JP3177816B2 - Purification method of high purity titanium - Google Patents

Purification method of high purity titanium

Info

Publication number
JP3177816B2
JP3177816B2 JP07810895A JP7810895A JP3177816B2 JP 3177816 B2 JP3177816 B2 JP 3177816B2 JP 07810895 A JP07810895 A JP 07810895A JP 7810895 A JP7810895 A JP 7810895A JP 3177816 B2 JP3177816 B2 JP 3177816B2
Authority
JP
Japan
Prior art keywords
titanium
deposition
deposition substrate
substrate
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07810895A
Other languages
Japanese (ja)
Other versions
JPH08246078A (en
Inventor
泰徳 吉村
Original Assignee
株式会社住友シチックス尼崎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社住友シチックス尼崎 filed Critical 株式会社住友シチックス尼崎
Priority to JP07810895A priority Critical patent/JP3177816B2/en
Publication of JPH08246078A publication Critical patent/JPH08246078A/en
Application granted granted Critical
Publication of JP3177816B2 publication Critical patent/JP3177816B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ヨード法による高純度
チタンの精製方法に関する。
The present invention relates to a method for purifying high-purity titanium by an iodine method.

【0002】[0002]

【従来の技術】VLSIの急激な高集積化に伴い、ゲー
ト電極材料やバリア材料として、高融点低抵抗の金属で
あるチタンが有望視されている。このような電子材料と
してのチタンは、主にスパッタリングにより基板上に成
膜される。そして、スパッタリング用のターゲットに使
用される高純度チタンを得る精製法の一つとしては、ヨ
ード法が知られている。
2. Description of the Related Art With the rapid integration of VLSIs, titanium, which is a metal having a high melting point and a low resistance, is expected as a gate electrode material and a barrier material. Titanium as such an electronic material is mainly formed on a substrate by sputtering. An iodine method is known as one of the purification methods for obtaining high-purity titanium used for a sputtering target.

【0003】従来一般のヨード法によるチタン精製を図
1により説明する。反応容器1内にチタンフィラメント
からなるU字状の析出基体2を収容すると共に、析出基
体2を取り囲んで純度の低い粗チタン3を収容する。反
応容器1を外側から加熱炉4により加熱しながら、反応
容器1内にヨウ素を供給し、200〜400℃でヨウ化
反応(Ti+2I2 →TiI4 )を生起させる。合成さ
れた四ヨウ化チタンを1300〜1500℃に通電加熱
した析出基体2の表面で熱分解し、高純度のチタン9を
析出させる(TiI4 →Ti+2I2 )。ここで析出基
体2は、反応容器1の蓋を兼ねる取付部材5により反応
容器1内に吊り下げられ、取付部材5に設けられた通電
用の電極を兼ねる棒状の支持部材6,6とは溶接により
接続されている。
Conventional titanium purification by the iodine method will be described with reference to FIG. A U-shaped deposition substrate 2 made of a titanium filament is accommodated in a reaction vessel 1, and crude titanium 3 of low purity is accommodated surrounding the deposition substrate 2. Iodine is supplied into the reaction vessel 1 while the reaction vessel 1 is heated from the outside by the heating furnace 4 to cause an iodination reaction (Ti + 2I 2 → TiI 4 ) at 200 to 400 ° C. The synthesized titanium tetraiodide is thermally decomposed on the surface of the deposition substrate 2 heated to a temperature of 1300 to 1500 ° C. to deposit high-purity titanium 9 (TiI 4 → Ti + 2I 2 ). Here, the deposition substrate 2 is suspended in the reaction vessel 1 by an attachment member 5 also serving as a lid of the reaction vessel 1, and is welded to a rod-shaped support member 6, which is provided on the attachment member 5 and also serves as a current-carrying electrode. Connected by

【0004】この従来一般のヨード法とは別に、本出願
人は低級ヨウ化物を経由する高純度チタンの精製方法を
開発した。また、析出基体として管を用いる精製方法も
開発した。そして、低級ヨウ化物を経由し且つ管状の析
出基体を用いて高純度チタンを精製する方法は、例えば
特開平4−246136号公報に説明されている。
[0004] Apart from this conventional general iodine method, the present applicant has developed a method for purifying high-purity titanium via a lower iodide. We have also developed a purification method using a tube as the deposition substrate. A method of purifying high-purity titanium via a lower iodide and using a tubular deposition substrate is described in, for example, JP-A-4-246136.

