JP2005226123A - Method for manufacturing hot-rolled steel sheet having fine ferrite structure - Google Patents

Method for manufacturing hot-rolled steel sheet having fine ferrite structure Download PDF

Info

Publication number
JP2005226123A
JP2005226123A JP2004036185A JP2004036185A JP2005226123A JP 2005226123 A JP2005226123 A JP 2005226123A JP 2004036185 A JP2004036185 A JP 2004036185A JP 2004036185 A JP2004036185 A JP 2004036185A JP 2005226123 A JP2005226123 A JP 2005226123A
Authority
JP
Japan
Prior art keywords
rolling
hot
steel sheet
sec
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004036185A
Other languages
Japanese (ja)
Other versions
JP4305207B2 (en
Inventor
Masahiro Fukushima
傑浩 福島
Manabu Eto
学 江藤
Tamotsu Sasaki
保 佐々木
Yoshiori Kono
佳織 河野
Masayuki Wakita
昌幸 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004036185A priority Critical patent/JP4305207B2/en
Publication of JP2005226123A publication Critical patent/JP2005226123A/en
Application granted granted Critical
Publication of JP4305207B2 publication Critical patent/JP4305207B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a hot-rolled steel sheet having finer ferrite crystal grains than ever, specifically an average grain size of less than 2 μm. <P>SOLUTION: The hot-rolled steel sheet having the fine ferrite structure comprises, by mass%, 0.04-0.20% C, 0.01-2.0% Si, 0.5-3.0% Mn and the balance Fe with unavoidable impurities. The manufacturing method comprises: a step (A) including the first rolling of rolling a base steel plate having the above composition, in the temperature range of an Ae3 transformation temperature or higher at a total rolling reduction of 80% or higher; a step (B) including the second rolling of rolling the plate subsequently to the step A by one pass, in the temperature range of the Ae3 transformation temperature or higher at a total rolling reduction of 30 to 55%; a step (C) including the third rolling of rolling the plate by one pass, within 0.3 sec after the second rolling in the step (B), at a rolling reduction of 35 to 60%; and a step (D) of cooling the plate within 0.2 sec after the third rolling in the step (C), to a temperature of (Ae3 transformation temperature -130°C) or lower, at a cooling rate of 600°C/sec or higher. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、炭素鋼のフェライト結晶粒径を微細化する熱延鋼板の製造方法に関する。   The present invention relates to a method for producing a hot-rolled steel sheet that refines the ferrite crystal grain size of carbon steel.

フェライト結晶粒の微細化により強度と共に靱性が高められることは知られており、微細フェライト組織を持つ熱延鋼板の製造技術は、鉄鋼材料の材料機能発現のための重要な技術である。また特殊な元素を用いずに強度強化が図れるため、製品のリサイクル性も高く、地球環境に対する負荷も少ない。   It is known that strength and toughness can be improved by refinement of ferrite crystal grains, and a technology for producing a hot-rolled steel sheet having a fine ferrite structure is an important technique for manifesting material functions of steel materials. In addition, the strength can be enhanced without using special elements, so the recyclability of the product is high and the burden on the global environment is low.

微細フェライト組織を持つ熱延鋼板を得る手段として、大歪み加工法が従来から多く研究されている。例えば、特許文献1には、変態域で、1パスまたは累積の大圧下により炭素鋼で粒径3〜5μmの細粒フェライト組織を有する高強度熱延鋼板が得られることが開示されている。   As a means for obtaining a hot-rolled steel sheet having a fine ferrite structure, a large strain processing method has been extensively studied. For example, Patent Document 1 discloses that a high-strength hot-rolled steel sheet having a fine-grained ferrite structure with a grain size of 3 to 5 μm is obtained from carbon steel by one pass or cumulative large pressure in the transformation region.

また、特許文献2には、650〜950℃の温度域で、圧下率40%以上で圧下し、更に2秒以内に連続して圧下率40%以上の圧下を加えることにより2〜3μm程度の細粒フェライト組織が得られることが開示されている。   Further, in Patent Document 2, by rolling down at a reduction rate of 40% or more in a temperature range of 650 to 950 ° C., and further applying a reduction at a reduction rate of 40% or more continuously within 2 seconds, about 2 to 3 μm. It is disclosed that a fine-grained ferrite structure can be obtained.

これらはいずれも圧延中のフェライト変態やフェライト再結晶による結晶粒微細化機構を活用するものとされている。
特開昭58−123823号公報 特開昭59−229413号公報
All of these are supposed to utilize the grain refinement mechanism by ferrite transformation and recrystallization of ferrite during rolling.
JP 58-123823 A JP 59-229413 A

上記公報などによる方法では、2〜3μm程度が細粒化の限界であった。本発明は、従来以上の結晶粒微細化、具体的には平均2μm未満のフェライト結晶粒径を実現するための製造方法を提供することを課題とするものである。   In the method according to the above publication, etc., about 2 to 3 μm was the limit of fine graining. An object of the present invention is to provide a production method for realizing crystal grain refinement more than conventional, specifically, a ferrite crystal grain size of less than 2 μm on average.

以下、本発明について説明する。なお、本発明の理解を容易にするために添付図面の参照符号を括弧書きにて付記するが、それにより本発明が図示の形態に限定されるものではない。   The present invention will be described below. In order to facilitate understanding of the present invention, reference numerals in the accompanying drawings are appended in parentheses, but the present invention is not limited to the illustrated embodiment.

本発明は、図1の工程図に概略的に示されるように、熱間加工に適する高温状態にあり、所定の組成を有する素材鋼板を、総圧下率80%以上の第1圧延、1パスの第2圧延、その直後に行う第3圧延、及びその直後に行う冷却を含む各工程により処理して、微細フェライト組織を有する熱延鋼板を得るものである。   In the present invention, as schematically shown in the process diagram of FIG. 1, a raw steel plate having a predetermined composition in a high temperature state suitable for hot working is subjected to a first rolling with a total rolling reduction of 80% or more, one pass. The second rolling, the third rolling performed immediately thereafter, and the cooling steps performed immediately thereafter are processed to obtain a hot rolled steel sheet having a fine ferrite structure.

本発明者らは、短パス間時間で高圧下圧延が可能な多スタンド熱間試験圧延機(後述する。)を用いて実験した結果から、微細結晶粒を得るため有効な下記の条件を見出した。これらの適切な組み合わせにより、従来の方法によるもの以上の結晶粒微細化が得られることを知見し本発明を完成するに至った。これを金属結晶組織に注目して表現すれば、
(1)最終パスたる第3圧延まではフェライト変態させず、フェライト変態前のオーステナイトは、極力微細化した上で、且つ転位密度を高める。
(2)第1圧延において、十分にオーステナイトを微細化し、再結晶させる。
(3)第2圧延においては、動的再結晶・静的再結晶が著しく早くなるような超高圧下圧延を避けつつも、十分な圧下率の圧延を行って、歪みを蓄積し、転位密度を高める。
(4)第2圧延と最終パスたる第3圧延とのパス間時間はオーステナイトの再結晶や回復を極力少なくし、歪みの蓄積効果を高めるために、従来圧延方法に比べて短いパス間時間とする。
(5)最終パスたる第3圧延においても、十分な圧下率の圧延を行って、歪みを蓄積し、転位密度を高める。
(6)第3圧延後は速やかに冷却して、フェライト変態を促進し、フェライト粒成長を抑制する。
ことを本質とする。
The present inventors have found the following conditions effective for obtaining fine crystal grains from the results of experiments using a multi-stand hot test rolling mill (described later) capable of rolling under high pressure in a short pass time. It was. It has been found that by appropriate combination of these, crystal grain refinement more than that of the conventional method can be obtained, and the present invention has been completed. If this is expressed by focusing on the metal crystal structure,
(1) The ferrite transformation is not performed until the third rolling as the final pass, and the austenite before the ferrite transformation is refined as much as possible and the dislocation density is increased.
(2) In the first rolling, austenite is sufficiently refined and recrystallized.
(3) In the second rolling, while avoiding rolling under ultra-high pressure where dynamic recrystallization and static recrystallization are significantly accelerated, rolling at a sufficient reduction rate is performed to accumulate strain and dislocation density. To increase.
(4) The time between passes between the second rolling and the third rolling, which is the final pass, is shorter than the conventional rolling method in order to minimize the recrystallization and recovery of austenite and increase the strain accumulation effect. To do.
(5) Also in the third rolling, which is the final pass, rolling with a sufficient reduction ratio is performed to accumulate strain and increase the dislocation density.
(6) After the third rolling, it is cooled quickly to promote ferrite transformation and suppress ferrite grain growth.
That is the essence.

かくして本発明は、微細フェライト組織を有する熱延鋼板の製造方法であって、質量%でC:0.04〜0.20%、Si:0.01〜2.0%、Mn:0.5〜3.0%を含有し残部はFe及び不可避的不純物よりなる素材鋼板をAe3変態点以上の温度域にて総圧下率80%以上で圧延する第1圧延を含むA工程と、前記第A工程に引き続きAe3変態点以上の温度域にて圧下率30〜55%の1パス圧延を行う第2圧延を含むB工程と、前記第B工程における第2圧延の後0.3sec以内に圧下率35〜60%の1パス圧延を行う第3圧延を含むC工程と、前記第C工程における第3圧延の後0.2sec以内に600℃/sec以上の冷却速度で(Ae3変態点−130℃)以下の温度まで冷却するD工程と、を備えたことを特徴とする熱延鋼板の製造方法を提供して前記課題を解決するものである。   Thus, the present invention is a method for producing a hot-rolled steel sheet having a fine ferrite structure, and in mass%, C: 0.04 to 0.20%, Si: 0.01 to 2.0%, Mn: 0.5 A process including the first rolling in which the steel sheet comprising ~ 3.0% and the balance of Fe and inevitable impurities is rolled at a total rolling reduction of 80% or more in the temperature range of the Ae3 transformation point or more, and the A Following the process, the B process including the second rolling in which a one-pass rolling with a rolling reduction of 30 to 55% is performed in a temperature range equal to or higher than the Ae3 transformation point, and the rolling reduction within 0.3 sec after the second rolling in the B process. C process including 3rd rolling which performs 35 to 60% 1-pass rolling, and at a cooling rate of 600 ° C./sec or more within 0.2 sec after the third rolling in the C process (Ae3 transformation point−130 ° C. ) D process for cooling to the following temperature It provides a method for producing a hot rolled steel sheet in which solves the above problems.

上記C工程の第3圧延後の板表面温度(仕上げ温度)は、D工程の冷却により微細なフェライト結晶粒を得るという観点から(Ae3変態点+30℃)〜(Ae3変態点−60℃)の範囲であることが好ましい。   The sheet surface temperature (finishing temperature) after the third rolling in the C process is (Ae3 transformation point + 30 ° C.) to (Ae3 transformation point−60 ° C.) from the viewpoint of obtaining fine ferrite crystal grains by cooling in the D process. A range is preferable.

また、第3圧延後の板表面温度を上記仕上げ温度の範囲におさめるために、第1圧延と第2圧延との間(B工程)、及び/又は第2圧延と第3圧延との間(C工程)において、冷却を行うこととしてもよい。このようにすることによって、第1圧延、及び第2圧延により発生する加工熱(通常、材温が数10℃温度上昇する。)を冷却することができる。特に、圧延速度が高速な場合、高圧下率を採用する場合、圧延材の板厚が厚い場合、摩擦係数の高い系で圧延する場合などに有効である。   Further, in order to keep the sheet surface temperature after the third rolling within the range of the above finishing temperature, between the first rolling and the second rolling (Step B) and / or between the second rolling and the third rolling ( In step C), cooling may be performed. By doing in this way, the processing heat generated by the first rolling and the second rolling (normally, the material temperature rises by several tens of degrees Celsius) can be cooled. In particular, it is effective when the rolling speed is high, when the high-pressure reduction rate is adopted, when the rolled material is thick, or when rolling is performed in a system with a high friction coefficient.

本発明によれば、汎用的な炭素鋼のフェライト結晶粒径を著しく微細化できる。その効果として、特殊な元素を用いずに強度強化が図れるため、製品のリサイクル性も高く、地球環境に対する負荷を軽減することができる。   According to the present invention, the ferrite crystal grain size of general-purpose carbon steel can be remarkably reduced. As an effect, the strength can be enhanced without using a special element, so that the recyclability of the product is high and the burden on the global environment can be reduced.

以下、本発明について具体的に説明する。本発明は下記の5点により構成される。
(素材鋼板):質量%で、C:0.04〜0.20%、Si:0.01〜2.0%、Mn:0.5〜3.0%を含有し、残部はFe及び不可避的不純物よりなる。
(A工程):オーステナイト単相となるAe3変態点以上の温度域で、総圧下率80%以上の第1圧延(基本的には多パス圧延であるが、これに限定されない。)を行う。
(B工程):引き続きAe3変態点以上の温度域で、圧下率30〜55%の1パス圧延である第2圧延を行う。
(C工程):第2圧延の後0.3sec以内に、圧下率35〜60%の1パス圧延である第3圧延を行う。
(D工程):第3圧延の後0.2sec内に600℃/sec以上の冷却速度で、(Ae3変態点−130℃)以下の温度まで冷却する。
Hereinafter, the present invention will be specifically described. The present invention is constituted by the following five points.
(Material steel plate): In mass%, C: 0.04 to 0.20%, Si: 0.01 to 2.0%, Mn: 0.5 to 3.0%, the balance being Fe and inevitable It consists of mechanical impurities.
(Step A): First rolling (basically, but not limited to, multi-pass rolling) with a total rolling reduction of 80% or more in a temperature range equal to or higher than the Ae3 transformation point that becomes an austenite single phase.
(Step B): Subsequently, second rolling, which is one-pass rolling with a rolling reduction of 30 to 55%, is performed in a temperature range equal to or higher than the Ae3 transformation point.
(Step C): Within 0.3 sec after the second rolling, the third rolling which is a one-pass rolling with a rolling reduction of 35 to 60% is performed.
(Step D): Cooling to a temperature of (Ae3 transformation point−130 ° C.) or less at a cooling rate of 600 ° C./sec or more within 0.2 sec after the third rolling.

以下、それぞれの項目について詳細に説明する。   Hereinafter, each item will be described in detail.

(素材鋼板)
本発明による素材の成分としては、普通炭素鋼成分でよく、具体的には、質量%でC:0.04〜0.20%、Si:0.01〜2.0%、Mn:0.5〜3.0%を含有し、残部はFe及び不可避的不純物よりなる素材鋼板とされる。
(Material steel plate)
The component of the material according to the present invention may be an ordinary carbon steel component. Specifically, in terms of mass%, C: 0.04 to 0.20%, Si: 0.01 to 2.0%, Mn: 0.00. 5 to 3.0% is contained, and the balance is made of a steel plate made of Fe and inevitable impurities.

C:0.04〜0.20質量%
Cは、主に鋼の強度を確保するために必要な元素であるが、多量に含有させると鋼材の溶接性劣化、靱性の著しい低下、プレス成形時の成形性劣化を引き起こす。したがって、本発明の微細フェライト組織を有する熱延鋼板のC含有量は0.20質量%を上限とする。また、C含有量が0.04質量%未満になると結晶粒微細化効果を確保しにくくなるので、C含有量の下限は0.04質量%とする。好ましいC含有量は、0.07質量%〜0.16質量%である。
C: 0.04-0.20 mass%
C is an element mainly required for securing the strength of steel, but if contained in a large amount, C causes weldability deterioration of the steel material, significant reduction in toughness, and formability deterioration during press forming. Therefore, the upper limit of the C content of the hot rolled steel sheet having the fine ferrite structure of the present invention is 0.20% by mass. Further, when the C content is less than 0.04% by mass, it becomes difficult to ensure the effect of crystal grain refinement, so the lower limit of the C content is 0.04% by mass. Preferable C content is 0.07 mass%-0.16 mass%.

Si:0.01〜2.0質量%
Siは、成功時の脱酸を行うために必要であり、また鋼板の加工性を高める作用がある合金元素であるが、含有量が2.0質量%を超えると、本発明の微細フェライト組織を有する熱延鋼板としての靭性が損なわれるため、その含有量は2.0質量%を上限とする。一方、含有量が少なすぎると製鋼時の脱酸が十分に行われないので、Si量の下限値は、0.01質量%である。好ましいSi含有量は、0.01質量%〜1.5質量%である。
Si: 0.01-2.0 mass%
Si is an alloy element that is necessary for successful deoxidation and has the effect of improving the workability of the steel sheet, but when the content exceeds 2.0 mass%, the fine ferrite structure of the present invention. Since the toughness as a hot-rolled steel sheet having the above is impaired, its content is set to 2.0% by mass. On the other hand, if the content is too small, deoxidation during steelmaking is not sufficiently performed, so the lower limit of the Si amount is 0.01% by mass. A preferable Si content is 0.01% by mass to 1.5% by mass.

Mn:0.5〜3.0質量%
Mnは、安価な元素であり、鋼の強度を高める効果を有する元素である。またSによる熱間脆性を防ぎ、Ae3点を低下させる。Mnの含有量が0.5質量%未満であると、かかる効果を十分に発現することができないのでMn含有量の下限値は0.5質量%である。一方、Mnの含有量が3.0質量%を超えると、かかる効果は飽和し、むしろ、熱延鋼板の加工性を劣化させるとともに、熱延鋼板の表面性状を悪化させるため、好ましくない。したがって、Mnの含有量は3.0質量%以下とする。好ましいMn含有量は、0.5質量%〜2.0質量%である。
Mn: 0.5 to 3.0% by mass
Mn is an inexpensive element and has an effect of increasing the strength of steel. Moreover, hot brittleness due to S is prevented, and the Ae3 point is lowered. If the Mn content is less than 0.5% by mass, such an effect cannot be sufficiently exhibited, so the lower limit of the Mn content is 0.5% by mass. On the other hand, when the content of Mn exceeds 3.0% by mass, such an effect is saturated. Rather, the workability of the hot-rolled steel sheet is deteriorated and the surface properties of the hot-rolled steel sheet are deteriorated. Therefore, the Mn content is 3.0 mass% or less. A preferable Mn content is 0.5 mass% to 2.0 mass%.

素材鋼板は、鋳造材ままでもよいが、鋳造時の内部欠陥の低減やオーステナイト径の微小化のために、1回以上の熱間加工を施しておき、粒径600μm以下のオーステナイト組織を得ておくことが好ましい。具体的には、連続鋳造−熱間圧延プロセスにおいては1パス以上の粗圧延を終えた状態であればよい。本発明に関わる基礎実験においては、結晶粒径が約30μmのフェライト組織を有する素材を、下記A工程に入る前に所定温度(例えば1000〜1200℃)にて所定時間(例えば1〜2時間)保持し、オーステナイト粒径を30〜600μmとして実験を行った。   The material steel plate may be a cast material. However, in order to reduce internal defects during casting and to reduce the austenite diameter, one or more hot workings are performed to obtain an austenite structure having a particle size of 600 μm or less. It is preferable to keep. Specifically, in the continuous casting-hot rolling process, it may be in a state where rough rolling for one pass or more has been completed. In a basic experiment relating to the present invention, a material having a ferrite structure with a crystal grain size of about 30 μm is subjected to a predetermined time (for example, 1 to 2 hours) at a predetermined temperature (for example, 1000 to 1200 ° C.) before entering Step A below. The experiment was conducted with the austenite grain size of 30 to 600 μm.

(A工程)
上記素材にオーステナイト単相となるAe3変態点以上の温度域で、総圧下率80%以上の第1圧延を行う。この第1圧延は、総圧下率が80%以上で有れば、パス回数には限定されない。この第1圧延により、加熱後のオーステナイト粒径:30〜600μmの素材を、オーステナイト粒径:30μm程度以下の被圧延材に圧延できる。
(Process A)
The first rolling with a total rolling reduction of 80% or more is performed on the material in a temperature range equal to or higher than the Ae3 transformation point that becomes an austenite single phase. The first rolling is not limited to the number of passes as long as the total rolling reduction is 80% or more. By this first rolling, a material having an austenite grain size of 30 to 600 μm after heating can be rolled into a material to be rolled having an austenite grain size of about 30 μm or less.

(B工程)
上記A工程における第1圧延に連続して、上記圧延により得られた被圧延材にAe3変態点以上の温度域で、圧下率30〜55%の1パス圧延を行う(第2圧延)。圧下率がこの範囲外であると微細粒が得られない。その理由は明確でないが、圧下率が不十分であると圧下による歪み蓄積が不十分となり、圧下率が過大となると、圧延による発熱や、転位密度の過度な増加により再結晶や回復が発生し易くなるためと推察される。
(Process B)
Continuously to the first rolling in the step A, the material to be rolled obtained by the rolling is subjected to one-pass rolling with a rolling reduction of 30 to 55% in a temperature range equal to or higher than the Ae3 transformation point (second rolling). If the rolling reduction is outside this range, fine particles cannot be obtained. The reason is not clear, but if the rolling reduction is insufficient, strain accumulation due to rolling will be insufficient, and if the rolling reduction is excessive, recrystallization and recovery will occur due to heat generation due to rolling and excessive increase of dislocation density. This is presumed to be easier.

(C工程)
上記B工程における1パス圧延(第2圧延)に連続して、第2圧延により得られた被圧延材に0.3sec以下のパス間時間で、圧下率35〜60%の1パスの圧延(第3圧延)を行う。パス間時間がこれ以上であると結晶粒微細化効果が低下する。その理由は明確ではないが、B工程における第2圧延とC工程における第3圧延との間のパス間時間が0.3secを超えると、静的再結晶が発生してしまうため、歪みの蓄積が不十分となるためと推察する。結晶粒微細化に効果があると推定している「未再結晶域での歪みを蓄積」を効果的に行うためには、第3圧延までのパス間時間を0.3sec以下とする必要がある。第3圧延の圧下率が35%未満では歪みの蓄積が不足し、その後の冷却過程でのフェライト変態を促進する効果が不十分である。一方第3圧延の圧下率が60%を超えると、加工中の再結晶・変態の発生、その後の冷却に影響を与える程の加工発熱が生じるため、結晶粒の微細化効果が薄れる。また、圧延負荷が過大となり、設備の巨大化、設備限界の超過、圧延の不安定化、などの問題も生じる。
(Process C)
Continuously after the 1-pass rolling (second rolling) in the above-mentioned process B, the material to be rolled obtained by the second rolling is rolled in one pass with a rolling reduction of 35 to 60% in a time between passes of 0.3 sec or less ( (3rd rolling) is performed. If the time between passes is longer than this, the crystal grain refining effect is lowered. The reason for this is not clear, but if the time between passes between the second rolling in the B process and the third rolling in the C process exceeds 0.3 sec, static recrystallization occurs, and therefore, accumulation of strain occurs. Is presumed to be insufficient. In order to effectively perform “accumulation of strain in the unrecrystallized region”, which is estimated to be effective for grain refinement, the time between passes until the third rolling needs to be 0.3 sec or less. is there. If the rolling reduction of the third rolling is less than 35%, the accumulation of strain is insufficient, and the effect of promoting ferrite transformation in the subsequent cooling process is insufficient. On the other hand, if the rolling reduction ratio of the third rolling exceeds 60%, the generation of recrystallization and transformation during processing and heat generation that affects the subsequent cooling are generated, so the effect of refining the crystal grains is reduced. In addition, the rolling load becomes excessive, and problems such as enlarging equipment, exceeding equipment limits, and unstable rolling occur.

(D工程)
上記C工程における1パス圧延(第3圧延)により得られた被圧延材を、0.2sec以内に600℃/sec以上の冷却速度で、(Ae3変態点−130℃)以下の温度域まで冷却を行う。これにより、平均粒径が2.0μm以下の細粒フェライト組織が60%以上を占める熱延鋼板が得られる。上記条件での冷却を行うことによりオーステナイトの再結晶・回復が抑制され、フェライト変態が促進される。好ましくは、(Ae3変態点−130℃)以下で、(Ae3変態点−200℃)以上の温度域まで冷却をおこなう。
(D process)
The material to be rolled obtained by one-pass rolling (third rolling) in step C is cooled to a temperature range of (Ae3 transformation point-130 ° C) or lower at a cooling rate of 600 ° C / sec or higher within 0.2 seconds. I do. As a result, a hot-rolled steel sheet in which a fine ferrite structure having an average particle diameter of 2.0 μm or less occupies 60% or more is obtained. By performing cooling under the above conditions, recrystallization / recovery of austenite is suppressed and ferrite transformation is promoted. Preferably, cooling is performed to a temperature range of (Ae3 transformation point−130 ° C.) or lower and (Ae3 transformation point−200 ° C) or higher.

なお、上記D工程において、C工程の第3圧延終了後、冷却の開始までの時間を0.1sec以内とすることが好ましい。さらに冷却速度を900℃/sec以上とすることが望ましい。これらにより、平均粒径が1.5μm以下の細粒フェライト組織が50%以上を占める熱延鋼板を得ることができる。   In Step D, it is preferable that the time from the end of the third rolling in Step C to the start of cooling be 0.1 sec or less. Furthermore, it is desirable that the cooling rate is 900 ° C./sec or more. As a result, a hot-rolled steel sheet can be obtained in which the fine ferrite structure having an average particle diameter of 1.5 μm or less occupies 50% or more.

(製造設備)
本発明の微細フェライト組織を有する熱延鋼板を製造する設備は、熱処理設備と、2スタンド以上からなるタンデム圧延設備と、該圧延設備の出側に配置された冷却装置よりなる。圧延設備の各スタンドは所定値以上の圧下率を実現することが必要であり、また第2圧延と第3圧延との間のパス間時間を0.3秒以内に収めるため、所定の圧延速度を要し、圧延機間の距離は所定値以内に設定することが必要である。また冷却装置はタンデム圧延設備の出側近傍に配置して、第三圧延後の被圧延材を直ちに冷却できるようにすることが必要である。
(production equipment)
The equipment for producing a hot-rolled steel sheet having a fine ferrite structure according to the present invention comprises a heat treatment equipment, a tandem rolling equipment comprising two or more stands, and a cooling device disposed on the outlet side of the rolling equipment. Each stand of the rolling equipment is required to realize a reduction ratio of a predetermined value or more, and the time between passes between the second rolling and the third rolling is kept within 0.3 seconds. Therefore, the distance between the rolling mills must be set within a predetermined value. Moreover, it is necessary to arrange the cooling device in the vicinity of the exit side of the tandem rolling facility so that the material to be rolled after the third rolling can be immediately cooled.

表1に示す成分に調整した素材を、幅100mm、長さ70〜200mmの切り板に切断して供試材とした。この供試材を炉内温度1000℃の加熱炉中に1時間保持した後、熱間圧延・冷却を実施した。   The material adjusted to the components shown in Table 1 was cut into a cut plate having a width of 100 mm and a length of 70 to 200 mm to obtain a test material. After holding this test material in a heating furnace with a furnace temperature of 1000 ° C. for 1 hour, hot rolling and cooling were performed.

Figure 2005226123
Figure 2005226123

熱間圧延は図2に示すような、3スタンド熱間圧延機を製作して使用した。第1スタンドと第2スタンドとの間の距離は、2.1m、第2スタンドと第3スタンドとの間の距離は1.0mであり、パス間時間:0.3秒以下の圧延が可能である。各圧延スタンドの圧下率は、40%以上取れるようにした。圧延機仕様及び圧延条件を表2に示す。   For hot rolling, a three-stand hot rolling mill as shown in FIG. 2 was produced and used. The distance between the first stand and the second stand is 2.1 m, the distance between the second stand and the third stand is 1.0 m, and the time between passes can be rolled for 0.3 seconds or less. It is. The rolling reduction of each rolling stand was set to be 40% or more. Table 2 shows the rolling mill specifications and rolling conditions.

Figure 2005226123
Figure 2005226123

熱間圧延・冷却後の各供試材の結晶粒平均粒径、及びフェライト分率を、第1〜3圧延の圧延条件、冷却条件と共に表3に示す。なお、結晶粒の平均粒径の測定は、ASTM切断法により行った。   Table 3 shows the average grain size and ferrite fraction of each test material after hot rolling and cooling, together with the rolling conditions and cooling conditions of the first to third rolling. In addition, the measurement of the average particle diameter of a crystal grain was performed by the ASTM cutting method.

Figure 2005226123
Figure 2005226123

また、本発明の熱延鋼板の製造方法により得られた、微細フェライト組織の顕微鏡写真を図3に示す。   Moreover, the microscope picture of the fine ferrite structure | tissue obtained by the manufacturing method of the hot rolled sheet steel of this invention is shown in FIG.

表3において、本発明が規定する範囲からはずれる試番1、4、8、9、14、17、18、19、及び22は、熱間圧延・冷却後の平均粒径が2.0μmを超えるものであった。
これらのうち、試番1は、A工程の第1圧延における総圧下率が、本発明が規定する「80%以上」に満たない75%であったため、平均粒径が2.0μmを超えるものとなった。
試番4は、B工程の第2圧延における圧下率が、本発明が規定する「30〜55%」に満たない20%であったため、平均粒径が2.0μmを超えるものとなった。圧下率20%の第2圧延によっては、歪みの蓄積、転位の高密度化が十分なものではなかったものと推定される。
試番8は、B工程の第2圧延における圧下率が、本発明が規定する「30〜55%」を超える60%であったため、平均粒径が2.0μmを超えるものとなった。第2圧延における圧下率が本発明の規定する範囲を超えたことで、圧延による発熱などによりオーステナイトの再結晶や回復が発生したものと推定される。
試番9は、C工程の第3圧延における圧下率が、本発明が規定する「35〜60%」に満たない30%であったため、平均粒径が2.0μmを超えるものとなった。圧下率30%の第3圧延によっては、歪みの蓄積、転位の高密度化が十分なものではなかったものと推定される。
試番14は、C工程において、第2圧延後、第3圧延までの間のパス間時間が、本発明が規定する「0.3sec以内」を超える0.5secであったため、平均粒径が2.0μmを超えるものとなった。パス間時間が本発明の規定する0.3secを超えたため、静的な再結晶が発生して、歪の蓄積が十分ではなかったからであるものと思われる。
試番17、18は、D工程において、C工程の第3圧延後冷却開始までの時間が、本発明が規定する「0.2sec以内」を超える、0.3sec、0.5secであったため、平均粒径が2.0μmを超えるものとなった。これら試番においては、D工程において、C工程の第3圧延後冷却開始までの時間が、本発明が規定する「0.2sec以内」を超えたため、再結晶、回復の抑制が十分ではなく、フェライト変態の促進が不十分であったためと推定される。
試番19は、D工程における冷却速度が、本発明が規定する「600℃/sec以上」に満たない300℃/secであったため、平均粒径が2.0μmを超えるものとなった。この場合、冷却速度が本発明の規定する「600℃/sec以上」に満たなかったため、再結晶、回復の抑制が十分ではなく、フェライト変態の促進が不十分であったためと推定される。
試番22は、D工程における冷却停止温度が、本発明が規定する「Ae3変態点−130℃以下、本実施例ではAe3変態点が830℃なので、700℃以下」を超える740℃であったため、冷却によるフェライト変態促進が不十分と考えられ、平均粒径が2.0μmを超えるものとなった。
In Table 3, the trial numbers 1, 4, 8, 9, 14, 17, 18, 19, and 22 deviating from the range defined by the present invention have an average particle size after hot rolling / cooling exceeding 2.0 μm. It was a thing.
Among these, in trial No. 1, the total rolling reduction in the first rolling in the process A was 75%, which is less than “80% or more” defined by the present invention, so the average particle diameter exceeds 2.0 μm. It became.
In Test No. 4, the rolling reduction in the second rolling in the B step was 20% which is less than “30 to 55%” defined by the present invention, and thus the average particle size exceeded 2.0 μm. It is presumed that, due to the second rolling with a rolling reduction of 20%, the accumulation of strain and the high density of dislocations were not sufficient.
In the trial No. 8, the rolling reduction in the second rolling in the B step was 60% exceeding “30 to 55%” defined by the present invention, and thus the average particle size exceeded 2.0 μm. It is presumed that the recrystallization and recovery of austenite occurred due to the heat generated by the rolling because the rolling reduction in the second rolling exceeded the range defined by the present invention.
In Test No. 9, the rolling reduction ratio in the third rolling of the C process was 30%, which is less than “35-60%” defined by the present invention, and thus the average particle size exceeded 2.0 μm. It is estimated that the third rolling with a rolling reduction of 30% did not provide sufficient strain accumulation and high density of dislocations.
In test No. 14, in the C process, the time between passes after the second rolling to the third rolling was 0.5 sec exceeding “within 0.3 sec” defined by the present invention. The thickness exceeded 2.0 μm. This is probably because the time between passes exceeded 0.3 sec defined in the present invention, and static recrystallization occurred and the accumulation of strain was not sufficient.
Since the test numbers 17 and 18 were 0.3 sec and 0.5 sec exceeding the “within 0.2 sec” defined by the present invention in the D process, the time until the cooling start after the third rolling in the C process was The average particle size exceeded 2.0 μm. In these trial numbers, in the D process, since the time until the start of cooling after the third rolling in the C process exceeded “within 0.2 sec” defined by the present invention, recrystallization and recovery were not sufficiently suppressed, This is presumably because the ferrite transformation was insufficiently promoted.
In Test No. 19, the cooling rate in the D step was 300 ° C./sec, which is less than “600 ° C./sec or more” defined by the present invention, so the average particle size exceeded 2.0 μm. In this case, since the cooling rate was less than “600 ° C./sec or more” defined by the present invention, it is presumed that the recrystallization and recovery were not sufficiently suppressed and the ferrite transformation was not sufficiently promoted.
In the trial No. 22, the cooling stop temperature in the step D was 740 ° C. exceeding the “Ae 3 transformation point −130 ° C. or lower, in this example, the Ae 3 transformation point is 830 ° C., which is 700 ° C. or lower” defined by the present invention It was considered that the ferrite transformation promotion by cooling was insufficient, and the average particle size exceeded 2.0 μm.

一方、本発明で規定する範囲で熱間圧延、冷却が行われた試番2、3、5〜7、10〜13、15、16、20、21、23にあっては、平均粒径が2.0μm未満の細粒フェライト組織が50%以上を占める熱延鋼板が得られた。特に、試番12、13、15、16、20、及び21では、平均粒径が1.5μm以下の細粒フェライト組織が60%以上を占める熱延鋼板が得られた。   On the other hand, in the trial numbers 2, 3, 5-7, 10-13, 15, 16, 20, 21, 23 in which hot rolling and cooling were performed within the range specified in the present invention, the average particle size was A hot-rolled steel sheet having a fine ferrite structure of less than 2.0 μm occupying 50% or more was obtained. In particular, in the trial numbers 12, 13, 15, 16, 20, and 21, hot-rolled steel sheets in which a fine ferrite structure having an average grain size of 1.5 μm or less occupies 60% or more were obtained.

本発明の製造方法の工程を示す図である。It is a figure which shows the process of the manufacturing method of this invention. 実施例に使用した熱間圧延機等の設備を示す図である。It is a figure which shows facilities, such as a hot rolling mill used for the Example. 本発明の熱延鋼板の製造方法により得られた、微細フェライト組織の顕微鏡写真である。It is the microscope picture of the fine ferrite structure | tissue obtained by the manufacturing method of the hot rolled sheet steel of this invention.

Claims (1)

微細フェライト組織を有する熱延鋼板の製造方法であって、
質量%で、C:0.04〜0.20%、Si:0.01〜2.0%、Mn:0.5〜3.0%を含有し、残部はFe及び不可避的不純物よりなる素材鋼板を、Ae3変態点以上の温度域にて、総圧下率80%以上で圧延する第1圧延を含むA工程と、
前記第A工程に引き続き、Ae3変態点以上の温度域にて、圧下率30〜55%の1パス圧延を行う第2圧延を含むB工程と、
前記第B工程における第2圧延の後、0.3sec以内に、圧下率35〜60%の1パス圧延を行う第3圧延を含むC工程と、
前記第C工程における第3圧延の後、0.2sec以内に600℃/sec以上の冷却速度で、(Ae3変態点−130℃)以下の温度まで冷却するD工程と、
を備えたことを特徴とする熱延鋼板の製造方法。
A method for producing a hot-rolled steel sheet having a fine ferrite structure,
A material containing, by mass%, C: 0.04 to 0.20%, Si: 0.01 to 2.0%, Mn: 0.5 to 3.0%, the balance being Fe and inevitable impurities A process including the first rolling, in which the steel sheet is rolled at a temperature range equal to or higher than the Ae3 transformation point at a total rolling reduction of 80% or more;
Subsequent to the A step, the B step including the second rolling for performing one-pass rolling with a rolling reduction of 30 to 55% in a temperature range equal to or higher than the Ae3 transformation point;
C process including the 3rd rolling which performs 1-pass rolling with a rolling reduction of 35 to 60% within 0.3 sec after the second rolling in the B process;
After the third rolling in the step C, the step D is cooled to a temperature of (Ae3 transformation point-130 ° C) or less at a cooling rate of 600 ° C / sec or more within 0.2 seconds;
A method for producing a hot-rolled steel sheet, comprising:
JP2004036185A 2004-02-13 2004-02-13 Method for producing hot-rolled steel sheet having fine ferrite structure Expired - Fee Related JP4305207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004036185A JP4305207B2 (en) 2004-02-13 2004-02-13 Method for producing hot-rolled steel sheet having fine ferrite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004036185A JP4305207B2 (en) 2004-02-13 2004-02-13 Method for producing hot-rolled steel sheet having fine ferrite structure

Publications (2)

Publication Number Publication Date
JP2005226123A true JP2005226123A (en) 2005-08-25
JP4305207B2 JP4305207B2 (en) 2009-07-29

Family

ID=35001071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004036185A Expired - Fee Related JP4305207B2 (en) 2004-02-13 2004-02-13 Method for producing hot-rolled steel sheet having fine ferrite structure

Country Status (1)

Country Link
JP (1) JP4305207B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010144242A (en) * 2008-12-22 2010-07-01 Nippon Steel Corp Medium and high carbon steel plate and manufacturing method of the same
US8404060B2 (en) 2007-02-02 2013-03-26 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing hot-rolled sheet having fine-grained ferrite, and hot-rolled sheet
US8887449B2 (en) 2008-03-28 2014-11-18 Toshiba Plant Systems & Services Corporation Benchmark marking tool and benchmark marking method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9034118B2 (en) 2005-08-04 2015-05-19 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing hot-rolled sheet having fine-grained ferrite, and hot-rolled sheet
US8404060B2 (en) 2007-02-02 2013-03-26 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing hot-rolled sheet having fine-grained ferrite, and hot-rolled sheet
US8887449B2 (en) 2008-03-28 2014-11-18 Toshiba Plant Systems & Services Corporation Benchmark marking tool and benchmark marking method
JP2010144242A (en) * 2008-12-22 2010-07-01 Nippon Steel Corp Medium and high carbon steel plate and manufacturing method of the same

Also Published As

Publication number Publication date
JP4305207B2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
KR101456772B1 (en) Steel sheet, and process for production thereof
JP5092433B2 (en) Hot rolled steel sheet and manufacturing method thereof
WO2014163087A1 (en) Titanium cast piece for hot rolling use, and method for producing same
TWI685574B (en) Hot rolled annealed steel plate of ferrite grain stainless steel and manufacturing method thereof
JP2008163361A (en) Method for producing magnesium alloy thin sheet having uniformly fine crystal grain
JP2005213595A (en) Method for manufacturing super-fine grain hot-rolled steel plate
JP6879378B2 (en) Hot-rolled steel sheet and its manufacturing method
WO2016152678A1 (en) Method for manufacturing rolled sheet for cold-rolling and method for manufacturing pure titanium sheet
JP4367091B2 (en) High-strength hot-rolled steel sheet having excellent fatigue resistance and excellent strength-ductility balance and method for producing the same
JP6432328B2 (en) High strength titanium plate and manufacturing method thereof
JP6075384B2 (en) Titanium cast for hot rolling and method for producing the same
JP4412418B2 (en) Method for producing hot-rolled steel sheet having fine ferrite structure, and hot-rolled steel sheet
JP2010084170A (en) Thick steel plate for high toughness line pipe in which lowering of yield stress caused by bauschinger effect is reduced and its production method
JP4415914B2 (en) Method for producing hot-rolled steel sheet having fine ferrite structure
JP4305207B2 (en) Method for producing hot-rolled steel sheet having fine ferrite structure
JP2007046128A (en) Method for manufacturing hot-rolled steel sheet having fine ferrite structure
JP2020186433A (en) Manufacturing method of slab
JP2010229467A (en) Method of producing magnesium alloy thin plate
JP2010202922A (en) Method for manufacturing cold-rolled steel sheet superior in recrystallization softening resistance, and cold-rolled steel sheet for automatic transmission
JP4670538B2 (en) Method for producing hot-rolled steel sheet having fine ferrite structure
JP2008189958A (en) Hot rolled steel sheet with uniform and fine ferritic structure, and its manufacturing method
JP2008138236A (en) Cold-rolled steel sheet superior in flatness after having been stamped and manufacturing method therefor
JP6794585B1 (en) Manufacturing method of titanium material for hot rolling
JP6617858B1 (en) Ferritic stainless steel sheet and manufacturing method thereof
JP2004300476A (en) Superhigh-strength cold-rolled steel sheet and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4305207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20101101

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20110301

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees