JPH0716610A - Method for working high-carbon martensitic stainless steel - Google Patents

Method for working high-carbon martensitic stainless steel

Info

Publication number
JPH0716610A
JPH0716610A JP16563593A JP16563593A JPH0716610A JP H0716610 A JPH0716610 A JP H0716610A JP 16563593 A JP16563593 A JP 16563593A JP 16563593 A JP16563593 A JP 16563593A JP H0716610 A JPH0716610 A JP H0716610A
Authority
JP
Japan
Prior art keywords
stainless steel
hot
reduction rate
plastic working
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16563593A
Other languages
Japanese (ja)
Inventor
Shigeo Matsuo
茂雄 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP16563593A priority Critical patent/JPH0716610A/en
Publication of JPH0716610A publication Critical patent/JPH0716610A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To manufacture stainless steel in which eutectic carbide having probability of causing the deterioration or the like of workability is not present substantially by making a base stock into an intermediate size by hot plastic work, next executing cold plastic work of a specified reduction of area and executing specified hot work. CONSTITUTION:The base stock of high-carbon martensitic stainless steel of SUS-404C or the like is made into the intermediate size by hot plastic work. Next, cold plastic working of the reduction of area of >=30% is executed. After that, the plastic work of the reduction of area of >=60% is executed at a high temp. of >=850 deg.C. Further, by executing, as necessary, finishing work, the desired size is made. The cold plastic work is executed by die drawing. Before die drawing, spheroidizing annealing is executed. In this way, a wire is not broken even when the base stock is drawn into a thin wire as a secondary work and the stainless steel is manufactured without the generation of void due to the eutectic carbide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高炭素マルテンサイ
ト系ステンレス鋼材の加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for processing a high carbon martensitic stainless steel material.

【0002】[0002]

【従来の技術】例えばベアリングや刃物等の製造原料と
なる高炭素マルテンサイト系ステンレス鋼材を加工する
従来の方法は、鋼塊又は鋳片からハンマー分塊・圧延等
によって得た鋼片を、加熱炉において所定の温度に加熱
した後、熱間圧延して所望の寸法の鋼材を得るというも
のであった。
2. Description of the Related Art For example, a conventional method for processing a high carbon martensitic stainless steel material, which is a raw material for manufacturing bearings, blades, etc., is to heat a steel ingot or a slab obtained by hammer agglomeration / rolling, etc. After heating to a predetermined temperature in a furnace, hot rolling was performed to obtain a steel material having a desired size.

【0003】[0003]

【発明が解決しようとする課題】高炭素マルテンサイト
系ステンレス鋼は凝固の際に共晶炭化物(一次炭化物)
を晶出する。この一次炭化物の結晶粒は、以降の工程で
析出する二次炭化物に比べて著しく大きく、その後の一
次および二次加工の工程での加工性を害する原因となる
ことが知られている。
High carbon martensitic stainless steels are eutectic carbides (primary carbides) during solidification.
To crystallize. It is known that the crystal grains of the primary carbides are significantly larger than the secondary carbides precipitated in the subsequent steps, which causes the workability in the subsequent primary and secondary processing steps to be impaired.

【0004】従来の高炭素マルテンサイト系ステンレス
鋼材の加工方法では、熱間加工に伴う鍛錬効果で一次炭
化物が分断され、微細化されるが、この鍛錬効果にも限
界があり、最終的に数十μmオーダーの共晶炭化物が残
留することがあった。このように大きな炭化物が残留す
ると、加工性を害する原因となるとともに製品の表面剥
離等の原因ともなっていた。特に、二次加工工程におけ
る伸線時の断線、炭化物の割れやボイド等のミクロ的欠
陥の発生に伴う強度低下、延性低下等、製品の機械的性
質の低下を来すことがあった。
In the conventional processing method for high carbon martensitic stainless steel, primary carbides are fragmented and refined due to the wrought effect accompanying hot working, but this wrought effect also has a limit, and finally several Sometimes eutectic carbides of the order of 10 μm remained. If such a large amount of carbide remains, it becomes a cause of impairing workability and also causing a surface peeling of the product. In particular, the mechanical properties of the product may be deteriorated, such as wire breakage during wire drawing in the secondary processing step, strength deterioration and ductility deterioration due to the occurrence of microscopic defects such as carbide cracks and voids.