【0005】低級ヨウ化物を経由するヨード法では、四
ヨウ化チタンを粗チタンとの反応により一旦二ヨウ化チ
タンに転化し、これを同一反応容器内で熱分解する。反
応式は以下の通りである。 ヨウ化反応:Ti+TiI4 →2TiI2 (〜900
℃) Ti+2I→TiI2 析出反応 :TiI2 →Ti+2I(〜1100℃)
In the iodine method via lower iodide, titanium tetraiodide is temporarily converted to titanium diiodide by reaction with crude titanium, and this is thermally decomposed in the same reaction vessel. The reaction formula is as follows. Iodination reaction: Ti + TiI 4 → 2TiI 2 (up to 900
° C) Ti + 2I → TiI 2 precipitation reaction: TiI 2 → Ti + 2I (up to 1100 ° C.)

【0006】この方法は、四ヨウ化チタンを直接熱分解
する代わりに低級ヨウ化物である二ヨウ化チタンを熱分
解することにより、熱分解温度を約200℃下げ、反応
容器等からの汚染を低減して、精製効率の増大および長
時間の連続析出を可能にする。また、析出基体を表面積
が大きい管とすることにより、従来の100倍というよ
うな生産性の大幅向上を可能とし、合わせて管内のヒー
タによる間接加熱により、従来の通電加熱よりも析出基
体の温度調節を容易にする。
[0006] In this method, titanium diiodide, which is a lower iodide, is pyrolyzed instead of directly pyrolyzing titanium tetraiodide, thereby lowering the pyrolysis temperature by about 200 ° C and reducing contamination from a reaction vessel or the like. To allow for increased purification efficiency and continuous deposition for extended periods of time. In addition, by using a tube having a large surface area as the deposition substrate, it is possible to greatly improve productivity, such as 100 times that of the conventional one, and at the same time, the indirect heating by the heater in the tube allows the temperature of the deposition substrate to be higher than that of the conventional energization heating. Easy adjustment.

【0007】[0007]

【発明が解決しようとする課題】このようなヨード法に
よる高純度チタンの精製では、取付部材5によって析出
基体2が奪熱されるため、析出基体2と支持部材6,6
との接続部近傍7,7が低温になってチタン9の析出が
阻害されるのみならずエッチングを生じ、析出重量に耐
えきれずに析出基体2が破断により落下するという事故
がしばしば発生する。この対策としてMo,W等の蒸着
によりエッチングを防止する技術が特開昭62−474
79号公報に記載されているが、エッチングを防止でき
たとしても最大析出重量が若干増大する程度で、大幅な
生産性の向上は望めない。従来一般のヨード法による高
純度チタンの精製では、この析出重量上の制限のため1
バッチ当りの析出重量は1〜3kgである。本出願人は
前述したように低級ヨウ化物の経由と管状の析出基体と
の併用により、1バッチ当りの生産量を20〜200k
gに高めたが、析出基体2の破断落下はその大きな障害
になっている。
In the purification of high-purity titanium by the iodine method, the deposition base 2 is removed by the mounting member 5, so that the deposition base 2 and the supporting members 6, 6 are removed.
In the vicinity of the connection portions 7 and 7, the temperature becomes low, not only the precipitation of the titanium 9 is hindered, but also etching occurs, and the accident that the deposited substrate 2 falls due to rupture without being able to withstand the deposited weight often occurs. As a countermeasure, a technique for preventing etching by vapor deposition of Mo, W or the like is disclosed in Japanese Patent Application Laid-Open No. Sho 62-474.
Although described in Japanese Patent Publication No. 79, even if etching can be prevented, the maximum deposition weight is slightly increased, and a significant improvement in productivity cannot be expected. In the conventional purification of high-purity titanium by the general iodine method, 1%
The deposition weight per batch is 1-3 kg. As described above, the present applicant has reduced the production per batch to 20 to 200 k by using lower iodide and using a tubular deposition substrate in combination.
g, but the falling off of the precipitation substrate 2 is a major obstacle.

