JPH07173533A - Rolling method for fe-cr-co alloy - Google Patents

Rolling method for fe-cr-co alloy

Info

Publication number
JPH07173533A
JPH07173533A JP5345136A JP34513693A JPH07173533A JP H07173533 A JPH07173533 A JP H07173533A JP 5345136 A JP5345136 A JP 5345136A JP 34513693 A JP34513693 A JP 34513693A JP H07173533 A JPH07173533 A JP H07173533A
Authority
JP
Japan
Prior art keywords
rolling
cold rolling
solution treatment
cracking
occurrence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5345136A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Sugano
博芳 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP5345136A priority Critical patent/JPH07173533A/en
Publication of JPH07173533A publication Critical patent/JPH07173533A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition

Abstract

PURPOSE:To suppress the occurrence of cracking at the time of coil rolling, prevent the production of a short sized coil and improve the product yield from the stock by executing warm rolling at an intensive draft after solution treatment. CONSTITUTION:In the case a magnetic alloy having a compsn. contg., by weight, 20 to 40% Cr and 5 to 30% Co, and the balance substantial Fe is formed into a steel material, in general, the method by melting, hot rolling, solution treatment and cold rolling is adopted. Since cracking occurred in the process of cold rolling and by coiling in the process of the cold rolling can not be avoided, it is rapidly cooled down from 1000 to 1300 deg.C, is subjected to solution treatment to form into a alpha single phase and is thereafter subjected to warm rolling of >=30% draft at 100 to 500 deg.C. By this treatment, the occurrence of cracking in the process of the warm rolling and, furthermore, cold rolling in the following stage can be suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Fe、CrおよびCo
よりなる合金の圧延方法に関するもので、さらに具体的
には、圧延時の割れの発生を抑え、コイルの短尺化を防
止して、加工時間を削減できる圧延方法に関する。
FIELD OF THE INVENTION The present invention relates to Fe, Cr and Co.
More specifically, the present invention relates to a rolling method capable of suppressing cracking during rolling, preventing shortening of a coil, and reducing working time.

【0002】[0002]

【従来の技術】Fe−Cr−Co合金はスピノーダル分
解型永久磁石であることは古くから知られていたが、そ
の熱処理の複雑さ、温度管理の厳しさ等のため、量産す
る上での困難さがあった。近年、小型リレー用として好
ましい磁気特性を有していることに着目されるようにな
ってきている。一般的なFe−Cr−Co系磁石合金の
基本成分はCr:20〜40重量%、Co:5〜30重
量%、及び残部がFeからなる合金であって、なかでも
現在工業化されているものは、Cr25〜35重量%、
Co:10〜20重量%、Fe:残部の組成がほとんど
である。さらにこれに、0.1〜5%程度のTi、Z
r、Hf、V、Nb、Ta、Mo、W、Mn、Si、A
lあるいはNi等を残存有効成分として添加することに
よって、磁石特性が向上することも知られている。
2. Description of the Related Art It has long been known that Fe-Cr-Co alloys are spinodal decomposition type permanent magnets, but due to the complexity of heat treatment and the strictness of temperature control, they are difficult to mass produce. There was In recent years, attention has been paid to the fact that it has favorable magnetic characteristics for small relays. The basic components of a general Fe-Cr-Co magnet alloy are Cr: 20 to 40% by weight, Co: 5 to 30% by weight, and the balance is Fe. Among them, those currently industrialized. Is Cr 25 to 35% by weight,
Most of the composition is Co: 10 to 20% by weight and Fe: balance. Furthermore, 0.1 to 5% of Ti, Z
r, Hf, V, Nb, Ta, Mo, W, Mn, Si, A
It is also known that the magnet characteristics are improved by adding 1 or Ni as a residual active ingredient.

【0003】従来、Fe−Cr−Co合金は析出相の影
響で冷間圧延が困難であり、圧延途中で割れてしまう。
現状は冷間圧延を容易に行うため、現状では冷間圧延工
程の前に焼き入れ工程(溶体化処理)を追加している
が、焼き入れを追加しても、冷間圧延の途中、及び冷間
圧延時の巻き取りで割れてしまうことがある。圧延時の
割れをできるだけ抑えるため、1回の圧延率を出来るだ
け大きくして、冷間圧延を行っているが、直接的に割れ
を抑えることが出来ず、短尺化したコイルを製造してし
まうことになっている。そのため、プレス等の加工の際
にコイルの付け替えの回数が多くなってしまうことから
余計な作業時間を要してしまっている。また、コイルが
短尺のため、製品の収率が悪く、製品単位当りの素材費
がかなり掛かる欠点もある。これらのことから、圧延方
法の改善が望まれていた。
Conventionally, Fe-Cr-Co alloys are difficult to cold-roll due to the influence of the precipitation phase, and crack during the rolling.
At present, in order to perform cold rolling easily, at present, a quenching process (solution treatment) is added before the cold rolling process. It may crack during winding during cold rolling. In order to suppress cracks during rolling as much as possible, cold rolling is performed by increasing the rolling rate once, but cracks cannot be suppressed directly, and short coils are produced. It is supposed to be. Therefore, an extra working time is required because the number of times of coil replacement is increased during processing such as pressing. Further, since the coil is short, the yield of the product is low, and the material cost per product unit is considerably high. From these things, improvement of the rolling method was desired.

【0004】[0004]

【発明が解決しようとする課題】従来、難圧延加工材と
言われていたFe−Cr−Co合金の圧延作業時の割れ
発生を抑えて、冷間圧延作業の効率を上げること、およ
び短尺コイルの発生を減少させることにより、加工作業
時間を大幅に削減する圧延方法を供することが本発明の
課題である。
[Problems to be Solved by the Invention] It is possible to suppress the occurrence of cracks in a Fe-Cr-Co alloy, which has been conventionally said to be a material difficult to be rolled, during rolling work, thereby improving the efficiency of cold rolling work, and a short coil. It is an object of the present invention to provide a rolling method that significantly reduces the working time by reducing the occurrence of

【0005】[0005]

【課題を解決するための手段】Fe−Cr−Co合金で
圧延加工が可能な相範囲としては、α相単相領域、また
はα+γ相領域があり、σ相領域では非常に硬く脆いた
め、圧延を行うと完全に割れてしまうことが知られてい
る。そこで、一般に1000〜1300℃から焼き入れ
すると、α相単相、あるいは、α+γ相となり圧延が可
能になるとされており、現状では冷間圧延の前には焼き
入れを行っている。しかし、冷間圧延作業時に割れが発
生することがある。これは、α相単相領域でも、結晶粒
が微細化している場合は圧延が可能であるが、結晶粒が
粗大化した場合に割れ易くなるからである。加工性の点
ではγ相が最も良好である。しかし、γ相領域は、圧延
不可能なσ相領域と隣接しているため、焼き入れ温度の
十分な制御が必要であり、圧延素材全体を均一な温度に
加熱して焼き入れ処理をすることは、困難であるのが実
状である。さらに、高温のα相単相となる温度から焼き
入れた場合には、結晶粒が粗大化し、割れが発生し易く
なる。
[Means for Solving the Problems] The phase range in which the Fe-Cr-Co alloy can be rolled includes the α-phase single-phase region or the α + γ-phase region. It is known that if you do, it will break completely. Therefore, it is generally said that quenching from 1000 to 1300 ° C. enables the α phase single phase or the α + γ phase to be rolled, and at present, quenching is performed before cold rolling. However, cracks may occur during cold rolling work. This is because even in the α-phase single-phase region, rolling is possible when the crystal grains are made fine, but cracks easily occur when the crystal grains become coarse. In terms of workability, the γ phase is the best. However, since the γ-phase region is adjacent to the unrollable σ-phase region, it is necessary to adequately control the quenching temperature, and the quenching process must be performed by heating the entire rolling material to a uniform temperature. Is actually difficult. Further, when quenching is performed at a temperature at which the α phase becomes a single phase at a high temperature, the crystal grains become coarse and cracks easily occur.