【0005】[0005]

【課題を解決するための手段】このような課題を解決す
ることを目的としてなされた本発明の要旨は、高炭素マ
ルテンサイト系ステンレス鋼素材を、まず、熱間塑性加
工により中間寸法とし、次に、減面率30%以上の冷間
塑性加工を施し、その後、温度850℃以上の熱間にて
減面率60%以上の塑性加工を施し、さらに、必要に応
じて仕上げ加工を施すことにより、目的寸法とすること
を特徴とする高炭素マルテンサイト系ステンレス鋼材の
加工方法にある。
The gist of the present invention made for the purpose of solving such a problem is that a high carbon martensitic stainless steel material is first made into an intermediate size by hot plastic working, Cold-working with a surface reduction rate of 30% or more, and then subjecting to a hot-working temperature of 850 ° C or more with a surface reduction rate of 60% or more, and further finishing if necessary. According to the above, there is a method for processing a high carbon martensitic stainless steel material, which is characterized in that a target dimension is obtained.

【0006】本発明の加工方法を採用するにあたって
は、まず目的寸法が設定される。次に、この設定された
目的寸法から逆算して熱間塑性加工での60%以上の減
面率を確保し得るように冷間塑性加工後の寸法が設定さ
れる。さらに、設定された冷間加工後の寸法から逆算し
て冷間塑性加工での30%以上の減面率を確保し得るよ
うに中間寸法が設定される。したがって、中間寸法は、
目的寸法、熱間塑性加工における減面率および冷間塑性
加工における減面率を考慮して決定される必要がある。
なお、仕上げ加工を施す場合には、ここでの減面率も考
慮されなければならない。
In adopting the processing method of the present invention, first, a target dimension is set. Next, the dimension after cold plastic working is set so as to ensure a surface reduction rate of 60% or more in hot plastic working by back-calculating from the set target dimensions. Further, the intermediate dimension is set so that the area reduction rate of 30% or more in the cold plastic working can be ensured by back-calculating from the set dimension after the cold working. Therefore, the intermediate dimension is
It needs to be determined in consideration of the target size, the area reduction rate in hot plastic working and the area reduction rate in cold plastic working.
It should be noted that when the finishing process is performed, the area reduction rate here must also be taken into consideration.

【0007】本発明は、熱間塑性加工により中間寸法と
された高炭素マルテンサイト系ステンレス鋼中間素材
(以下、単に中間素材ともいう)に冷間塑性加工を施す
ことにより共晶炭化物の分断、微細化をはかり、その後
の熱間塑性加工により上記共晶炭化物の分断、微細化に
よって発生した炭化物のミクロ的欠陥を改善するもので
あって、かかる本発明は、熱間加工に比べて冷間加工で
はマトリックスの加工性が低下し、共晶炭化物の分断、
微細化が促進され、他方、熱間加工では炭化物の大きさ
が一定以下の大きさになると分断、微細化が起こり難く
なる一方で炭化物と鋼基地との圧着は行われるとの知見
のもとになされたものである。
The present invention divides a eutectic carbide by subjecting a high carbon martensitic stainless steel intermediate material (hereinafter, also simply referred to as an intermediate material) having an intermediate size obtained by hot plastic working to cold plastic working, The eutectic carbides are divided by the subsequent hot plastic working by refining, and micro defects of the carbides generated by the refining are improved, and the present invention is cold working as compared with hot working. Machining reduces the machinability of the matrix, fragmenting eutectic carbides,
Based on the finding that miniaturization is promoted, and on the other hand, in hot working, when the size of the carbide becomes less than a certain size, it becomes difficult to divide and miniaturize while the compression of the carbide and the steel matrix is performed. It was done by.

【0008】[0008]

【作用】熱間塑性加工により中間寸法とされた中間素材
に減面率30%以上の冷間塑性加工を施す。この冷間塑
性加工により、中間素材中に残留していた共晶炭化物が
破壊、分断され、これによって生じた炭化物が鋼基地中
にこまかく分散する。この際、減面率が30%を下回る
と共晶炭化物の破壊、分断および炭化物の分散が不十分
となるので、減面率を30%以上とする必要がある。
[Operation] An intermediate material having an intermediate size by hot plastic working is subjected to cold plastic working with a surface reduction rate of 30% or more. By this cold plastic working, the eutectic carbide remaining in the intermediate material is broken and divided, and the carbide thus generated is finely dispersed in the steel matrix. At this time, if the area reduction rate is less than 30%, the eutectic carbides will not be destroyed, divided, and the dispersion of the carbides will be insufficient. Therefore, it is necessary to set the area reduction rate to 30% or more.

【0009】なお、[0009] Incidentally,

【0010】[0010]

【数1】 [Equation 1]

【0011】である。この冷間塑性加工を請求項2記載
のダイス伸線による場合は、中間素材をダイス引き抜き
する際に上記共晶炭化物の破壊、分断と炭化物の分散が
生ずる。なお、ダイス伸線に先だって請求項3記載の球
状化焼鈍を実施すると、ダイス伸線時の変形抵抗が小さ
くなりダイスの摩耗等のトラブルは少ない。
[0011] When the cold plastic working is performed by die drawing according to the second aspect of the present invention, the eutectic carbide is destroyed and fragmented and the carbide is dispersed when the intermediate material is drawn out from the die. If the spheroidizing annealing according to claim 3 is carried out prior to die drawing, the deformation resistance during die drawing becomes small and there are few problems such as die wear.

【0012】冷間塑性加工後の熱間塑性加工により、前
記破壊、分断されて鋼基地中にこまかく分散した炭化物
は、鋼基地に圧着されてボイド等が消滅する。このよう
な効果を得るためには、850℃以上の温度で熱間塑性
加工を行い、かつその際の減面率を60%以上とする必
要がある。これは、加工温度が850℃未満であった
り、減面率が60%未満であると、前記破壊、分断され
て鋼基地中にこまかく分散した炭化物と鋼基地との圧着
が悪いためである。なお、この熱間塑性加工の温度が9
00℃未満であるとダイスが摩耗しやすいので、熱間塑
性加工の温度は900℃以上が好ましい。また、熱間塑
性加工の温度を1000℃以上とするとダイスの摩耗は
殆ど問題とならないので、熱間塑性加工の温度を100
0℃以上とすると一層好ましい。
By the hot plastic working after the cold plastic working, the carbides that have been fractured and divided and finely dispersed in the steel matrix are pressed to the steel matrix and voids and the like disappear. In order to obtain such an effect, it is necessary to perform hot plastic working at a temperature of 850 ° C. or higher and to reduce the area reduction rate at that time to 60% or higher. This is because when the processing temperature is less than 850 ° C. or the area reduction rate is less than 60%, the pressure-bonding between the carbides that have been broken or divided and finely dispersed in the steel matrix and the steel matrix is poor. The temperature of this hot plastic working is 9
If the temperature is lower than 00 ° C, the die is easily worn, so that the temperature of hot plastic working is preferably 900 ° C or higher. Further, if the hot plastic working temperature is 1000 ° C. or higher, the die wear hardly poses a problem.
More preferably, the temperature is 0 ° C or higher.

【0013】[0013]

【実施例】次に、本発明の特徴を更に明確にすべく以下
にその実施例を詳述する。以下に示す実施例はSUS4
40C(高炭素マルテンサイト系ステンレス鋼)材を加
工して線材を得た例である。また比較例も併せて示す。 [実施例1]この実施例1は、目的寸法φ6.5mmの
線材を得る例である。
EXAMPLES Examples will be described in detail below in order to further clarify the characteristics of the present invention. The example shown below is SUS4.
It is an example in which a wire was obtained by processing a 40C (high carbon martensitic stainless steel) material. A comparative example is also shown. [Example 1] Example 1 is an example of obtaining a wire rod having a target dimension of φ6.5 mm.

【0014】熱間圧延加工によりSUS440C、直径
15mmの中間素材を得た。この中間素材の共晶炭化物
の平均寸法は7.5μmであった。この中間素材に球状
化焼鈍および被膜処理を実施した後、ダイス伸線加工を
施し直径12.5mmの線材を得た。ダイス伸線加工に
伴う減面率は30.5%である。この線材の密度を測定
し中間素材の密度と比較したところ、ダイス伸線加工に
伴う密度低下率は2.1%であった。
An intermediate material having a diameter of 15 mm and SUS440C was obtained by hot rolling. The average size of the eutectic carbide of this intermediate material was 7.5 μm. After subjecting this intermediate material to spheroidizing annealing and coating treatment, it was subjected to die wire drawing to obtain a wire having a diameter of 12.5 mm. The area reduction rate associated with the die wire drawing is 30.5%. When the density of this wire was measured and compared with the density of the intermediate material, the density reduction rate due to the die wire drawing was 2.1%.

【0015】ここで密度低下率は、加工前の密度を
ρo、加工後の密度をρとした時、次式で表される。
Here, the density reduction rate is expressed by the following equation, where ρ o is the density before processing and ρ is the density after processing.

【0016】[0016]

【数2】 [Equation 2]

【0017】なお、炭化物のミクロ的欠陥が増えると密
度低下率が大きくなることが確認されている。次に、こ
のダイス伸線加工した線材(直径12.5mm)を11
00℃に加熱後、熱間圧延加工して、直径6.5mmの
目的寸法の線材を得た。熱間圧延加工に伴う減面率は7
3%である。この熱間圧延加工後の線材の炭化物の平均
寸法は4.2μm、熱間圧延加工に伴う密度低下率は
0.02%であった。 [実施例2]この実施例2は、冷間伸線を2回実施した
例である。
It has been confirmed that the density decrease rate increases as the number of micro defects in the carbide increases. Next, this die wire drawn wire rod (diameter 12.5 mm) 11
After heating to 00 ° C., hot rolling was performed to obtain a wire rod having a target dimension of 6.5 mm in diameter. Area reduction rate due to hot rolling is 7
3%. The average size of the carbide of the wire rod after the hot rolling was 4.2 μm, and the density reduction rate due to the hot rolling was 0.02%. [Example 2] Example 2 is an example in which cold drawing was performed twice.

【0018】熱間圧延加工によりSUS440C、直径
8.0mmの中間素材を得た。この中間素材の共晶炭化
物の平均寸法は7.2μmであった。この中間素材に球
状化焼鈍および被膜処理を実施した後、ダイス伸線加工
を施し直径6.2mmの線材とした。その後、再度、球
状化焼鈍および被膜処理を実施した後、ダイス伸線加工
を施し直径5.0mmの線材を得た。2回のダイス伸線
加工に伴う減面率は61%である。なお、ダイス伸線加
工に伴う減面率は初回が40%、2回目が35%であ
り、各回とも30%以上である。この線材(直径5.0
mm)の密度を測定し中間素材の密度と比較したとこ
ろ、2回のダイス伸線加工に伴う密度低下率は3.3%
であった。
An intermediate material having a diameter of 8.0 mm and SUS440C was obtained by hot rolling. The average size of the eutectic carbide of this intermediate material was 7.2 μm. This intermediate material was subjected to spheroidizing annealing and coating treatment, and then subjected to die wire drawing to obtain a wire material having a diameter of 6.2 mm. After that, spheroidizing annealing and coating treatment were performed again, and then die drawing was performed to obtain a wire rod having a diameter of 5.0 mm. The area reduction rate due to the two times of die wire drawing is 61%. The area reduction rate associated with the die wire drawing is 40% in the first time and 35% in the second time, and is 30% or more in each time. This wire (diameter 5.0
(mm) density was measured and compared with the density of the intermediate material, the density reduction rate due to the two times die wire drawing was 3.3%.
Met.

【0019】次に、このダイス伸線加工した線材(直径
5.0mm)を1000℃に加熱後、熱間圧延加工し
て、直径3.0mmの目的寸法の線材を得た。熱間圧延
加工に伴う減面率は64%である。この熱間圧延加工後
の線材の炭化物の平均寸法は3.5μm、熱間圧延加工
に伴う密度低下率は0.07%であった。 [比較例1]この比較例1は、冷間塑性加工の減面率を
30%未満、熱間塑性加工の温度を850℃未満、熱間
塑性加工の減面率を60%未満とした例である。
Next, this die wire-drawn wire rod (diameter 5.0 mm) was heated to 1000 ° C. and hot-rolled to obtain a wire rod having a target dimension of 3.0 mm in diameter. The area reduction rate associated with hot rolling is 64%. The average size of the carbide of the wire rod after the hot rolling was 3.5 μm, and the density reduction rate due to the hot rolling was 0.07%. [Comparative Example 1] In Comparative Example 1, an area reduction rate of cold plastic working is less than 30%, a temperature of hot plastic working is less than 850 ° C, and an area reduction rate of hot plastic working is less than 60%. Is.

【0020】熱間圧延加工によりSUS440C、直径
5.5mmの中間素材を得た。この中間素材の共晶炭化
物の平均寸法は7.3μmであった。この中間素材に球
状化焼鈍および被膜処理を実施した後、ダイス伸線加工
を施し直径4.9mmの線材を得た。ダイス伸線加工に
伴う減面率は20.5%である。この線材の密度を測定
し中間素材の密度と比較したところ、ダイス伸線加工に
伴う密度低下率は1.5%であった。
An intermediate material having a diameter of 5.5 mm and SUS440C was obtained by hot rolling. The average size of the eutectic carbide of this intermediate material was 7.3 μm. After subjecting this intermediate material to spheroidizing annealing and coating treatment, it was subjected to die wire drawing to obtain a wire having a diameter of 4.9 mm. The area reduction rate associated with the die wire drawing is 20.5%. When the density of this wire was measured and compared with the density of the intermediate material, the density reduction rate due to the die wire drawing was 1.5%.

【0021】次に、このダイス伸線加工した線材(直径
4.9mm)を700℃に加熱後、熱間圧延加工して、
直径3.5mmの線材を得た。熱間圧延加工に伴う減面
率は49%である。この熱間圧延加工後の線材の炭化物
の平均寸法は6.3μm、熱間圧延加工に伴う密度低下
率は0.5%であった。 [比較例2]この比較例2は、従来技術による加工の例
である。
Next, this die wire-drawn wire (diameter 4.9 mm) was heated to 700 ° C. and then hot-rolled,
A wire rod having a diameter of 3.5 mm was obtained. The area reduction rate associated with hot rolling is 49%. The average size of the carbide of the wire rod after the hot rolling was 6.3 μm, and the density reduction rate due to the hot rolling was 0.5%. [Comparative example 2] This comparative example 2 is an example of processing by a conventional technique.

【0022】SUS440Cの鋳鋼を熱間圧延加工し
て、5.5mmの線材を得た。この線材の炭化物の平均
寸法は7.0μmであった。この線材(直径5.5m
m)を1100℃に加熱後、熱間圧延加工を施して、直
径3.5mmの線材とした。熱間圧延加工に伴う減面率
は49%である。この線材(直径3.5mm)の炭化物
の平均寸法は6.5μmであった。
A cast steel of SUS440C was hot-rolled to obtain a wire rod of 5.5 mm. The average size of the carbides in this wire was 7.0 μm. This wire (diameter 5.5m
m) was heated to 1100 ° C. and then hot rolled to obtain a wire rod having a diameter of 3.5 mm. The area reduction rate associated with hot rolling is 49%. The average size of the carbide of this wire (diameter 3.5 mm) was 6.5 μm.

【0023】以上のように、実施例1および実施例2で
得た線材は、炭化物の平均寸法は微細である。また、熱
間圧延加工に伴う密度低下率もきわめて小さく、ボイド
等のミクロ的欠陥が消滅している。一方、比較例1で得
た線材は、炭化物の平均寸法の低下はわずかで、炭化物
の微細化は不十分である。また熱間圧延加工に伴う密度
低下率も大きく、ボイド等のミクロ的欠陥が消滅してな
いことを示している。また比較例2で得た線材は、炭化
物の平均寸法の低下はわずかで、炭化物の微細化は不十
分である。
As described above, in the wire rods obtained in Examples 1 and 2, the average size of carbides is fine. Further, the rate of decrease in density due to hot rolling is extremely small, and microscopic defects such as voids have disappeared. On the other hand, in the wire rod obtained in Comparative Example 1, the decrease in the average size of the carbides is slight, and the refining of the carbides is insufficient. Also, the rate of decrease in density due to hot rolling is large, indicating that microscopic defects such as voids have not disappeared. The wire rod obtained in Comparative Example 2 showed a slight decrease in the average size of the carbides, and the refinement of the carbides was insufficient.

【0024】尚、上記実施例および比較例の線材製造工
程を表1に総括的に示す。
Table 1 shows the manufacturing process of the wire rods of the above examples and comparative examples.

【0025】[0025]

【表1】 [Table 1]

【0026】以上、実施例に従って本発明の高炭素マル
テンサイト系ステンレス鋼材の加工方法を説明したが、
本発明はこのような実施例に限定されるものではなく、
本発明の要旨を逸脱しない範囲でさまざまに実施でき
る。例えば、上記実施例は高炭素マルテンサイト系ステ
ンレス鋼材を加工して線材を得る例であるが、本発明は
線材の加工に限定されるものではなく、棒鋼、鋼板等の
加工に適用できる。また上記実施例は冷間塑性加工とし
てダイス伸線加工を採用しているが、他の手段、例えば
冷間圧延を採用してもよい。なお、実施例2のように複
数回の冷間塑性加工を施す場合、変形抵抗を低下させる
ための球状化焼鈍を挟みながら冷間塑性加工を行うが、
少なくとも1回は減面率を30%以上とするのがよい。
The processing method of the high carbon martensitic stainless steel material of the present invention has been described above according to the embodiments.
The present invention is not limited to such an embodiment,
Various implementations are possible without departing from the scope of the present invention. For example, the above embodiment is an example of processing a high carbon martensitic stainless steel material to obtain a wire rod, but the present invention is not limited to the processing of the wire rod and can be applied to the processing of bar steel, steel plate and the like. Further, although the die wire drawing is adopted as the cold plastic working in the above-mentioned embodiment, other means such as cold rolling may be adopted. When performing cold plastic working a plurality of times as in Example 2, cold plastic working is performed while sandwiching spheroidizing annealing for reducing deformation resistance.
It is preferable that the surface reduction rate be 30% or more at least once.

【0027】さらに、上記実施例では示していないが、
仕上げ加工として例えば冷間伸線を施してもよい。既に
炭化物が微細化されているので、細径線材の仕上げ加工
を実施しても断線することはない。
Further, although not shown in the above embodiment,
As a finishing process, for example, cold drawing may be performed. Since the carbide has already been made finer, the wire will not be broken even if the finishing work of the thin wire is carried out.

【0028】[0028]

【発明の効果】以上説明したように、本発明の方法によ
れば、加工性の低下や製品の表面剥離等の原因となる共
晶炭化物が実質存在しない高炭素マルテンサイト系ステ
ンレス鋼材が得られる。この高炭素マルテンサイト系ス
テンレス鋼材は、例えば二次加工として細径に伸線して
も断線することはなく、また共晶炭化物に起因するボイ
ドの発生もないので品質の低下を招くこともない。
As described above, according to the method of the present invention, it is possible to obtain a high carbon martensitic stainless steel material which is substantially free of eutectic carbides that cause deterioration of workability and surface peeling of products. . This high-carbon martensitic stainless steel material does not break even if it is drawn to a small diameter as a secondary working, and does not cause voids due to eutectic carbides, and therefore does not cause deterioration in quality. .

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1、実施例2および比較例1における
炭化物の平均寸法と密度低下率を示すグラフである。
FIG. 1 is a graph showing the average size and density reduction rate of carbides in Examples 1, 2 and Comparative Example 1.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高炭素マルテンサイト系ステンレス鋼素
材を、 まず、熱間塑性加工により中間寸法とし、 次に、減面率30%以上の冷間塑性加工を施し、 その後、温度850℃以上の熱間にて減面率60%以上
の塑性加工を施し、 さらに、必要に応じて仕上げ加工を施すことにより、 目的寸法とすることを特徴とする高炭素マルテンサイト
系ステンレス鋼材の加工方法。
1. A high carbon martensitic stainless steel material is first made into an intermediate size by hot plastic working, and then subjected to cold plastic working with an area reduction rate of 30% or more, and then at a temperature of 850 ° C. or more. A method for processing a high-carbon martensitic stainless steel material, which comprises subjecting the steel to a target dimension by subjecting it to a plastic working with a surface reduction rate of 60% or more in a hot state, and further finishing if necessary.
【請求項2】 上記冷間塑性加工がダイス伸線であるこ
とを特徴とする請求項1記載の高炭素マルテンサイト系
ステンレス鋼材の加工方法。
2. The method for processing a high carbon martensitic stainless steel material according to claim 1, wherein the cold plastic working is die wire drawing.
【請求項3】 上記ダイス伸線に先だって球状化焼鈍を
施すことを特徴とする請求項2記載の高炭素マルテンサ
イト系ステンレス鋼材の加工方法。
3. The method for processing a high carbon martensitic stainless steel material according to claim 2, wherein spheroidizing annealing is performed prior to the die wire drawing.
JP16563593A 1993-07-05 1993-07-05 Method for working high-carbon martensitic stainless steel Pending JPH0716610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16563593A JPH0716610A (en) 1993-07-05 1993-07-05 Method for working high-carbon martensitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16563593A JPH0716610A (en) 1993-07-05 1993-07-05 Method for working high-carbon martensitic stainless steel

Publications (1)

Publication Number Publication Date
JPH0716610A true JPH0716610A (en) 1995-01-20

Family

ID=15816113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16563593A Pending JPH0716610A (en) 1993-07-05 1993-07-05 Method for working high-carbon martensitic stainless steel

Country Status (1)

Country Link
JP (1) JPH0716610A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0847701A (en) * 1994-08-05 1996-02-20 Daido Steel Co Ltd Manufacture of martensitic stainless steel wire
EP1193316A1 (en) * 2000-08-28 2002-04-03 Hitachi, Ltd. Corrosion-resisting and wear-resisting alloy and device using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0847701A (en) * 1994-08-05 1996-02-20 Daido Steel Co Ltd Manufacture of martensitic stainless steel wire
EP1193316A1 (en) * 2000-08-28 2002-04-03 Hitachi, Ltd. Corrosion-resisting and wear-resisting alloy and device using the same
EP1741795A1 (en) * 2000-08-28 2007-01-10 Hitachi, Ltd. Corrosion-resisting and wear-resisting alloy and device using the same

Similar Documents

Publication Publication Date Title
CN112703266A (en) Cold-heading wire rod with shortened softening heat treatment time and manufacturing method thereof
JP5197076B2 (en) Medium and high carbon steel sheet with excellent workability and manufacturing method thereof
JPH0681089A (en) Method for hot-working magnesium alloy
JPH0716610A (en) Method for working high-carbon martensitic stainless steel
JP4974285B2 (en) Medium and high carbon steel sheet with excellent workability and manufacturing method thereof
JP2005002378A (en) Method of producing magnesium alloy sheet
JPH11264049A (en) High carbon steel strip and its production
JP2651761B2 (en) Manufacturing method of carbon steel wire with excellent mechanical descaling for cold heading
JP4227391B2 (en) High carbon steel plate with excellent FCF processability
JP3881793B2 (en) Hot forging method for mold steel or tool steel
JP3353537B2 (en) Method for producing steel wire rod for spring with excellent drawability
RU2696789C1 (en) Method of producing high-manganese steel sheets with improved mechanical properties
JP3480568B2 (en) High speed tool steel material for cold forging, hollow product made of high speed tool steel, and method of manufacturing the same
JP2002143909A (en) Roll made of high speed tool steel having high spalling resistance and its production method
JP2791832B2 (en) Manufacturing method of mild steel wire rod with excellent workability during cold forging
JPH05271860A (en) Structural steel excellent in brittle fracture resistance and its production
JP4175823B2 (en) Manufacturing method of special steel for molds
JP2005226123A (en) Method for manufacturing hot-rolled steel sheet having fine ferrite structure
KR20220090356A (en) Method for improving strength of metal by static recrystallization
JPH0718328A (en) Manufacture of seamless steel tube having grain refining organization
JPH09279240A (en) Production of steel wire
JPS6345356A (en) Manufacture of alpha+beta type titanium alloy plate
JPH059677A (en) Manufacture of thin aluminum alloy sheet for drawless fin excellent in ironability
JPH10265853A (en) Production of high carbon content hot rolled steel sheet for working
JPH09225575A (en) Cold working method of graphite precipitated steel