【0008】本発明の目的は、析出重量に関係なく析出
基体の破断落下を確実に防止することができる高純度チ
タンの精製方法を提供することにある。
An object of the present invention is to provide a method for purifying high-purity titanium, which can reliably prevent a falling and falling of a deposition substrate regardless of a deposition weight.

【0009】[0009]

【課題を解決するための手段】本発明の高純度チタンの
精製方法は、ヨード法による高純度チタンの精製におい
て、チタン管からなる析出基体を、反応容器の上部に装
着され且つ前記析出基体より厚肉のチタン管からなる支
持部材により反応容器内に吊り下げ支持すると共に、前
記析出基体の周囲に粗チタンを、その上端が析出基体と
支持部材との接続部より上方となる高さに設置し、支持
部材から析出基体の内部にかけて配設された間接加熱手
段により、支持部材と析出基体との接続部近傍をその下
の部分より強力に加熱することにより、析出基体からそ
の上方にかけての部分を前記高純度チタンの析出温度に
加熱するものである。
According to the method for purifying high-purity titanium of the present invention, in the purification of high-purity titanium by the iodine method, a deposition substrate comprising a titanium tube is mounted on the upper part of a reaction vessel.
A support made of a titanium tube attached and thicker than the deposition substrate.
The support member suspends and supports the inside of the reaction vessel,
Crude titanium is placed around the deposited substrate, and the upper end is
Installed at a height above the connection with the support member to support
Indirect heating means arranged from the member to the inside of the deposition substrate
The step allows the vicinity of the connection between the support member and the deposition substrate
By heating more strongly than the part,
To the precipitation temperature of the high-purity titanium.
It is to be heated .

【0010】[0010]

【作用】析出基体からその上方にかけての部分を高純度
チタンの析出温度に加熱することにより、析出基体と支
持部材との接続部近傍にもその下の部分と同じように高
純度チタンが析出し、その析出チタンにより接続部近傍
が補強される。接続部近傍に析出するチタンは、析出重
量が増大するにつれて厚くなり、その強度が増すと共
に、支持部材が析出基体より厚肉とされているので、析
出重量に関係なく析出基体の破断落下を確実に防止する
ことができる。
[Function] High purity of the part from the deposition substrate to the upper part
By heating to the deposition temperature of titanium,
High-purity titanium also precipitates in the vicinity of the connection portion with the holding member in the same manner as in the lower portion, and the vicinity of the connection portion is reinforced by the deposited titanium. Titanium deposited near the joint becomes thicker as the deposition weight increases, and increases with increasing strength.
In addition, since the supporting member is thicker than the deposition substrate, it is possible to reliably prevent the deposition substrate from breaking and falling regardless of the deposition weight.

【0011】析出基体及び支持部材として管を用いたの
、その内部のヒータによる間接加熱により、長手方向
において加熱量を任意に調節することができる。そのた
め、奪熱量の大きい接続部近傍も析出温度に容易に加熱
することができる。
The use of tubes as the deposition substrate and the support member
Thus, the amount of heating can be arbitrarily adjusted in the longitudinal direction by indirect heating by the heater inside. Therefore, the vicinity of the connection portion having a large heat loss can be easily heated to the deposition temperature.

