = TaI5 (g) (synthetic reaction) (2) • Ta (s, impure ) + 5I (g) = Tal5 (g) (synthesis reaction) (3) Other tantalum iodine compounds such as Tal3 and Tal2 will also undergo similar reactions. According to the following reactions, these gaseous compounds of molybdenum will diffuse into the thermal decomposition zone and decompose to form pure tantalum metal: 10 This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) 83. 3.1〇, 〇〇0 Please read

I 頁 訂 503218 經濟部中央標準局員工消費合作社印裝 4888pif2.doc/0 I 2 五、發明説明(s )Page I Order 503218 Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs 4888pif2.doc / 0 I 2 V. Description of the Invention (s)

TaI5(g)=Ta(s)+5I(g)(熱分解反應)⑷ 熱動力因子在了解並控制此製程中是很重要的。因此 爲了確定在合成區與分解區中比如溫度與壓力等較佳的操 作條件,需要進行一些熱動力計算。 裝置的示意圖繪示於第2圖中。此製程裝置包括反應 槽24、絲極30與供給之材料,並且被設計爲進行批次操 作之用。此製程裝置在進行完每次的製程之後,都會被冷 卻至室溫並且拆開。 對钽的精煉而言,較佳的碘化反應槽爲一種覆蓋有金 屬之合金600(鉻鎳鐵合金)容器,覆蓋此容器表面的金屬 在氯電動序列上的電化學性質上比钽不具反應性,比如爲 鉬(即成爲第2圖中之鉬襯裡反應槽24)、鎢或是其合金。 由於鉬與鎢在反應槽24之操作溫度下不會與碘反應,因 此這層覆蓋將可以在精煉鉅時避免反應槽24之各種成分 的污染。合金600容器也可以用於精煉諸如鈦與锆等金屬, 但是並不需要覆蓋,這是因爲這些金屬是在不同的操作條 件下進行精煉。 以純鉬棒所形成的絲極30係作爲分解表面。絲極30 可作成U型或是其他不同的形狀,以增加其表面積。此外, 也可以使用多重絲極來增加表面積與反應槽的生產力。絲 極30可以像電阻一樣利用外接電源來加熱。由於絲極溫 度會影響沉積的速率,因此必須控制電流,以使溫度控制 在攝氏1000度至1500度之間。之後,钽晶體會生成於絲 (請先閲讀背面之注意事項再填寫本頁) •裝· 、tr. 本紙張尺度適用中國國家標率(CNS ) A4規格(210X297公釐) 83.3. 10,000 五、 4888pif2.d〇c/〇 1 2 A7 B7 中 央 標 準 局 消 费 合 作 社 印 裝 發明説明(〒) 極30上。 在反應槽24中放一個圓柱狀的鉬屏板28,以提供一 個1 1到3英吋寬的環狀空間。此環狀空間可塡以片狀、塊 狀或是小球狀的钽塡充材料26。這樣的安排可使反應槽24 中塡充材料26與碘氣體之間有較大的表面積來進行反應。 未經處理的鉅也可以壓縮成圏狀並放入反應槽24中。在 將塡充材料26放入反應槽24前必須先以淸潔劑淸洗。 在製造低雜質的钽時,使用較好的真空系統是有利的。 因此,反應槽24與一個真空系統相連,以產生10·6Τοπ* 或是更低的壓力。在室溫下對此反應槽24抽氣,並接著 在真空的情況下加熱至攝氏800度至1000度,以在加入 碘之前移除所有的揮發性雜質。 合成區的溫度會影響反應的速率。合成區的溫度需均 勻並且保持在高於Tal3之熔點的溫度。在反應槽24的蓋 子32上放置一個特殊的加熱器,以保持其溫度於大約攝 氏350度至500度,此溫度可防止蓋子32下的碘發生凝 結現象。如果沒有蓋子32,就必須持續將碘加入系統中。 從前趨物開始至電子束熔化的過程中,有幾個來源會 造成钽中的氧。高濃度的氧是不希望得到的:因其會影響 所沉積之坦薄膜的電阻値。目前的技術不能輕易地將氧含 量降到30ppm以下。熱動力計算與實驗結果顯示在金屬中 所形成或存在的金屬氧化物並不會與碘反應,也不會移轉 至分解區中。因此,此製程可以製造低氧量的高純度坦。 反應槽24中之氣體的氧量可以藉著氧氣與真空的組合來 ^---------- (請先聞讀背面之注意事項再填寫本頁) 訂' 本紙浓尺度適用中國國家標準(CNS〉A4規格(210X297公釐) 83.3.1〇,〇〇0 503218 4888pif2.doc/012 A7 B7 經濟部中夾標準局貝工消費合作社印製 五、發明説明(p ) 降低。在塡充金屬中的氮有類似氧的性質,因此在鉅棒中 氮的量也將會很低。 電子束熔化法常常用於精煉鉬。然而,電子束熔化並 不能移除像鎢與鉬等元素,這是因爲這些元素在钽熔點的 溫度下具有很低的蒸氣壓。本製程可以可靠的將像鎢與鉬 等元素降低到極低的程度。本製程可以移除電子束熔化法 所不能移除的鈾與钍。 上述的碘化製程並不能明顯地移除鈮的含量。因此, 可以藉由修正先前的製程來得到低金屬雜質的純钽,其中 金屬雜質包括鈮。在修正後的製程中,钽碎片或原生的钽 將與碘氣體反應,以形成氣態的Tal5以及Nbl5。由於這兩 種化合物的沸點不同,因此可在後續的分餾步驟中被分 開。裝置的示意圖繪示於第3圖中。 未經加工的_或碎片可被放置於材質爲鉻鎳鐵合金且 以鉬、鎢或其合金覆蓋的直立管中,並將此直立管放置於 加熱到攝氏400度至700度的爐管中以構成塡充反應器1。 將比如爲乾淨的氬氣或氦氣的沖提氣體通過碘供給裝置 5。調節此碘供給裝置5的溫度以得到特定的12分壓。碘 氣體會在塡充反應器1中與钽碎片反應以生成氣態的碘化 坦與碘化鈮。從塡充反應器1而來的氣體穿過蒸餾管柱2 與3,其中第一管柱2的溫度維持在剛好低於Tal5之熔點 的溫度,以凝結Tal5 ;第二管柱3的溫度則維持在低到足 以凝結Nbl5,但是高於12之沸點的溫度。經由再利用的步 驟來循環碘氣體。位於第一管柱2與塡充反應器1之間的 (請先閲讀背面之注意事項再填寫本頁) -裝· -- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 83. 3. 10,000 經濟部中夬標準局貝工消費合作社印黧 503218 4888pif2.doc/012 A7 B7 五、發明说明Ul ) 氣體管路都是由鉬所形成,並且維持在高於攝氏600度的 溫度,而其他的氣體管路則維持在較低的溫度。 將由第一管柱2而來之液態或固態的純Tal5送入沉積 反應器4,TaI5在熱表面上會分解並生成純鉅晶體。此製 程所製造的钽將非常純且不具有以習知方法不能移除的所 有雜質。以電子束熔化藉由修正後的碘化製程而得的純 鉬,以製造高純度的钽鑄塊。 3.電子束熔化 電子束熔化法常用於熔化並精煉難熔金屬。 此製程是基於利用高能微粒束撞擊在材料上,重力 能轉變成熱能所產生的筒熱。能量分布的易於控制使得言者 如點、滴落、鍛鐵爐與區域熔化法等用於多種金屬的多種 電子束熔化技術變得可行。電子束鍛鐵爐熔化法已經可以 用於組以及超合金。電子束滴落溶化法可用於難熔材料。 電子束滴落熔化法爐管包括了用於初級原料垂直棒狀進料 器。棒狀進料器配備有真空閥,此真空閥可以使進料接近 連續並且熔化預先壓緊的材料。難熔材料的精煉是藉由次 氧化物的蒸發、氣體的生成與移除、碳氧反應以及金屬雜 質的汽化來進行。在上述任一種機制的熔化中,大部分的 雜質都會從钽中被移除。然而,鎢、鉬、鈮、鈾與^等元 素由於在鉅之熔化溫度的蒸氣壓太低,因此不易以電子束 熔化法移除。要得到高純度的材料可能需要重複熔化步 驟。 本紙張尺度適用中國國家榡準(CNS ) A4規格(210X297公釐)TaI5 (g) = Ta (s) + 5I (g) (Thermal decomposition reaction) The thermodynamic factor is very important in understanding and controlling this process. Therefore, in order to determine better operating conditions such as temperature and pressure in the synthesis zone and decomposition zone, some thermodynamic calculations need to be performed. The schematic diagram of the device is shown in Figure 2. The process device includes a reaction tank 24, a filament 30, and supplied materials, and is designed for batch operations. After each process, this process device is cooled to room temperature and disassembled. For the refining of tantalum, the preferred iodination reaction tank is an alloy 600 (Inconel) container covered with a metal. The metal covering the surface of this container is less reactive than tantalum in terms of electrochemical properties