【0006】そこで、割れ発生防止のための実験を種々
行ったところ、α相単相領域において、温間圧延するこ
とが好ましい結果を生むことを見い出した。即ち、圧延
加工を容易に行うには、100〜500℃の範囲の温間
圧延が効果的であった。500℃を越える温度では、作
業性が悪く、また、表面の酸化が進行する。さらに突発
的にヒビ、割れが発生し好ましくない。100℃未満の
温度では割れ発生防止の効果が見られなかった。また、
溶体化処理後の温間圧延の圧延率を30%以下で行う
と、次工程の冷間圧延において割れが発生して好ましく
ない。
Then, various experiments were carried out to prevent the occurrence of cracks, and it was found that warm rolling produces desirable results in the α-phase single-phase region. That is, warm rolling in the range of 100 to 500 ° C. was effective for easily performing rolling. At temperatures above 500 ° C., workability is poor and surface oxidation proceeds. Furthermore, it is not preferable because cracks and cracks are suddenly generated. At temperatures below 100 ° C, no effect of preventing cracking was observed. Also,
If the rolling rate of the warm rolling after the solution treatment is performed at 30% or less, cracking may occur in the cold rolling of the next step, which is not preferable.

【0007】[0007]

【実施例】表1に示す代表的な組成からなる4種類のF
e−Cr−Co合金で、板厚が5mm、板幅が15mm
の、1000℃より焼き入れ(溶体化処理)を行った焼
き入れ上がりの材料を用いた。この材料を50〜600
℃の温度範囲で板厚を2mmまで圧延する方法を取っ
た。ここで用いた圧延機は4段圧延機である。また、1
回の圧延率は約30%とし、3パスで2mmまで圧延す
る方法を取った。加熱装置としてはポット式の電気炉を
用いた。これらの結果を表2に示す。
EXAMPLES Four types of F having the typical compositions shown in Table 1
e-Cr-Co alloy with a plate thickness of 5 mm and a plate width of 15 mm
The material just after quenching (solution treatment) from 1000 ° C. was used. 50-600 this material
A method of rolling the plate to a thickness of 2 mm in the temperature range of ° C was adopted. The rolling mill used here is a four-high rolling mill. Also, 1
The rolling rate was set to about 30%, and rolling was performed in 3 passes to 2 mm. A pot-type electric furnace was used as the heating device. The results are shown in Table 2.

【0008】[0008]

【表1】 [Table 1]

【0009】[0009]

【表2】 本試験は温度を50〜600℃まで段階的に変化させ
て、各組成による圧延性を確認した試験である。各温度
保持時間を1時間とした。各組成とも100〜500℃
の温度範囲内で圧延すれば、圧延時に割れることがない
ことが確認された。
[Table 2] This test is a test in which the temperature is changed stepwise from 50 to 600 ° C. and the rollability according to each composition is confirmed. Each temperature holding time was 1 hour. 100-500 ℃ for each composition
It was confirmed that rolling within the temperature range of 1 does not cause cracking during rolling.

【0010】[0010]

【発明の効果】本発明によって、圧延時の割れを抑える
ことができ、短尺のコイルが発生するのを抑えることが
できた。また、短尺のコイルの発生を抑えることができ
たことにより、素材からの製品の収率が向上し、プレス
加工等の加工作業でコイルの付け替えの回数が削減し、
作業時間の減少が確認された。
According to the present invention, cracking during rolling can be suppressed and generation of short coils can be suppressed. In addition, since it is possible to suppress the generation of short coils, the yield of products from raw materials is improved, and the number of coil replacements is reduced in processing operations such as press working,
A reduction in working time was confirmed.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/08 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01F 1/08

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%でCr20〜40%、Co5〜3
0%及び残部が実質的にFeからなる磁性合金を、溶
解、熱間圧延、溶体化処理、冷間圧延により板材を製造
する方法において、溶体化処理後に圧延率30%以上
で、かつ100〜500℃の温度範囲で圧延することを
特徴とするFe−Cr−Co合金の圧延方法。
1. A Cr content of 20 to 40% and a Co content of 5 to 3 by weight.
In a method for producing a plate material by melting, hot rolling, solution treatment, and cold rolling a magnetic alloy in which 0% and the balance substantially consist of Fe, a rolling ratio is 30% or more after the solution treatment, and 100 to 100%. A method for rolling an Fe-Cr-Co alloy, which comprises rolling in a temperature range of 500 ° C.
JP5345136A 1993-12-20 1993-12-20 Rolling method for fe-cr-co alloy Pending JPH07173533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5345136A JPH07173533A (en) 1993-12-20 1993-12-20 Rolling method for fe-cr-co alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5345136A JPH07173533A (en) 1993-12-20 1993-12-20 Rolling method for fe-cr-co alloy

Publications (1)

Publication Number Publication Date
JPH07173533A true JPH07173533A (en) 1995-07-11

Family

ID=18374529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5345136A Pending JPH07173533A (en) 1993-12-20 1993-12-20 Rolling method for fe-cr-co alloy

Country Status (1)

Country Link
JP (1) JPH07173533A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030075427A (en) * 2002-03-19 2003-09-26 백응률 An controlling method in producing a specific stellite 6 B alloy
CN103114234A (en) * 2013-01-09 2013-05-22 北京航空航天大学 Alloy with excellent room-temperature soft magnetic property and mechanical property, and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030075427A (en) * 2002-03-19 2003-09-26 백응률 An controlling method in producing a specific stellite 6 B alloy
CN103114234A (en) * 2013-01-09 2013-05-22 北京航空航天大学 Alloy with excellent room-temperature soft magnetic property and mechanical property, and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2009185386A (en) Method for producing non-grain-oriented electrical steel sheet
JP2009149993A (en) Method for producing non-oriented electrical steel sheet
CN103882293A (en) Non-oriented electrical steel and production method thereof
JP2005262217A (en) Method for producing grain oriented silicon steel sheet having excellent magnetic property
JP5287615B2 (en) Method for producing grain-oriented electrical steel sheet
JP2639227B2 (en) Manufacturing method of non-oriented electrical steel sheet
JPH05140648A (en) Manufacture of now-oriented silicon steel sheet having high magnetic flux density and low core loss
JPH07173533A (en) Rolling method for fe-cr-co alloy
JP4972773B2 (en) Method for producing high silicon steel sheet
JP2008045151A (en) Method for manufacturing non-oriented silicon steel sheet excellent in whole circumferential characteristic and workability
US5259892A (en) Process for producing non-oriented electromagnetic steel sheet having excellent magnetic properties after stress relief annealing
JP2002206114A (en) Method for manufacturing nonoriented silicon steel sheet
JPH09125148A (en) Production of nonoriented silicon steel sheet with high magnetic flux density and low iron loss
KR20000031656A (en) Process for preparing non-directional electric steel plate which has good magnetic property and low magnetic-bi-directional property
JP2870817B2 (en) Manufacturing method of semi-process non-oriented electrical steel sheet with excellent magnetic properties
JP2804278B2 (en) Direct softening wire rod manufacturing method
EP0796923B1 (en) Method of making a non-oriented magnetic steel sheet, and product
JPH05279826A (en) Production of 'permalloy(r)' excellent in impedance relative magnetic permeability
JPH0525548A (en) Production of cr-ni stainless steel sheet excellent in material and surface quality
JPH04346621A (en) Manufacture of nonoriented magnetic steel sheet excellent in magnetic characteristic and surface appearance
JP2760262B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP3020810B2 (en) Manufacturing method of grain-oriented silicon steel sheet with good magnetic properties
JP3084571B2 (en) High Si content steel plate with good workability
JPH0686648B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties
EP4079900A1 (en) Non-oriented electrical steel sheet and manufacturing method therefor