【0012】析出基体と支持部材との接続部近傍を高純
度チタンの析出温度に加熱することに加え、析出基体の
周囲に設置される粗チタン上端を接続部より高くする
ことにより、接続部近傍におけるチタン析出が促進さ
れ、接続部近傍より効果的に補強される
The vicinity of the connection between the deposition substrate and the support member is highly pure.
In addition to heating to the deposition temperature of titanium , the upper end of the coarse titanium installed around the deposition substrate is made higher than the connection part
It the titanium deposition is accelerated at the connecting portion near the connecting portion vicinity can be more effectively reinforced.

【0013】[0013]

【実施例】以下に図面を参照して本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】本実施例は、管状の析出基体を用い、且つ
低級ヨウ化物を経由して高純度チタンを精製する方法に
本願発明を適用したものである。
In the present embodiment, the present invention is applied to a method of purifying high-purity titanium using a tubular deposition substrate and passing through lower iodide.

【0015】これに使用する精製装置は、図2に示すよ
うに、上面が開口した円筒状の反応容器1を具備する。
反応容器1は加熱炉4内に収容され、内部が真空排気さ
れる。反応容器1の内部には析出基体2および粗チタン
3が収容される。析出基体2はU字状をした高純度のチ
タン管からなり、反応容器1の蓋を兼ねる取付部材5に
より容器内に吊り下げ支持される。取付部材5は、析出
基体2を接続保持するために、高純度のチタン管からな
る一対の支持部材6,6を有する。支持部材6,6は析
出基体2より厚肉とされ、析出基体2とは溶接により接
続されている。取付部材5の内部は、支持部材6,6内
を介して析出基体2の内部に連通し、反応容器1の内部
とは別に真空排気される。析出基体2の内部には支持部
材6,6内を介して電気ヒータ8が挿入されている。電
気ヒータ8は析出基体2のみならず析出基体2と支持部
材6,6との接続部より上方部分も内側から加熱し、且
つ長手方向において多段に温度制御されることにより、
接続部近傍7,7の加熱温度を任意に調節し得る。
As shown in FIG. 2, the purifying apparatus used in the apparatus has a cylindrical reaction vessel 1 having an open top.
The reaction vessel 1 is housed in a heating furnace 4 and the inside is evacuated. A precipitation substrate 2 and a crude titanium 3 are accommodated in a reaction vessel 1. The deposition substrate 2 is formed of a U-shaped high-purity titanium tube, and is suspended and supported in the vessel by a mounting member 5 also serving as a lid of the reaction vessel 1. The attachment member 5 has a pair of support members 6 and 6 made of a high-purity titanium tube in order to connect and hold the deposition substrate 2. The supporting members 6 and 6 are thicker than the deposition substrate 2 and are connected to the deposition substrate 2 by welding. The inside of the mounting member 5 communicates with the inside of the deposition substrate 2 via the inside of the support members 6 and 6, and is evacuated separately from the inside of the reaction vessel 1. An electric heater 8 is inserted into the inside of the deposition substrate 2 via the inside of the support members 6 and 6. The electric heater 8 heats not only the deposition substrate 2 but also the portion above the connection between the deposition substrate 2 and the supporting members 6 and 6 from the inside, and the temperature is controlled in multiple stages in the longitudinal direction,
The heating temperature of the connection portions 7, 7 can be adjusted arbitrarily.

【0016】高純度チタンの精製を行なうには、反応容
器1内に粗チタン3をセットする。このとき、粗チタン
3の上端を接続部より高くして、析出基体2のみならず
接続部近傍7,7も粗チタン4にて完全に包囲する。支
持部材6,6により反応容器1内を密封したあと、真空
容器1内を10-1〜10-3Torrに真空排気し、加熱炉4
により700〜900℃に加熱する。また、取付部材5
を介して析出基体3の内部を10-1〜10-5Torrに真空
排気し、通電ヒータ8により析出基体2からその上方に
かけての部分を析出温度に加熱する。すなわち、接続部
近傍7,7をその下の部分より強力に加熱し、接続近傍
も析出温度に保持する。この状態で反応容器1の内部に
四ヨウ化チタンの蒸気を供給する一方、反応容器1の内
部が10-1〜10-3Torrに維持されるようにその内部の
真空排気を続ける。
To purify high-purity titanium, crude titanium 3 is set in a reaction vessel 1. At this time, the upper end of the coarse titanium 3 is made higher than the connection portion, and the coarse titanium 4 completely surrounds not only the deposition base 2 but also the vicinity 7 of the connection portion. After sealing the inside of the reaction vessel 1 with the support members 6 and 6, the inside of the vacuum vessel 1 is evacuated to 10 -1 to 10 -3 Torr, and the heating furnace 4
To 700 to 900 ° C. Also, the mounting member 5
Then, the inside of the deposition substrate 3 is evacuated to 10 -1 to 10 -5 Torr through the heater, and the portion from the deposition substrate 2 to the upper portion thereof is heated to the deposition temperature by the electric heater 8. That is, the vicinity 7, 7 of the connection portion is heated more strongly than the portion below the connection portion, and the vicinity of the connection is also maintained at the deposition temperature. In this state, the vapor of titanium tetraiodide is supplied to the inside of the reaction vessel 1, and the inside of the reaction vessel 1 is continuously evacuated so that the inside of the reaction vessel 1 is maintained at 10 -1 to 10 -3 Torr.

【0017】反応容器1の内部に供給された四ヨウ化チ
タンは、粗チタン3と反応して二ヨウ化チタンを生成す
る。生成された二ヨウ化チタンは、析出基体2の表面で
熱分解して高純度のチタン9を析出する。このとき、接
続部近傍7,7が析出に必要な温度に加熱されているの
で、接続部近傍7,7の表面にも高純度チタン9′が析
出する。そのため、接続部近傍7,7が析出チタン9′
により補強される。しかも、接続部近傍7,7に析出す
るチタン9′は、反応時間が延び析出基体2に析出する
チタン9の重量が増大するに連れて厚くなるので、その
重量増大の影響を受けることなく確実に破断による析出
基体3の落下を防ぐことができる。
The titanium tetraiodide supplied into the reaction vessel 1 reacts with the crude titanium 3 to produce titanium diiodide. The generated titanium diiodide is thermally decomposed on the surface of the deposition substrate 2 to deposit titanium 9 of high purity. At this time, since the vicinity 7, 7 of the connection portion is heated to a temperature required for deposition, high-purity titanium 9 'also precipitates on the surface of the vicinity 7, 7 of the connection portion. Therefore, the vicinity 7, 7 of the connection portion is deposited titanium 9 '.
Reinforced by In addition, the titanium 9 'deposited in the vicinity 7, 7 of the connection portion becomes thicker as the reaction time is extended and the weight of the titanium 9 deposited on the deposition substrate 2 increases, so that the titanium 9' is surely not affected by the weight increase. In addition, it is possible to prevent the precipitation substrate 3 from dropping due to fracture.

【0018】これに加えて本実施例では、粗チタン3に
より接続部近傍7,7を完全に包囲しているので、これ
によるヨウ化物濃度の上昇と保温効果とにより、接続部
近傍7,7におけるチタン9′の析出が促進される。ま
た、析出基体2より支持部材6,6を厚くしたことによ
り、支持部材6,6の強度が増大する。従って、破断に
よる析出基体2の落下がより効果的に防止される。
In addition, in the present embodiment, since the vicinity 7, 7 of the connection portion is completely surrounded by the coarse titanium 3, the increase in the iodide concentration and the heat retaining effect by this result in the vicinity of the connection portion 7, 7, The precipitation of titanium 9 'is promoted. Further, by making the support members 6 and 6 thicker than the deposition substrate 2, the strength of the support members 6 and 6 is increased. Therefore, the falling of the precipitation substrate 2 due to the fracture is more effectively prevented.

【0019】接続部近傍7,7を析出温度に加熱する場
合、接続部の上方10〜200mmまでの範囲をこの温
度に加熱するのが望ましい。10mm未満では、析出基
体2に析出するチタン9と接続部近傍7,7に析出する
チタン9′との間に厚みの差が生じ、200mmを超え
る場合は製品歩留りが低下する。析出温度としては、低
級ヨウ化チタンを経由する方法の場合は1100℃未満
ではエッチング現象が発生し、1300℃を超えると機
械強度が低下するので、1100〜1300℃が望まし
い。
In the case where the vicinity 7, 7 of the connection portion is heated to the deposition temperature, it is desirable to heat the range from 10 to 200 mm above the connection portion to this temperature. If the thickness is less than 10 mm, a difference in thickness occurs between the titanium 9 deposited on the deposition substrate 2 and the titanium 9 ′ deposited on the vicinity of the connection portion 7, and if it exceeds 200 mm, the product yield decreases. The deposition temperature is preferably 1100 to 1300 ° C. in the case of the method using lower titanium iodide, since an etching phenomenon occurs at a temperature lower than 1100 ° C. and a mechanical strength lowers at a temperature exceeding 1300 ° C.

【0020】粗チタン3の上端レベルとしては、接続部
の上方10mm以上の範囲を粗チタンで包囲できるよう
にするのが望ましい。
It is desirable that the upper end level of the coarse titanium 3 be such that a range of 10 mm or more above the connection portion can be surrounded by the coarse titanium.

【0021】支持部材6,6の厚さTとしては、析出後
の基体厚さをtとして、t≦T≦2tが望ましい。t>
Tの場合は支持部材6,6の非析出部分での機械強度が
析出基体2の析出後の機械強度より劣ることになり、支
持部材6,6の非析出部分で破断が生じることがある。
T<2Tの場合は支持部材6,6での放熱が大きくな
り、接続部近傍7,7の均一加熱が困難になる。
The thickness T of the support members 6, 6 is desirably t ≦ T ≦ 2t, where t is the thickness of the substrate after deposition. t>
In the case of T, the mechanical strength in the non-precipitated portions of the support members 6 and 6 is inferior to the mechanical strength after the deposition of the deposition base 2, and the non-precipitated portions of the support members 6 and 6 may be broken.
In the case of T <2T, the heat radiation in the support members 6 becomes large, and it becomes difficult to uniformly heat the vicinity 7 of the connecting portion.

【0022】内径400mm×高さ800mmの反応容
器と、外径60mm×内径56mm×長さ1500mm
の析出基体とを用い、粗チタン80kg、その加熱温度
900℃、析出基体の加熱温度1200℃、四ヨウ化チ
タンの供給量150g/h、反応容器内の圧力10-2To
rrの条件で高純度チタンを精製する場合に、接続部の上
方20mmまでを1200℃に加熱し、且つ同じレベル
までを粗チタンで包囲した。また、支持部材6,6の厚
みを析出後の基体厚さに一致する27mmとした。その
結果、200時間の反応で約32kgのチタンが得られ
た。このときの基体厚さは初期厚(2mm)を含め27
mmであった。また、接続部近傍7,7にも最終基体厚
さとほぼ同じ25mm厚さのチタンが析出した。
A reaction vessel having an inner diameter of 400 mm × a height of 800 mm, an outer diameter of 60 mm × an inner diameter of 56 mm × a length of 1500 mm
80 kg of crude titanium, a heating temperature of 900 ° C., a heating temperature of the deposition substrate of 1200 ° C., a supply amount of titanium tetraiodide of 150 g / h, and a pressure of 10 −2 To in the reaction vessel.
When purifying high-purity titanium under the condition of rr, up to 20 mm above the connection was heated to 1200 ° C., and the same level was surrounded by coarse titanium. Further, the thickness of the supporting members 6 and 6 was set to 27 mm corresponding to the thickness of the substrate after deposition. As a result, about 32 kg of titanium was obtained in a reaction for 200 hours. At this time, the substrate thickness including the initial thickness (2 mm) was 27
mm. Further, titanium having a thickness of 25 mm, which is almost the same as the final substrate thickness, was also deposited on the connection portions 7 and 7.