in the electro-chemical sequence of chlorine. For example, it is molybdenum (that is, the molybdenum-lined reaction tank 24 in FIG. 2), tungsten, or an alloy thereof. Since molybdenum and tungsten do not react with iodine at the operating temperature of the reaction tank 24, this layer of coating can avoid contamination of various components of the reaction tank 24 during refining. Alloy 600 vessels can also be used to refine metals such as titanium and zirconium, but they do not need to be covered because these metals are refined under different operating conditions. The filament 30 formed by a pure molybdenum rod was used as the decomposition surface. The filament 30 can be made into a U-shape or other shapes to increase its surface area. In addition, multiple filaments can be used to increase surface area and productivity of the reaction tank. The filament 30 can be heated by an external power source like a resistor. Since the filament temperature affects the rate of deposition, the current must be controlled to keep the temperature between 1000 and 1500 degrees Celsius. After that, tantalum crystals will be generated in the silk (please read the precautions on the back before filling out this page). • Loading ·, tr. This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) 83.3. 10,000 V. 4888pif2.d〇c / 〇1 2 A7 B7 Printed invention description printed on the Consumer Cooperatives of the Central Bureau of Standards (〒) on pole 30. A cylindrical molybdenum shield plate 28 is placed in the reaction tank 24 to provide an annular space 11 to 3 inches wide. The annular space may be filled with tantalum filling material 26 in the form of a sheet, a block, or a small ball. This arrangement allows a large surface area between the filling material 26 and the iodine gas in the reaction tank 24 to carry out the reaction. The untreated giant can also be compressed into a tadpole shape and placed in the reaction tank 24. Before placing the filling material 26 in the reaction tank 24, it must be washed with a cleaning agent. It is advantageous to use a better vacuum system when manufacturing low impurity tantalum. Therefore, the reaction tank 24 is connected to a vacuum system to generate a pressure of 10 · 6 Toπ * or lower. This reaction tank 24 was evacuated at room temperature and then heated to 800 to 1000 degrees Celsius under vacuum to remove all volatile impurities before adding iodine. The temperature in the synthesis zone affects the rate of the reaction. The temperature in the synthesis zone needs to be uniform and kept at a temperature higher than the melting point of Tal3. A special heater is placed on the lid 32 of the reaction tank 24 to keep its temperature at about 350 to 500 degrees Celsius. This temperature prevents the iodine under the lid 32 from condensing. Without the lid 32, iodine must be continuously added to the system. There are several sources of oxygen in tantalum from the precursor to the melting of the electron beam. A high concentration of oxygen is undesirable: it affects the resistance of the deposited tan film. Current technology cannot easily reduce the oxygen content below 30 ppm. Thermodynamic calculations and experimental results show that the metal oxides formed or present in the metal will not react with iodine and will not migrate to the decomposition zone. Therefore, this process can produce high purity tan with low oxygen content. The amount of oxygen in the gas in the reaction tank 24 can be obtained by the combination of oxygen and vacuum ^ ---------- (Please read the precautions on the back before filling this page) National Standard (CNS> A4 Specification (210X297 mm) 83.3.1, 〇00,503, 4888pif2.doc / 012 A7 B7 Printed by Shellfish Consumer Cooperative of the Standards Bureau of the Ministry of Economic Affairs. 5. The description of invention (p) is reduced. Nitrogen in europium-filled metals has oxygen-like properties, so the amount of nitrogen in giant rods will also be low. Electron beam melting is often used to refine molybdenum. However, electron beam melting does not remove things like tungsten and molybdenum. This is because these elements have a very low vapor pressure at the temperature of the melting point of tantalum. This process can reliably reduce the elements such as tungsten and molybdenum to a very low level. This process can remove the electron beam melting method cannot Removal of uranium and plutonium. The above-mentioned iodination process does not significantly remove the niobium content. Therefore, pure tantalum with low metal impurities can be obtained by modifying the previous process, where the metal impurities include niobium. In the process, tantalum fragments or native tantalum will The iodine gas reacts to form gaseous Tal5 and Nbl5. Since the two compounds have different boiling points, they can be separated in subsequent fractionation steps. The schematic diagram of the device is shown in Figure 3. Raw _ or fragments It can be placed in an upright tube made of Inconel and covered with molybdenum, tungsten, or an alloy thereof, and the upright tube can be placed in a furnace tube heated to 400 to 700 degrees Celsius to form a filling reactor 1. An eluent gas, such as clean argon or helium, is passed through the iodine supply device 5. The temperature of the iodine supply device 5 is adjusted to obtain a specific partial pressure of 12. The iodine gas will react with the tantalum fragments in the aeration reactor 1 To produce gaseous iodide and niobium iodide. The gas from the tritium-filled reactor 1 passes through the distillation columns 2 and 3, where the temperature of the first column 2 is maintained at a temperature just below the melting point of Tal5, To condense Tal5; the temperature of the second column 3 is maintained at a temperature low enough to condense Nbl5, but above the boiling point of 12. The iodine gas is circulated through the reuse step. It is located in the first column 2 and the tritium filling reactor Between 1 (please read the back first Please fill in this page again for the matters needing attention)-Installation ·-This paper size is applicable to Chinese National Standard (CNS) A4 specification (210X297 mm) 83. 3. 10,000 Printed by the China Standards Bureau of the Ministry of Economic Affairs, Peige Consumer Cooperative, India 503218 4888pif2.doc / 012 A7 B7 V. Description of the Invention Ul) The gas pipelines are all formed of molybdenum and maintained at a temperature higher than 600 degrees Celsius, while the other gas pipelines are maintained at a lower temperature. The liquid or solid pure Tal5 coming from the first column 2 is sent to the deposition reactor 4, and TaI5 will decompose on the hot surface and generate pure giant crystals. The tantalum produced by this process will be very pure and will not have all the impurities that cannot be removed by conventional methods. The pure molybdenum obtained by the modified iodination process is melted by an electron beam to produce a high-purity tantalum ingot. 3. Electron beam melting Electron beam melting is commonly used to melt and refine refractory metals. This process is based on the use of high-energy particle beams to impinge on the material, and the gravity energy is converted into thermal energy generated by the barrel heat. The easy control of the energy distribution makes it possible for speakers to use a variety of electron beam melting techniques for a variety of metals, such as spot, drip, wrought iron, and zone melting. Electron beam wrought furnace melting is already available for groups and superalloys. Electron beam dripping melting method can be used for refractory materials. The electron beam drip melting furnace tube includes a vertical rod feeder for primary raw materials. The rod feeder is equipped with a vacuum valve that allows the feed to be nearly continuous and melts the pre-compacted material. Refining of refractory materials is carried out by evaporation of secondary oxides, generation and removal of gases, carbon-oxygen reactions, and vaporization of metal impurities. In any of these mechanisms, most impurities are removed from tantalum. However, tungsten, molybdenum, niobium, uranium, and other elements are not easily removed by the electron beam melting method because the vapor pressure at the melting temperature is too low. Repeated melting steps may be required to obtain high purity materials. This paper size applies to China National Standard (CNS) A4 (210X297 mm)

---------·裝------IT------ (請先閲讀背面之注意事項再填寫本頁) _I 經濟部中央標準局貝工消費合作社印裝 503218 4888pif2.doc/012 _B7__ 五、發明説明(/>) 在電子束滴落熔化爐管中將K2TaF7的電解或還原反應 生成之钽碎片、不純的鉬以及鉅粉加以壓縮並熔化,以得 到高純度的鉅鑄塊。 4.靶的製造 將以電子束熔化法製造的鑄條鍛造成條狀,並對其表 面進行機械加工。在表面經過機械加工之後,將鍛造過的 钽條切成片狀,並進一步冷軋成耙心44。在鈍氣環境中對 此靶心進行回火,以獲致所欲之微結構。接著,將靶心44 加工至最後的型態並與銅或鋁的支撐板42相結合,如第4A 圖與第4B圖所繪示。 藉著量測晶粒的大小與組成情形來對靶進行化學分析 與定性是並須的。在此所述可以描繪出化學性質的化學分 析方法包括以輝光放電質譜技術分析金屬元素及以LECO 氣相分析儀來分析非金屬元素。內插法可用於測定晶粒的 大小,而XRD與EBSP則可用於獲得有關其組織結構的 數據。 實施例1 將大約350克K2TaF7加入595毫升的氫氟酸(百分之49) 的鐵氟龍燒杯中。將此混合液加熱至攝氏90度並持續攪 拌。以鐵氟龍板蓋住此燒杯,以避免溶液的蒸發。持續此 溶解步驟大約1小時。在700毫升的蒸餾水中加入大約14〇 克的氯化鉀,並加熱至攝氏60度。將此氯化鉀溶液加入 K2TaF7溶液中並將所形成之溶液攪拌數分鐘。將此溶液冷 本紙張尺度適用中國國家標隼(CNS ) A4規格(210X297公釐〉 83.3. 10,000 (請先聞讀背面之注意事項再填寫本頁) 訂 .丨參 503218 4888pif2.doc/012 A7 B7 五、發明説明G?) 卻至室溫。由於此化合物在室溫的溶解度相當低,因此室 溫將使溶液中的鉅以K2TaF7的形式沉澱出來。以氟化鉀 溶液(lOOg/liter H20)與蒸餾水過濾並清洗此沉澱物。在真 空爐管中以攝氏160度的溫度乾燥粉末,並接著對此沉澱 物進行X光繞射硏究,以分析其成分。 根據上述的方法可形成數種樣品,並且對這些樣品加 以分析。在此第一處理之後,K2TaF7中的鈮含量降低了大 約百分之50。此結果顯示於第1表中。第1表中所顯示的 數據指出以此法可以降低钽中的鈮含量。而純化後@ K2TaF7可以以鈉來進行還原反應。 (請先閲讀背面之注意事項再填寫本頁) 經濟部中央樣準局貝工消費合作社印裝 第1表 元素 起始K2TaF7 第一次淸洗後 之 K2TaF7 第二次淸洗後 鈮 4.6 <2.2 <1 ____ 鉬 0.2 0.1 0.1 ___ 鑛 4.8 1.1 <1 __一 锆 0.52 0.14 0 · 1 丨丨一 钍 <0.01 <0.01 <0.01__- 鈾 <0.01 <0.01 <0.0!__一 鈉 1100 130 50 ___ 鐵 4.8 1.2 <1 __ 鋁 2.5 1.2 硫 8.7 1.1 尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 83. 3.1〇,〇〇〇 503218 4888pif2.doc/012 A7 B7 五、發明说明(I浐) 第1表中的數據顯示出鈮、鉬與鎢的含量皆被此法大 幅的降低。這些元素並不能以電子束鎔化法將其從钽金屬 中去除。將這三種元素從钽中移除對於純化钽有相當大的 助益。假設所有在K2TaF7中的鈮、鉬與鎢在鈉還原反應 的階段都與組一起還原,並且忽略其他列於第1表中之元 素的存在,K2TaF7的純化過程對金屬純度的影響可以一個 簡單的計算來顯示。1〇〇〇克的起始K2TaF7在經過完全的 鈉還原反應之後’將生成461 ·7克的钽。這些钽中含有9·6 毫克的鈮、鉬與鎢’導致金屬純度達到百分之99.9979。 當使用經過兩次淸洗的K2TaF7時’將有461·7克的鉅經由 鈉還原反應而生成,這些鉬中將含有2.1毫克的鈮、鉬與 鎢,金屬純度將達到百分之99·9995。 實施例2 請 先 閲--------- · Installation ------ IT ------ (Please read the precautions on the back before filling out this page) _I Printed by the Shellfish Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 503218 4888pif2.doc / 012 _B7__ V. Description of the invention (/ >) The tantalum fragments, impure molybdenum and giant powder produced by the electrolysis or reduction reaction of K2TaF7 are compressed and melted in the electron beam dripping melting furnace tube to obtain high Giant ingot of purity. 4. Manufacturing of the target The cast rod manufactured by the electron beam melting method is forged into a strip shape, and its surface is machined. After the surface is machined, the forged tantalum bar is cut into pieces and further cold rolled into a harrow core 44. Tempering this bulls-eye in an inert atmosphere to achieve the desired microstructure. Next, the bulls eye 44 is processed to the final shape and combined with the copper or aluminum support plate 42 as shown in FIGS. 4A and 4B. It is necessary to perform chemical analysis and characterization of the target by measuring the size and composition of the crystal grains. Chemical analysis methods that can describe chemical properties described herein include the analysis of metallic elements using glow discharge mass spectrometry and the analysis of non-metallic elements using a LECO gas analyzer. Interpolation can be used to determine the size of the grains, while XRD and EBSP can be used to obtain data about its structure. Example 1 Approximately 350 grams of K2TaF7 was added to a 595 ml Teflon beaker of hydrofluoric acid (49 percent). Heat the mixture to 90 ° C and continue to stir. Cover the beaker with a Teflon plate to avoid evaporation of the solution. This dissolution step is continued for approximately 1 hour. About 700 g of potassium chloride was added to 700 ml of distilled water and heated to 60 degrees Celsius. This potassium chloride solution was added to the K2TaF7 solution and the resulting solution was stirred for several minutes. The paper size of this solution is in accordance with China National Standards (CNS) A4 (210X297 mm) 83.3. 10,000 (please read the precautions on the back before filling this page). Order 503218 4888pif2.doc / 012 A7 B7 V. Description of the invention G?) But it reaches room temperature. Since the solubility of this compound is quite low at room temperature, the room temperature will cause the giant in the solution to precipitate out as K2TaF7. The precipitate was filtered and washed with potassium fluoride solution (100 g / liter H20) and distilled water. The powder was dried in a vacuum furnace tube at a temperature of 160 ° C, and the precipitate was then subjected to X-ray diffraction research to analyze its composition. Several samples can be formed according to the method described above, and these samples can be analyzed. After this first treatment, the niobium content in K2TaF7 was reduced by about 50%. The results are shown in Table 1. The data shown in Table 1 indicate that the niobium content of tantalum can be reduced in this way. After purification, @ K2TaF7 can be reduced with sodium. (Please read the precautions on the back before filling out this page) The first sample of K2TaF7 is printed on the first sheet of K2TaF7 after the first wash of K2TaF7 after the second wash of niobium 4.6 < 2.2 < 1 ____ Molybdenum 0.2 0.1 0.1 ___ Ore 4.8 1.1 < 1 __One Zirconium 0.52 0.14 0 · 1 丨 丨 One 钍 < 0.01 < 0.01 < 0.01 __- Uranium < 0.01 < 0.01 < 0.0 ! __ Monosodium 1100 130 50 ___ Iron 4.8 1.2 < 1 __ Aluminum 2.5 1.2 Sulfur 8.7 1.1 Standards are applicable to China National Standard (CNS) A4 specifications (210X297 mm) 83. 3.1〇, 〇〇〇503218 4888pif2.doc / 012 A7 B7 V. Description of the invention (I 浐) The data in Table 1 shows that the contents of niobium, molybdenum and tungsten have been greatly reduced by this method. These elements cannot be removed from the tantalum metal by the electron beam halogenation method. The removal of these three elements from tantalum can be of considerable benefit in purifying tantalum. Assuming that all the niobium, molybdenum, and tungsten in K2TaF7 are reduced together with the group at the stage of sodium reduction reaction, and the existence of other elements listed in Table 1 is ignored, the effect of the purification process of K2TaF7 on the purity of the metal can be simple Calculate to display. After 1000 grams of starting K2TaF7 has undergone a complete sodium reduction reaction 'will yield 461.7 grams of tantalum. These tantalums contain 9.6 mg of niobium, molybdenum and tungsten 'resulting in a metal purity of 99.9979 percent. When using K2TaF7 after two washing cycles, 461.7 g of giant will be generated through sodium reduction reaction. These molybdenum will contain 2.1 mg of niobium, molybdenum and tungsten, and the metal purity will reach 99.9995%. . Example 2 Please read

II

局 貝 工 靠 將市場上可獲得之碎片可以利用碘化反應槽製造出純 組。此反應槽是以絡鐵錬合金製成並襯以銷的內裡,以進 行初步實驗。在反應槽中放入一個鉬屏板,並在屏板與反 應槽壁之間的夾縫中塡滿钽碎片。對反應槽進行測漏,並 且抽真空至1〇·5 torr。在真空下將反應槽加熱至攝氏850 度,以蒸發並移除一些有機物或是其他的揮發性化合物。 接著,將反應槽冷卻至室溫並且淸除掉蓋子上的沉澱物。 將材質爲純鉅的絲極裝在反應槽的蓋子上。之後,將反應 槽封起來,並再次抽真空至大約1〇_5 t〇rr。將塡充物加熱 至大約攝氏500度至600度’並將絲極加熱至攝氏〗〇〇〇 裝 83. 3. !〇,〇〇〇 本紙張尺度適用中國國家標準(CNS ) A4说格(21〇ΧΜ7公釐) 503218 A7 4888pif2.doc/012 _____B7_ 一 五、發明説明(/ Π 度至1200度。當塡充物與絲極的溫度穩定之後,在反應 槽中加入一定量的碘晶體。持續測量施加於絲極的電流與 電壓。從這些數値中可以計算出與鉅棒之直徑有關的導電 性。控制塡充材料的溫度、絲極的溫度以及容器的壓力。 鉬棒可以藉由此法順利的長成。 絲極與塡充物的溫度與壓力對沉積的速率有很明顯的 影響。鉬棒的生長速率與钽棒的導電度有關。導電度與生 長速率的相關曲線繪示於第5圖中。從第5圖中可以發現 以此法所形成之钽棒的生長速率很快。第2表顯示了從進 行此法不同次數所生成之钽棒的化學分析結果。需注意的 是在此實驗中所用的碎片在組成上並非單相。钽塡充物的 請 先 閲 面 之 注 事 項 再The local manufacturer can use the iodization reaction tank to make the pure group from the fragments available on the market. This reaction tank is made of iron-iron alloy and lined with a pin inner for preliminary experiments. A molybdenum screen is placed in the reaction tank, and the gap between the screen and the wall of the reaction tank is filled with tantalum fragments. Leak test the reaction tank and evacuate to 10.5 torr. The reaction tank is heated to 850 ° C under vacuum to evaporate and remove some organics or other volatile compounds. Next, the reaction tank was cooled to room temperature and the precipitate on the lid was decanted. A pure giant filament was mounted on the lid of the reaction tank. After that, the reaction tank was sealed and evacuated again to about 10-5 Torr. The filling is heated to about 500 to 600 degrees Celsius' and the filament is heated to about Celsius 〖〇〇〇 装 83. 3.! 〇 , 〇〇〇 This paper size applies the Chinese National Standard (CNS) A4 standard ( 21〇ΜΜ7mm) 503218 A7 4888pif2.doc / 012 _____B7_ One or five, the description of the invention (/ Π degrees to 1200 degrees. After the temperature of the filling and filaments stabilized, a certain amount of iodine crystals were added to the reaction tank. Continuously measure the current and voltage applied to the filament. From these data, the conductivity related to the diameter of the giant rod can be calculated. Control the temperature of the filling material, the temperature of the filament and the pressure of the container. The molybdenum rod can be used The growth of this method is smooth. The temperature and pressure of the filament and the filling have a significant effect on the deposition rate. The growth rate of the molybdenum rod is related to the conductivity of the tantalum rod. The correlation curve of conductivity and growth rate is plotted In Figure 5. It can be seen from Figure 5 that the tantalum rods formed by this method have a fast growth rate. Table 2 shows the results of chemical analysis of tantalum rods generated from different times of this method. Note that Is used in this experiment The fragments are not single-phase in composition. For tantalum hafnium fillings, please read the note above first.

原始組成見於第2表中。 第1次 第2次 第3次 第4次 時 間 (hrs) 79 45 62 45 重量(g) 5925 5043 7829 5969 經The original composition is shown in Table 2. 1st 2nd 3rd 4th Time (hrs) 79 45 62 45 Weight (g) 5925 5043 7829 5969 Warp

央 標 準 局 貝 消 費 合 作 社 印 元素 (ppm) 塡充1 與2 第1次 第2次 塡充3 與4 第3次 第4次 鈮 1200 900 505 90 185 230 鉬 6 1.2 1.7 1.3 1.2 鎢 30,000 0.28 0.19 0.2 0.25 氧 100 90 308 100 60 176 氮 100 <10 3 100 6 4 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) 83. 3. 10,000 503218 4888pif2.doc/012 A7 B7 五、發明説明(1 u ) 實施例3 經過不同次數之製程步驟所形成的鉅晶體棒在電子束 爐管中熔化。第3表中顯示了金屬塊與熔化之鉬鑄塊的分 析結果。 第3表 元素 塡充材料濃度(平 均 ppm) 熔化後之濃度(平 均 ppm) 鐵 344 1 鎳 223 0.13 鉻 205 0.19 鈮 463 270 氧 221 <25 實施例4 經濟部中央標準局貝工消費合作社印製 (請先閲讀背面之注意事項再填寫本頁) 對以電子束熔化法形成的鑄塊進行冷處理並回火,以 製造靶心。藉著邊緣及鍛造鑄造使起始鑄塊破裂。經過表 面機械加工後,將經過锻造的鑄塊切成片狀,並且進一步 冷軋成靶心。軋的溫度有兩種:室溫與液態氮的温度。前 者稱爲冷軋,而後者則爲低溫乳。在軋的過程中還原反應 進行了大約在百分之70至百分之90之間的程度。軋過的 靶心在鈍氣環境中或是不同條件的真空中進行回火以得到 所要的微結構與表面質地。 本紙張尺度適用中國國家榡準(CNS ) A4規格(210X297公釐) 83. 3. 10,000 503218 4888pif2.doc/012 A7 B7 五、發明説明(I?) 實施例5 對具有良好晶粒與所欲之表面質地的靶心進行機械加 工,以得到最終之型態並與銅或鋁的支撐板結合。第4A 圖與第4B圖繪示靶製程的示意圖。 在上述討論中,在本發明的前提中可作多種的更改與 修正。據此,本發明的範圍係以所附之申請專利範圍來限 制。 (請先閲讀背面之注意事項再填寫本頁) -裝- 經濟部中央標隼局員工消費合作社印裝 20 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) 83. 3. 10,000Printed Elements (ppm) of the Central Bureau of Standards and Consumer Cooperatives Charging 1 and 2 1st 2nd Charging 3 and 4 3rd 4th Niobium 1200 900 505 90 185 230 Molybdenum 6 1.2 1.7 1.3 1.2 Tungsten 30,000 0.28 0.19 0.2 0.25 Oxygen 100 90 308 100 60 176 Nitrogen 100 < 10 3 100 6 4 This paper size applies Chinese National Standard (CNS) A4 specification (210 × 297 mm) 83. 3. 10,000 503218 4888pif2.doc / 012 A7 B7 V. Description of the invention (1 u) Example 3 The giant crystal rods formed through the process steps of different times are melted in an electron beam furnace tube. Table 3 shows the results of the analysis of the metal block and the molten molybdenum ingot. Table 3 Concentrations of elementary filling materials (average ppm) Concentration after melting (average ppm) Iron 344 1 Nickel 223 0.13 Chromium 205 0.19 Niobium 463 270 Oxygen 221 < 25 Example 4 Printed by the Shellfish Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs (Please read the precautions on the back before filling out this page) The ingot formed by the electron beam melting method is cold-treated and tempered to make the bulls eye. The starting ingot is fractured by edge and forged casting. After surface machining, the forged ingot is cut into flakes and further cold rolled into a bull's eye. There are two types of rolling temperature: room temperature and the temperature of liquid nitrogen. The former is called cold rolling, while the latter is low temperature milk. The reduction reaction proceeds during the rolling process to an extent of between about 70 and 90 percent. The rolled bullseye is tempered in a blunt atmosphere or in a vacuum under different conditions to obtain the desired microstructure and surface texture. This paper size is applicable to China National Standard (CNS) A4 (210X297 mm) 83. 3. 10,000 503218 4888pif2.doc / 012 A7 B7 V. Description of the Invention (I?) Example 5 The surface texture of the bulls eye is machined to obtain the final shape and combined with a copper or aluminum support plate. Figures 4A and 4B are schematic diagrams of the target manufacturing process. In the above discussion, various changes and modifications can be made in the premise of the present invention. Accordingly, the scope of the present invention is limited by the scope of the attached patent application. (Please read the precautions on the back before filling out this page) -Installation-Printed by the Consumers' Cooperatives of the Central Bureau of Standards of the Ministry of Economy 20 This paper size applies to the Chinese National Standard (CNS) Α4 specification (210 × 297 mm) 83. 3. 10,000

Claims (1)

503218 公 2:1*18 8 8 離 doc/0 1 2 A8 B8 C8 D8 修正 捕充 Μ "畴—請 .....—-^•一一, 六、申請專利範圍 1. 一種製造高純度鉬的方法,包括下列步驟: 以熔解製程純化K2TaF“ 將經過純化的K2TaF7與一還原劑反應,以製造鉅粉 末;以及 使該鉬粉於一容器中與碘進行反應。 2. 如申請專利範圍第1項之方法,其中在該K2TaF7中 的鎢和鉬減少至小於重量的Ippm,且鈮與其他金屬雜質 減少至小於重量的20ppm。 3. —種製造高純度鉅的方法,包括: 在一容器中使一進料與碘氣體進行反應,該進料中包 括钽與一雜質,且該雜質包括鎢與鉬二者中至少一者; 形成一反應產物,其中包括鉬的碘化物;以及 在一絲極上分解鉬的碘化物,以產生高純度的钽,其 中所含之鎢與鉬二者中至少有一者的含量低於該進料。 4·如申請專利範圍第1或3項之方法’其中該容器具 有包括在氯電動序列中,電化學性質比钽更不活潑之金屬 的一反應劑接觸表面。 經濟部中央標準局員工消費合作社印製 (請先閲讀背面之注意事項再填寫本頁) 5·如申請專利範圍第4項之方法,其中該反應劑接觸 表面包括鉬、鎢以及鉬與鎢之合金三者其中之一。 6·如申請專利範圍第1或3項之方法,其中該高純度 鉅之中包括各自在重量上小於5ppm之鎢與鉬。 7·如申請專利範圍第1或3項之方法,更包括以電子 束熔化該鉬,以形成一高純度鉅鑄塊。 8 · —'種具有高純度組的灑鑛IG心’該灑鑛钯心的總金 本紙張尺度適用中國國家榡準(CNS ) Α4規格(210X29*7公釐) 503218 A8 4888pif2.doc/0 12 B8 C8 D8 申請專利範圍 屬雜質重量爲500ppm,且鎢或鉬重量爲50ppm。 (請先閲讀背面之注意事項再填寫本頁) 9. 如申請專利範圍第8項所述之濺鍍鈀心,其中鎢或 鉬的重量小於20ppm。 10. 如申請專利範圍第8項所述之濺鍍鈀心,其中鎢與 鉬的重量小於5ppm。 11. 如申請專利範圍第8項所述之濺鏟鈀心,其中鈮、 鉬與鎢總重量小於20ppm。 12·如申請專利範圍第8項所述之濺鍍鈀心,其中鈮、 鉬與錫的總重量小於5ppm。 13. —種濺鍍靶,其係由申請專利範圍第8項所述之濺 鍍鈀心所構成。 14. 一種製造高純度組的方法,包括下列步驟: 使一材料與碘氣體發生反應,該材料中包括鉅與至少 一雜質; 形成一反應產物,其中包括钽的碘化物與上述至少一 雜質的碘化物; 利用分餾法,由該反應產物中至少分離出該鉬的碘化 物的一部分;以及 · 經濟部中央標準局員工消費合作社印製 在一絲極上分解該鉬的碘化物。 15. 如申請專利範圍第14項所述之方法,其中所謂的 至少一雜質係包括鈮。 22 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐)503218 Male 2: 1 * 18 8 8 off doc / 0 1 2 A8 B8 C8 D8 Correction charge M " domain—please .....—- ^ • one, one, six, patent scope 1. a high manufacturing A method for purifying molybdenum includes the following steps: Purifying K2TaF by a melting process "reacting the purified K2TaF7 with a reducing agent to produce a giant powder; and reacting the molybdenum powder with iodine in a container. 2. If applying for a patent The method of the first item, wherein tungsten and molybdenum in the K2TaF7 are reduced to less than 1 ppm by weight, and niobium and other metal impurities are reduced to less than 20 ppm by weight. 3. A method for manufacturing a high-purity giant, including: Reacting a feedstock with iodine gas in a vessel, the feedstock including tantalum and an impurity, and the impurity including at least one of tungsten and molybdenum; forming a reaction product including iodide of molybdenum; and Decompose the iodide of molybdenum on a filament to produce high-purity tantalum, which contains at least one of tungsten and molybdenum in a content lower than that of the feed. 4. Method as claimed in item 1 or 3 of the scope of patent application 'Where the container has Included in the electro-chlorine sequence is a reactant contact surface of a metal that is less reactive than tantalum. Printed by the Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs (please read the precautions on the back before filling out this page). 5 The method of applying for item 4 of the patent, wherein the contact surface of the reactant includes one of molybdenum, tungsten, and an alloy of molybdenum and tungsten. 6. The method of applying for items 1 or 3 of the patent, wherein the high purity These include tungsten and molybdenum, each of which is less than 5 ppm by weight. 7. The method of item 1 or 3 of the patent application scope further includes melting the molybdenum with an electron beam to form a high-purity giant ingot. 8 · — ' A kind of high-purity sprinkler IG core 'The total gold paper size of this sprinkler palladium core is applicable to China National Standard (CNS) A4 specification (210X29 * 7 mm) 503218 A8 4888pif2.doc / 0 12 B8 C8 D8 The scope of patent application is that the weight of impurities is 500ppm, and the weight of tungsten or molybdenum is 50ppm. (Please read the precautions on the back before filling out this page) 9. The sputtered palladium core described in item 8 of the scope of patent application, where tungsten or Low weight of molybdenum 20ppm. 10. The sputtered palladium core as described in item 8 of the patent application, wherein the weight of tungsten and molybdenum is less than 5 ppm. 11. The shovel palladium core as described in item 8 of the patent application, where niobium, molybdenum and The total weight of tungsten is less than 20 ppm. 12. The sputtered palladium core as described in item 8 of the scope of patent application, wherein the total weight of niobium, molybdenum, and tin is less than 5 ppm. 13. A sputtering target, which is the first It consists of the sputtered palladium core according to item 8. 14. A method for manufacturing a high-purity group, comprising the steps of: reacting a material with iodine gas, the material including macro and at least one impurity; forming a reaction product including tantalum iodide and the at least one impurity Iodide; At least a portion of the iodide of molybdenum is separated from the reaction product by fractional distillation; and • The Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs prints the iodide that decomposes the molybdenum on a filament. 15. The method according to item 14 of the patent application, wherein the so-called at least one impurity comprises niobium. 22 This paper size applies to China National Standard (CNS) A4 (210X297 mm)
TW88108622A 1998-05-27 1999-05-26 Tantalum sputtering target and method of manufacture TW503218B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US8686898P 1998-05-27 1998-05-27

Publications (1)

Publication Number Publication Date
TW503218B true TW503218B (en) 2002-09-21

Family

ID=27610602

Family Applications (1)

Application Number Title Priority Date Filing Date
TW88108622A TW503218B (en) 1998-05-27 1999-05-26 Tantalum sputtering target and method of manufacture

Country Status (1)

Country Link
TW (1) TW503218B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115029677A (en) * 2022-06-27 2022-09-09 商丘市鸿大光电有限公司 Preparation process of high-hydrogen-permeability isotope and high-temperature-resistant TaVNbZr/(TaVNbZrM) Nx gradient barrier layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115029677A (en) * 2022-06-27 2022-09-09 商丘市鸿大光电有限公司 Preparation process of high-hydrogen-permeability isotope and high-temperature-resistant TaVNbZr/(TaVNbZrM) Nx gradient barrier layer
CN115029677B (en) * 2022-06-27 2023-10-31 商丘市鸿大光电有限公司 Preparation process of high-hydrogen-permeability isotope and high-temperature-resistant TaVNbZr/(TaVNbZrM) Nx composite gradient barrier layer

Similar Documents

Publication Publication Date Title
KR100438670B1 (en) Tantalum sputtering target and method of manufacture
JP4652574B2 (en) Products such as high purity tantalum and sputter targets containing it
Fray et al. Reduction of titanium and other metal oxides using electrodeoxidation
JP2001020065A (en) Target for sputtering, its production and high melting point metal powder material
KR20030001543A (en) High purity niobium and products containing the same, and methods of making the same
US6024847A (en) Apparatus for producing titanium crystal and titanium
US6063254A (en) Method for producing titanium crystal and titanium
AU2017307312B2 (en) A method of producing titanium from titanium oxides through magnesium vapour reduction
JP5392695B2 (en) Aluminum metal manufacturing method and manufacturing apparatus
TW503218B (en) Tantalum sputtering target and method of manufacture
Ueda et al. Formation of niobium powder by electrolysis in molten salt
Koethe et al. Preparation of ultra high purity niobium
RU2370558C1 (en) Method of production of high purity cobalt for sputtering targets
Peterson et al. The preparation of high-purity thorium by the magnesium reduction of thorium tetrachloride
Yuan et al. Niobium powder production by reducing electrochemically dissolved niobium ions in molten salt
RU2655560C1 (en) Method for obtaining a powder of molybdenum and tungsten alloy
JP2784324B2 (en) Manufacturing method of titanium
JP3214836B2 (en) Manufacturing method of high purity silicon and high purity titanium
Seki Reduction of Titanium Dioxide to Metallic Titanium by Thermal Decomposition via Titanium Disulfide
RU2401888C1 (en) Procedure for production of powder of high-melting metal
JP3564852B2 (en) Method for producing high purity metal ruthenium powder
JP7219646B2 (en) High Purity Cobalt Sulfate Powder
RU2370559C1 (en) Method of production of high purity titanium for sputtered targets
Yang et al. Preparation of titanium powder using a combined method of aluminothermic reduction and molten salt electrolysis
JPH0536485B2 (en)

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent