JPH0716744B2 - Shape memory alloy coil spring - Google Patents

Shape memory alloy coil spring

Info

Publication number
JPH0716744B2
JPH0716744B2 JP23257889A JP23257889A JPH0716744B2 JP H0716744 B2 JPH0716744 B2 JP H0716744B2 JP 23257889 A JP23257889 A JP 23257889A JP 23257889 A JP23257889 A JP 23257889A JP H0716744 B2 JPH0716744 B2 JP H0716744B2
Authority
JP
Japan
Prior art keywords
shape memory
coil
coil spring
memory alloy
hook
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23257889A
Other languages
Japanese (ja)
Other versions
JPH02117731A (en
Inventor
雄一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP23257889A priority Critical patent/JPH0716744B2/en
Publication of JPH02117731A publication Critical patent/JPH02117731A/en
Publication of JPH0716744B2 publication Critical patent/JPH0716744B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Springs (AREA)
  • Wire Processing (AREA)

Description

【発明の詳細な説明】 本発明は形状記憶合金製コイルばねの改良に関するもの
で、特にコイル部の両端に設けたフック部のへたりを防
止したものである。
Description: TECHNICAL FIELD The present invention relates to an improvement of a coil spring made of a shape memory alloy, and more particularly to preventing the hook portions provided at both ends of the coil portion from sagging.

形状記憶合金はマルテンサイト変態点以上の温度で一定
の形状を記憶させ、これを変態点以下の温度で変形した
後昇温すると、変態点を境に記憶させた一定の形状に回
復する特性を示すもので、マルテンサイト変態点以上の
温度では硬く、変態点以下の温度では軟かいところから
バイアスバネと組み合せたり、或いは2個の形状記憶合
金製コイルばねを組み合せたものがアクチュエーター等
に応用されている。形状記憶合金が加熱により回復でき
る変形量、即ち回復可能な変形量には限度があり、一定
の変形量を越えると変態点以上の温度に昇温しても完全
には記憶させた形状に戻らない。この回復可能な歪量は
Ni−Ti系形状記憶合金で8%、Cu−Zn−Al系形状記憶合
金で2%とされている。
Shape memory alloys memorize a certain shape at a temperature above the martensitic transformation point, and after deforming this at a temperature below the transformation point and then raising the temperature, the characteristic that the shape remembered at the transformation point is restored to the certain shape. As shown, it is hard at temperatures above the martensite transformation point and soft at temperatures below the transformation point, so it is used in combination with a bias spring, or in combination with two shape memory alloy coil springs for actuators, etc. ing. There is a limit to the amount of deformation that a shape memory alloy can recover by heating, that is, the amount of deformation that can be recovered, and if the amount of deformation exceeds a certain amount, it will not return to the completely remembered shape even if the temperature rises above the transformation point. Absent. This recoverable strain amount is
The Ni-Ti-based shape memory alloy is 8% and the Cu-Zn-Al-based shape memory alloy is 2%.

このため形状記憶合金を用いて大きな変形量を得るため
には第1図に示すようにコイル部(1)の両端に、コイ
ル軸(A)と平行にフック部(2)を形成したコイルば
ねが用いられている。形状記憶合金線をコイルばねに成
形する方法としては、合金の種類や使用目的によっても
異なるが、一般にはコイルばね全体が均一な形状記憶特
性を示すように調整している。従ってコイルばね全体が
同一の変態温度を持つため、変態点以下の温度ではコイ
ルばね全体が軟らかい状態にある。
Therefore, in order to obtain a large amount of deformation using a shape memory alloy, as shown in FIG. 1, a coil spring having hook portions (2) formed at both ends of the coil portion (1) parallel to the coil axis (A). Is used. The method of forming the shape memory alloy wire into a coil spring varies depending on the type of alloy and the purpose of use, but is generally adjusted so that the entire coil spring exhibits uniform shape memory characteristics. Therefore, since the entire coil spring has the same transformation temperature, the entire coil spring is in a soft state at a temperature below the transformation point.

このようなコイルばねを変態点以下の温度で伸ばすと、
第2図に示すようにフック部(2)の基部(3)が強く
変形され、これによりフック部(2)自体も曲げ変形を
受ける。このような不均一な変形はコイルばねのたわみ
が大きくなるに従って増大し、特に形状記憶合金製コイ
ルばねでは一般のコイルばねに比較し、一桁以上も大き
な変形歪量で使用するため、フック部の異常変形は大き
なものとなり、コイルばねの有効巻数に変化をもたら
し、動作特性に悪い影響をもたらすだけでなく、繰返し
寿命の点からも好ましいものではなく、その改善が強く
望まれていた。
When such a coil spring is stretched at a temperature below the transformation point,
As shown in FIG. 2, the base portion (3) of the hook portion (2) is strongly deformed, so that the hook portion (2) itself is also subjected to bending deformation. Such non-uniform deformation increases as the deflection of the coil spring increases, and in particular, the shape memory alloy coil spring is used with a large deformation strain of one digit or more compared to general coil springs. The abnormal deformation of No. 2 becomes large, changes the effective number of turns of the coil spring, adversely affects the operating characteristics, and is not preferable from the viewpoint of repeated life, and its improvement has been strongly desired.

本発明は、これに鑑み種々研究の結果、フック部を加工
硬化により強化することにより、フック部のへたりを防
止し得ることを知見し、フック部の変形の少ない形状記
憶合金製コイルばねを開発したもので、コイル部の両端
にコイル軸と平行なフック部を設けた形状記憶合金製コ
イルばねにおいて、該コイル部が形状記憶熱処理された
ままであり、当該フック部がさらに加工硬化されている
ことを特徴とするものである。
As a result of various studies in view of the above, the present invention has found that the hook portion can be prevented from sagging by strengthening the hook portion by work hardening, and a coil spring made of a shape memory alloy with less deformation of the hook portion is provided. In the developed one, in a shape memory alloy coil spring in which hook portions parallel to the coil axis are provided at both ends of the coil portion, the coil portion is still subjected to shape memory heat treatment, and the hook portion is further work hardened. It is characterized by that.

これを図面を用いて詳細に説明する。This will be described in detail with reference to the drawings.

第3図は本発明のコイルばねの一実施例を示すもので、
図において(1)はコイル部、(2)はその一端に形成
したフック部を示し、形状記憶合金線を変態点以上の温
度で密着巻コイルを形成し、その両端を固定してコイル
全体を変態点以上温度で形状記憶熱処理する。次に変態
点以下の温度でフック成形機により、コイル部(1)の
両端にコイル部(1)の曲げ方向と逆方向に丸めて軸方
向(A)と平行なフック部(2)を形成する。このフッ
ク成形において、コイル部(1)を変態点以下の温度で
引き伸ばし、これを形状回復させたときに完全に形状回
復できる歪量以上の変形加工をフック部(2)に加えて
加工硬化させる。即ちフック部(2)が加工硬化するま
で変形加工させる。例えばNi−Ti系形状記憶線材では、
形状記憶熱処理後さらに12%以上の変形加工をフック部
(2)に加えてフック部(2)を加工硬化させるもので
ある。
FIG. 3 shows an embodiment of the coil spring of the present invention.
In the figure, (1) shows a coil portion, and (2) shows a hook portion formed at one end thereof. A shape memory alloy wire is formed into a tightly wound coil at a temperature equal to or higher than a transformation point, and both ends thereof are fixed to fix the entire coil. Shape memory heat treatment is performed at a temperature equal to or higher than the transformation point. Next, at a temperature below the transformation point, a hook forming machine is formed on both ends of the coil portion (1) in a direction opposite to the bending direction of the coil portion (1) to form hook portions (2) parallel to the axial direction (A). To do. In this hook forming, the coil portion (1) is stretched at a temperature below the transformation point, and when the shape of the coil portion (1) is recovered, a deformation amount equal to or more than the amount of strain capable of completely recovering the shape is added to the hook portion (2) for work hardening. . That is, the hook portion (2) is deformed until it is work hardened. For example, in Ni-Ti shape memory wire,
After the shape memory heat treatment, deformation processing of 12% or more is further applied to the hook portion (2) to work-harden the hook portion (2).

本発明コイルばねは以上の構成からなり、コイルを変態
点以下の温度で引き伸ばしたときに第4図に示すように
フック部(2)の基部(3)はほとんど変形されること
なく、フック部(2)もほとんど変形を受けることがな
い。
The coil spring of the present invention has the above-mentioned structure, and when the coil is stretched at a temperature below the transformation point, the base portion (3) of the hook portion (2) is hardly deformed as shown in FIG. Also in (2), there is almost no deformation.

以下本発明コイルばねの具体例を説明する。Specific examples of the coil spring of the present invention will be described below.

Ni55wt%、残部Tiからなる直径1.0mmの形状記憶合金線
材(変態点:45℃)を常温で巻径7.5mmの密着巻コイルに
成形した後、両端を固定してコイル全体を500℃の温度
で30分間加熱して、形状記憶熱処理した。次にこのコイ
ルの両端を、常温(20℃)でフック成形機によりコイル
巻き方向と逆方向に丸めて、15%の変形加工を加え、フ
ック部を加工硬化させた。
A shape memory alloy wire rod (transformation point: 45 ° C) consisting of Ni55wt% and the balance Ti with a diameter of 1.0mm was formed into a tightly wound coil with a winding diameter of 7.5mm at room temperature, then both ends were fixed and the entire coil temperature was 500 ° C. The shape memory was heat-treated for 30 minutes. Next, both ends of this coil were rolled at a room temperature (20 ° C.) in a direction opposite to the coil winding direction by a hook forming machine, and 15% deformation processing was applied to work-harden the hook portion.

このようにして得た本発明コイルばねを機器に実装して
使用したところ、装着状態が良好で、実際に素子として
動作させたとき、多数回繰返しても動作後のフック部に
は全くへたりが認められなかった。
When the coil spring of the present invention thus obtained was mounted on a device and used, it was found to be in a good mounted state, and when it was actually operated as an element, even after a number of repetitions, the hook portion after operation was completely flat. Was not recognized.

このように本発明によれば、形状記憶合金製コイルばね
のフック部のへたりを防止し得たもので、その寿命を著
しく向上することができる顕著な効果を奏するものであ
る。
As described above, according to the present invention, it is possible to prevent the hook portion of the shape memory alloy coil spring from sagging, and to exert a remarkable effect that the life thereof can be remarkably improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の形状記憶合金製コイルばねの一例を示す
側面図、第2図は第1図に示すコイルの引き伸ばし時に
おける変形状態を示す説明図、第3図は本発明形状記憶
合金製コイルばねの一実施例を示す側面図、第4図は第
3図に示すコイルの引き伸ばし時における変形状態を示
す説明図である。 1…コイル部、2…フック部、3…フック基部。
FIG. 1 is a side view showing an example of a conventional shape memory alloy coil spring, FIG. 2 is an explanatory view showing a deformed state when the coil shown in FIG. 1 is stretched, and FIG. 3 is a shape memory alloy of the present invention. FIG. 4 is a side view showing an embodiment of the coil spring, and FIG. 4 is an explanatory view showing a deformed state when the coil shown in FIG. 3 is stretched. 1 ... Coil part, 2 ... Hook part, 3 ... Hook base part.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】コイル部の両端にコイル軸と平行なフック
部を設けた形状記憶合金製コイルばねにおいて、該コイ
ル部が形状記憶熱処理されたままであり、当該フック部
がさらに加工硬化されていることを特徴とする形状記憶
合金製コイルばね。
1. A coil spring made of a shape memory alloy in which hook portions parallel to the coil axis are provided at both ends of the coil portion, the coil portion is still subjected to shape memory heat treatment, and the hook portion is further work hardened. A coil spring made of a shape memory alloy, which is characterized in that
JP23257889A 1989-09-07 1989-09-07 Shape memory alloy coil spring Expired - Lifetime JPH0716744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23257889A JPH0716744B2 (en) 1989-09-07 1989-09-07 Shape memory alloy coil spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23257889A JPH0716744B2 (en) 1989-09-07 1989-09-07 Shape memory alloy coil spring

Publications (2)

Publication Number Publication Date
JPH02117731A JPH02117731A (en) 1990-05-02
JPH0716744B2 true JPH0716744B2 (en) 1995-03-01

Family

ID=16941548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23257889A Expired - Lifetime JPH0716744B2 (en) 1989-09-07 1989-09-07 Shape memory alloy coil spring

Country Status (1)

Country Link
JP (1) JPH0716744B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100973986B1 (en) * 2006-08-24 2010-08-05 한국과학기술연구원 Method to provide initial tension for coil spring

Also Published As

Publication number Publication date
JPH02117731A (en) 1990-05-02

Similar Documents

Publication Publication Date Title
US5885381A (en) Ni-Ti-Pd superelastic alloy material, its manufacturing method, and orthodontic archwire made of this alloy material
JPH0433862B2 (en)
JP3956613B2 (en) NiTiCu shape memory alloy conducting actuator element
EP2122192B1 (en) Coil spring having two-way shape memory effect and the fabrication method thereof, and adiabatic product using the same
JPH0716744B2 (en) Shape memory alloy coil spring
US6371463B1 (en) Constant-force pseudoelastic springs and applications thereof
JP2851086B2 (en) Manufacturing method of two-way shape memory coil spring
JPH0665740B2 (en) Method for manufacturing NiTi-based shape memory material
US3753792A (en) Method of achieving thermally balanced hot wire relay type devices
US20030034711A1 (en) Pseudoelastic springs with concentrated deformations and applications thereof
JPS61227141A (en) Niti shape memory alloy wire
JP2801310B2 (en) Manufacturing method of two-way shape memory coil spring
JP2795463B2 (en) Manufacturing method of two-way shape memory coil spring
US4395295A (en) Process for treating copper-aluminum-silicon alloys to improve fatigue strength
JP2724815B2 (en) Shape memory alloy coil spring and method of manufacturing the same
JPH0128252B2 (en)
JPH0156855B2 (en)
JP2851160B2 (en) Method of manufacturing superelastic alloy wire
JPH07153514A (en) Superelastic cone disc spring and manufacture thereof
JPS59162262A (en) Production of spring having two-way shape memory effect
KR20180076039A (en) Flexible wire
KR102211182B1 (en) Shape memory alloy spring, method of manufacturing the same and actuator including shape memory alloy spring
JP2795465B2 (en) Manufacturing method of two-way shape memory coil spring
JPH08109455A (en) Production of nickel-titanium dual oriented shape memory alloy
JPH08144032A (en) Production of two-way shape memory alloy coil spring