【0023】比較のために、ヒータによる加熱上限位置
を接続部に一致させ、粗チタンの上端位置も同様にし
た。また、取付部の肉厚も10mmとした。同様の条件
で反応を行なったところ、100時間の反応(析出量約
15kg)で接続部が破断し、反応が中断した。接続部
にはチタンが殆ど析出しておらず、接続部の機械強度が
不足したものと判断された。
For comparison, the upper limit position of the heating by the heater was made to coincide with the connection portion, and the upper end position of the coarse titanium was similarly set. The thickness of the mounting portion was also set to 10 mm. When the reaction was carried out under the same conditions, the connection was broken by 100 hours of reaction (precipitation amount: about 15 kg), and the reaction was interrupted. Titanium was hardly precipitated at the connection part, and it was determined that the mechanical strength of the connection part was insufficient.

【0024】上記実施例は低級ヨウ化チタンを経由し、
且つ管状の析出基体を用いるものであるが、従来一般の
ヨード法やフィラメントタイプの析出基体を用いる方法
にも適用可能である。
In the above embodiment, via lower titanium iodide,
In addition, although a tubular deposition substrate is used, the invention can also be applied to a conventional general iodine method and a method using a filament type deposition substrate.

【0025】[0025]

【発明の効果】以上に説明した通り、本発明の高純度チ
タンの精製方法は、支持部材と析出基体との接続部近傍
をその下の部分より強力に加熱する操作で、析出基体か
らその上方にかけての部分を高純度チタンの析出温度に
加熱すると共に、析出基体の周囲に配置される粗チタン
の上端を析出基体と支持部材との接続部より高くするこ
とにより、接続部近傍にチタンを析出させて析出重量に
応じた補強を行ない、合わせて支持部材を析出基体を厚
肉とするので、反応時間が長い場合も破断による析出基
体の落下を確実に防ぐことができる。従って、破断によ
る反応時間の制限を取り除き、1バッチ当りの析出量を
大幅に増大させる効果がある。
As described above, the method for purifying high-purity titanium of the present invention can be applied to the vicinity of the connection between the supporting member and the deposition substrate.
Is heated more strongly than the part below it.
And the upper part to the deposition temperature of high-purity titanium.
Crude titanium that is heated and placed around the deposition substrate
The upper end of the substrate is higher than the connection between the deposition substrate and the support member.
And the reinforcing lines stomach according to the deposition weight to precipitate titanium in the vicinity of the connecting portion, the thickness of the deposition substrate supporting member combined
Since meat is used , even when the reaction time is long, it is possible to reliably prevent the precipitation substrate from falling due to rupture. Therefore, there is an effect of removing the restriction of the reaction time due to the breakage and greatly increasing the amount of precipitation per batch.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来一般のヨード法による高純度チタンの精製
に使用される精製装置の模式図である。
FIG. 1 is a schematic view of a refining apparatus used for purifying high-purity titanium by a conventional general iodine method.

【図2】本発明の実施例に使用される精製装置の模式図
である。
FIG. 2 is a schematic view of a purification device used in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 反応容器 2 析出基体 3 粗チタン 4 加熱炉 5 取付部材 6 支持部材 7 接続部近傍 8 通電ヒータ 9,9′ 析出チタン DESCRIPTION OF SYMBOLS 1 Reaction container 2 Deposition base 3 Crude titanium 4 Heating furnace 5 Attachment member 6 Support member 7 Near connection part 8 Electricity heater 9, 9 'Deposited titanium

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ヨード法による高純度チタンの精製にお
いて、チタン管からなる析出基体を、反応容器の上部に
装着され且つ前記析出基体より厚肉のチタン管からなる
支持部材により反応容器内に吊り下げ支持すると共に、
前記析出基体の周囲に粗チタンを、その上端が析出基体
と支持部材との接続部より上方となる高さに設置し、支
持部材から析出基体の内部にかけて配設された間接加熱
手段により、支持部材と析出基体との接続部近傍をその
下の部分より強力に加熱することにより、析出基体から
その上方にかけての部分を前記高純度チタンの析出温度
に加熱することを特徴とする高純度チタンの精製方法。
In the purification of high-purity titanium by the iodine method, a deposition substrate composed of a titanium tube is placed on an upper part of a reaction vessel.
It consists of a titanium tube that is attached and is thicker than the deposition substrate
While being suspended and supported in the reaction vessel by a support member,
Crude titanium is provided around the deposition substrate, and the upper end thereof is the deposition substrate.
At a height above the connection between the
Indirect heating arranged from the holding member to the inside of the deposition substrate
By means, the vicinity of the connection between the support member and the deposition substrate is
By heating more strongly than the lower part,
The upper part is the deposition temperature of the high-purity titanium.
A method for purifying high-purity titanium , comprising heating to a high temperature .
JP07810895A 1995-03-08 1995-03-08 Purification method of high purity titanium Expired - Fee Related JP3177816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07810895A JP3177816B2 (en) 1995-03-08 1995-03-08 Purification method of high purity titanium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07810895A JP3177816B2 (en) 1995-03-08 1995-03-08 Purification method of high purity titanium

Publications (2)

Publication Number Publication Date
JPH08246078A JPH08246078A (en) 1996-09-24
JP3177816B2 true JP3177816B2 (en) 2001-06-18

Family

ID=13652701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07810895A Expired - Fee Related JP3177816B2 (en) 1995-03-08 1995-03-08 Purification method of high purity titanium

Country Status (1)

Country Link
JP (1) JP3177816B2 (en)

Also Published As

Publication number Publication date
JPH08246078A (en) 1996-09-24

Similar Documents

Publication Publication Date Title
EP1273330A1 (en) Sublimation purifying method and apparatus
JP2002508294A (en) Chemical vapor deposition for polycrystalline silicon rod production.
JP2003522716A (en) Method and apparatus for chemical vapor deposition of polysilicon
JP4597863B2 (en) Silicon manufacturing equipment
EP0097135A1 (en) Apparatus and method for producing purified refractory metal from a chloride thereof
JP3177816B2 (en) Purification method of high purity titanium
US5788718A (en) Apparatus and a method for growing a single crystal
JPH09227276A (en) Method for pulling up single crystal and device for pulling up single crystal
JP3011114B2 (en) Silicon melting crucible
EP0417948A2 (en) Method and apparatus for pulling up silicon single crystal
JPH0527566B2 (en)
JP2937109B2 (en) Single crystal manufacturing apparatus and manufacturing method
JP4128842B2 (en) Silicon single crystal pulling device
US4877596A (en) Process for the production of low carbon silicon
CN110670118B (en) Crystal growth device and crystal growth method
JPH0739614B2 (en) High-purity titanium purification method
US6251182B1 (en) Susceptor for float-zone apparatus
JPH06211589A (en) Semiconductor single crystal rod producing device
US5232485A (en) Method for obtaining high purity titanium
JP4061984B2 (en) Single crystal pulling seed chuck
JPH0364478B2 (en)
JP2003165791A (en) Method for producing silicon single crystal and device using the same
JPH11292685A (en) Apparatus for extending life of graphite susceptor for growing silicon single crystal by coating with silicon nitride and extending method
KR20220043108A (en) Silicon core wire for polycrystalline silicon precipitation and manufacturing method thereof
JPH03177389A (en) Pulling device of silicon single crystal

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees