JPH07165949A - Prepreg with high dielectric constant and laminated board - Google Patents

Prepreg with high dielectric constant and laminated board

Info

Publication number
JPH07165949A
JPH07165949A JP28104993A JP28104993A JPH07165949A JP H07165949 A JPH07165949 A JP H07165949A JP 28104993 A JP28104993 A JP 28104993A JP 28104993 A JP28104993 A JP 28104993A JP H07165949 A JPH07165949 A JP H07165949A
Authority
JP
Japan
Prior art keywords
dielectric constant
powder
resin
prepreg
high dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28104993A
Other languages
Japanese (ja)
Inventor
Takao Sugawara
隆男 菅原
Atsushi Fujioka
厚 藤岡
Yasuyuki Mizuno
康之 水野
Katsuhiro Onose
勝博 小野瀬
Harumi Negishi
春巳 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP28104993A priority Critical patent/JPH07165949A/en
Publication of JPH07165949A publication Critical patent/JPH07165949A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain the prepreg consisting mainly of a thermosetting resin, a fibrous reinforcing material and specific inorganic powder, developing no separation of the resin from the inorganic powder, excellent in appearance and dielectric constant uniformity, and causing no blisters and interlaminar debonding in its soldering process, thus useful for e.g. printed wiring boards. CONSTITUTION:This prepreg is made up from, as the chief components, (A) a thermosetting resin such as an epoxy resin, (B) a fibrous reinforcing material such as a glass cloth, and (C) inorganic powder composed of high-dielectric constant ceramic powder such as titanium dioxide powder and finely particulate powder <=0.1mum in average particle diameter such as anhydrous silica fine powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多層板の層間接着用の
プリプレグおよびプリプレグを用いた積層板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a prepreg for bonding layers of a multilayer board and a laminated board using the prepreg.

【0002】[0002]

【従来の技術】電子機器の小形化、高密度化によりプリ
ント配線板には多層板が多く使用されるようになってき
た。この多層板の内層には高誘電率の層を設けることに
より、導体幅をさらに小さくすることができ配線密度を
高くすることができる。また、この層をコンデンサとし
て積極的に利用し、例えば回路導体のストレーキャパシ
ティによりバイパスコンデンサとして高周波成分をグラ
ンド層に流したり、導体をコンデンサ(C)やインダク
タンス(L)としてさらに印刷抵抗により抵抗(R)を
形成し、C,L,Rを内層表面に形成し実装密度を向上
させることができる。
2. Description of the Related Art Due to the miniaturization and high density of electronic equipment, multilayer boards have come to be often used for printed wiring boards. By providing a layer having a high dielectric constant in the inner layer of this multilayer board, the conductor width can be further reduced and the wiring density can be increased. Further, by positively utilizing this layer as a capacitor, for example, a stray capacity of a circuit conductor allows a high frequency component to flow to the ground layer as a bypass capacitor, or a conductor can be used as a capacitor (C) or an inductance (L) and can be further resistive by a printing resistor. By forming (R) and forming C, L, and R on the inner layer surface, the mounting density can be improved.

【0003】多層板の内層や基板に高誘電率の層を設け
るには、特開昭55−57212号公報、特開昭61−
136281号公報、特公平5ー415号公報に見られ
るように、エポキシ樹脂や変性熱硬化ポリフェニレンエ
−テル樹脂などの樹脂組成物中に例えばチタン酸バリウ
ムなどの高誘電率セラミックス粉末を混合し、ガラスク
ロスなどの繊維強化材に含浸し乾燥して得られたプリプ
レグを複数枚重ね、最外層に銅箔を積層しプレスにより
圧縮成形し銅張り積層基板を製造する。そして得られた
基板をエッチングにより回路形成して内層コア基板とし
て用い、高誘電率セラミックスを混合したプリプレグや
混合しないプリプレグを介して多層板を製造する。
In order to provide a layer having a high dielectric constant on the inner layer of a multilayer board or a substrate, there are disclosed in Japanese Patent Laid-Open Nos. 55-57212 and 61-61.
As disclosed in Japanese Patent Publication No. 136281 and Japanese Patent Publication No. 5-415, a high dielectric constant ceramic powder such as barium titanate is mixed in a resin composition such as an epoxy resin or a modified thermosetting polyphenylene ether resin. A plurality of prepregs obtained by impregnating a fiber reinforcing material such as glass cloth and drying are stacked, copper foil is laminated on the outermost layer, and compression molding is performed by pressing to manufacture a copper-clad laminated substrate. Then, the obtained substrate is subjected to circuit formation by etching to be used as an inner layer core substrate, and a multilayer board is manufactured through a prepreg mixed with high dielectric constant ceramics or a prepreg not mixed.

【0004】[0004]

【発明が解決しようとする課題】高誘電率基板を内層コ
ア基板として使用している例も多いが、最近、高誘電率
のプリプレグを多層板の層間接続用に使用する要求が強
くなってきた。このプリプレグに要求されることは、内
層コア基板の導体回路をプリプレグで埋めなければなら
ないことである。この特性を内装回路充填性と称す。ま
た、内層コア基板の樹脂と導体との接着性がよくなけれ
ばならない。
Although there are many cases in which a high dielectric constant substrate is used as an inner layer core substrate, recently, a demand for using a high dielectric constant prepreg for interlayer connection of a multilayer board has increased. . What is required of this prepreg is that the conductor circuit of the inner layer core substrate must be filled with the prepreg. This property is called the interior circuit filling property. Also, the adhesion between the resin of the inner layer core substrate and the conductor must be good.

【0005】ところが、高誘電率のプリプレグは、樹脂
に高誘電率のセラミックス粉末を多量に添加してあるた
め樹脂分が少なく、流動性が悪く接着性に劣るため、内
層コア基板の導体回路を埋めることができずボイドが発
生し、後工程のはんだ作業で、ふくれや層間分離が生じ
る問題があり内装回路充填性に劣っていた。これらの対
策として、セラミックス粉末の添加量を下げ流動性や接
着に寄与する樹脂分量を増加させればよいが、誘電率の
高いセラミックス粉末を使用し添加量を下げ作製したプ
リプレグを用いて多層板や基板を成形すると、樹脂とセ
ラミックス粉末が分離する問題が生じた。樹脂とセラミ
ックス粉末の分離は、プリプレグ1枚の両面に銅箔を積
層しプレス成形して得られる銅張り積層基板において主
として基板の周辺部(端辺)で発生する。また内層コア
基板の両面にこのプリプレグと銅箔を積層しプレス成形
して4層板を作製したときは、多層板の周辺部に限らず
内層コア基板の銅箔(導体)回路形状により発生場所が
変化する。
However, since the prepreg having a high dielectric constant contains a large amount of ceramic powder having a high dielectric constant in a resin, it has a small amount of resin, poor fluidity and poor adhesiveness. Since it could not be filled, a void was generated, and there was a problem that blistering and interlayer separation occurred in the soldering work in the subsequent process, and the interior circuit filling property was poor. As a countermeasure against these problems, the amount of ceramic powder added may be reduced to increase the amount of resin that contributes to fluidity and adhesion. However, a multilayer board using a prepreg produced by using ceramic powder with a high dielectric constant and a reduced amount added When a substrate or a substrate is molded, there is a problem that the resin and the ceramic powder are separated. Separation of the resin and the ceramic powder occurs mainly in the peripheral portion (edge) of the copper-clad laminated board obtained by laminating copper foil on both surfaces of one prepreg and press-molding. In addition, when this prepreg and copper foil are laminated on both sides of the inner layer core board and press-formed to make a four-layer board, the location where the copper foil (conductor) circuit shape of the inner layer core board occurs Changes.

【0006】基板の銅箔をエッチング除去し樹脂とセラ
ミックス粉末の分離を観察すると、ほとんど樹脂のみが
端辺に向かって何本ものすじ状になり、すじとすじが合
わさったり分離したりする。セラミックスが白色で樹脂
が透明に近いと、分離は樹脂とセラミックス混合物の白
色にみえる部分を透明に近い樹脂がすじ状に観察され
る。時には、点状になることもある。すじの部分は、樹
脂で充満されており、空隙となってはいない。樹脂とセ
ラミック粉末の分離は、すじ状となっている部分が樹脂
成分が多いため、他の樹脂とセラミックス粉末混合物の
部分に比べ誘電率が低く、誘電率のばらつきを生じた
り、プリプレグを成形した面が基板表面に露出した部分
は、外観が悪く商品価値が低下する問題が生じてしま
う。
When the copper foil of the substrate is removed by etching and the separation of the resin and the ceramic powder is observed, almost only the resin forms a number of streaks toward the edge, and the streaks and streaks come together or separate. When the ceramics are white and the resin is nearly transparent, the separation is observed as streaks of the near-transparent resin in the part of the mixture of the resin and ceramics that looks white. Occasionally, it will be dotted. The streaks are filled with resin and do not form voids. As for the separation of resin and ceramic powder, since the streak-shaped part contains a large amount of resin component, the dielectric constant is lower than that of the other resin-ceramic powder mixture part, causing a variation in the dielectric constant or forming a prepreg. The exposed portion of the surface on the surface of the substrate has a problem of poor appearance and reduced commercial value.

【0007】[0007]

【課題を解決するための手段】本発明は、この問題点を
改良するためになされたものであり、熱硬化性樹脂、無
機物粉末、繊維強化材から主として構成されるプリプレ
グにおいて、無機物粉末として高誘電率セラミックス粉
末と平均粒子径が0.1μm以下の微細粒子粉末の混合
物を併用して使用するものである。
The present invention has been made in order to improve this problem, and in a prepreg mainly composed of a thermosetting resin, an inorganic powder and a fiber reinforcing material, it has a high inorganic powder content. A mixture of dielectric constant ceramic powder and fine particle powder having an average particle diameter of 0.1 μm or less is used together.

【0008】熱硬化性樹脂、無機物粉末、繊維強化材か
ら主として構成されるとは、プリプレグ、基板が熱硬化
性樹脂、無機物粉末、繊維強化材が主成分をなし、プリ
プレグ、基板の特性を改良する添加剤、例えば、難燃
剤、酸化防止剤、着色剤、紫外線吸収剤、銅害防止剤、
カップリング剤、架橋剤、架橋助剤、過酸化物、衝撃改
良剤等が添加されたり反応していてもよいことを示す。
The term "mainly composed of a thermosetting resin, an inorganic powder and a fiber reinforcing material" means that the prepreg and the substrate are mainly composed of the thermosetting resin, the inorganic powder and the fiber reinforcing material to improve the characteristics of the prepreg and the substrate. Additives, such as flame retardants, antioxidants, colorants, UV absorbers, copper damage inhibitors,
It indicates that a coupling agent, a crosslinking agent, a crosslinking aid, a peroxide, an impact modifier, etc. may be added or reacted.

【0009】熱硬化性樹脂は、金属張り積層基板に用い
られている公知の樹脂が使用でき、例えば、エポキシ樹
脂、ポリイミド樹脂、ビスマレイミド・トリアジン樹
脂、ポリエステル樹脂が使用できる。この中で多用され
ているエポキシ樹脂が着色が少なくその分、樹脂とセラ
ミックスの分離が目立つので本発明による樹脂と無機物
粉末との分離解消に対する効果が大きい。また本発明
は、加熱溶融時に樹脂粘度の低下が大きい樹脂に著しく
効果がある。
As the thermosetting resin, a known resin used for a metal-clad laminated substrate can be used, and for example, an epoxy resin, a polyimide resin, a bismaleimide / triazine resin, or a polyester resin can be used. Of these, the epoxy resin, which is widely used, is less colored, and the resin and the ceramic are conspicuously separated by that amount, so that the effect of eliminating the separation of the resin and the inorganic powder according to the present invention is great. Further, the present invention is remarkably effective for resins in which the resin viscosity is largely reduced when heated and melted.

【0010】無機物粉末の高誘電率セラミックス粉末
は、誘電率を高める目的で添加されるもので誘電率が1
0以上のものであれば良い。好ましくは誘電率が50以
上、より好ましくは90以上が良い。このような高誘電
率セラミックスとして、ルチル型の二酸化チタン、チタ
ン酸バリウム、チタン酸ストロンチウム、チタン酸カル
シウム、チタン酸鉛、チタン酸ビスマス、ジルコン酸バ
リウム、ジルコン酸鉛系セラミックスをあげることがで
きる。この中でも二酸化チタン、チタン酸ストロンチウ
ム、チタン酸カルシウム及びこれらの混合物が好適に用
いられ、これらは、市販の高誘電率セラミックス粉末を
用いることができる。高誘電率セラミックスは、誘電率
の温度変化を小さくするため温度係数が+10〜−50
00ppm/℃のセラミックスを用いたほうが好まし
い。
The high dielectric constant ceramic powder of the inorganic powder is added for the purpose of increasing the dielectric constant and has a dielectric constant of 1
It should be 0 or more. The dielectric constant is preferably 50 or more, more preferably 90 or more. Examples of such high dielectric constant ceramics include rutile type titanium dioxide, barium titanate, strontium titanate, calcium titanate, lead titanate, bismuth titanate, barium zirconate, and lead zirconate ceramics. Among these, titanium dioxide, strontium titanate, calcium titanate and a mixture thereof are preferably used, and commercially available high dielectric constant ceramic powder can be used for these. High-dielectric-constant ceramics have a temperature coefficient of +10 to -50 in order to reduce changes in the dielectric constant with temperature.
It is preferable to use ceramics of 00 ppm / ° C.

【0011】高誘電率セラミックス粉末の添加量を50
〜300重量部としたのは、50重量部以下では、誘電
率を高める効果が少なく分離を無くすためには微細粒子
粉末を多く添加しなければならならない。微細粒子粉末
を多く添加するとワニス粘度が高くなり塗工性が悪くな
る。300重量部以下としたのは、これ以上の添加量で
は、樹脂がセラミックス粒子間の空隙を埋めることがで
きず充填不足となり空気を含み、空気を含むことにより
誘電率が低下したり、ワニス粘度が高まり塗工できなく
なるためである。
The addition amount of the high dielectric constant ceramic powder is 50
The amount of up to 300 parts by weight is less than 50 parts by weight, and a large amount of fine particle powder must be added in order to reduce the effect of increasing the dielectric constant and to eliminate separation. If a large amount of fine particle powder is added, the viscosity of the varnish increases and the coatability deteriorates. The amount of 300 parts by weight or less means that the resin cannot fill the voids between the ceramic particles and the amount of the added resin is insufficient to contain the air, and the inclusion of air lowers the dielectric constant and reduces the varnish viscosity. This is because the coating becomes too high to apply.

【0012】高誘電率セラミックスの平均粒子径は、プ
リプレグの厚みにもよるが比較的薄い場合は、0.3〜
5μmが好ましく最大粒子径は、10μm以下が好まし
い。0.3μm以下では、比表面積が大きくなりワニス
粘度を高めるので添加量を多くして誘電率を高めること
ができなくなることや0.3μm以下に物理的に微粉砕
するとコストが高くなる。また5μm以上では、樹脂と
セラミックス粉末の分離の原因となるガラスクロス等の
繊維強化剤にセラミックスが捕捉されやすくなる。最大
粒子径が10μm以上では、繊維強化材に捕捉されやす
いことや金属箔を積層しプレス成形したときセラミック
スにより金属箔に傷がつきやすくなる。
The average particle diameter of the high dielectric constant ceramics depends on the thickness of the prepreg, but when it is relatively thin, it is 0.3 to
It is preferably 5 μm and the maximum particle size is preferably 10 μm or less. If it is 0.3 μm or less, the specific surface area becomes large and the viscosity of the varnish increases, so that it is impossible to increase the addition amount and the dielectric constant cannot be increased, and if it is physically pulverized to 0.3 μm or less, the cost becomes high. On the other hand, when the thickness is 5 μm or more, the ceramics are easily captured by the fiber reinforcing agent such as glass cloth which causes the separation of the resin and the ceramic powder. When the maximum particle size is 10 μm or more, the metal foil is likely to be captured, and when the metal foil is laminated and press-molded, the metal foil is easily scratched by the ceramics.

【0013】無機物粉末の平均粒子径が0.1μm以下
の微細粒子粉末は、液相、気相で化学反応により得られ
る超微細粒子粉末であり、二酸化珪素の含水シリカと無
水シリカがあるが、シラノール基が少なく電気特性が良
好な無水シリカが好適に用いられ、これらは市販品が使
用できる。含水シリカとしては、ニップシール(日本シ
リカ工業(株)商品名)、トクシール、ファインシール
(徳山曹達(株)商品名)、カープレックス(塩野義製
薬(株)商品名)、シルトン、ミズカシル(水沢化学工
業(株)商品名)、無水シリカとしてアエロジル(日本
アエロジル(株)商品名)が使用できる。さらに二酸化
チタンの微細粒子粉末チタニウムダイオキサイドP25
や酸化アルミニウムのアルミニウムオキサイドC(日本
アエロジル(株)商品名)が好適に用いられる。またの
硫酸バリウムBFー1(土屋カオリン工業(株)商品
名)等が用いられる。
The fine particle powder having an average particle diameter of 0.1 μm or less of the inorganic powder is an ultrafine particle powder obtained by a chemical reaction in a liquid phase or a gas phase, and includes hydrous silica of silicon dioxide and anhydrous silica. Anhydrous silica having few silanol groups and good electric properties is preferably used, and commercially available products thereof can be used. Examples of hydrous silica include Nipseal (trade name of Nippon Silica Industry Co., Ltd.), Tokuseal, Fineseal (trade name of Tokuyama Soda Co., Ltd.), Carplex (trade name of Shionogi Pharmaceutical Co., Ltd.), Shilton, Mizukasil (Mizusawa Chemical Co., Ltd.) Industrial Co., Ltd. product name) and Aerosil (Nippon Aerosil Co., Ltd. product name) can be used as anhydrous silica. Further, titanium dioxide fine particle powder titanium dioxide P25
Aluminum oxide C of aluminum oxide (trade name of Nippon Aerosil Co., Ltd.) is preferably used. Further, barium sulfate BF-1 (trade name of Tsuchiya Kaolin Industry Co., Ltd.) and the like are used.

【0014】そしてこれらは、高誘電率セラミックス粉
末の添加量50〜300重量部に対し1〜10重量%
(高誘電率セラミックス100重量部に対し0.5〜3
0重量部)添加して用いられる。高誘電率セラミックス
粉末の添加量が多いときには、上記範囲内で微細粒子粉
末の添加量は少なく、高誘電率セラミックス粉末の添加
量が少ないときには、微細粒子粉末の添加量を多く用い
る。また、微細粒子粉末の比表面積が大きいときには少
ない添加量で、逆に比表面積が小さいときには、多く添
加するようにした方がよい。微細粒子粉末の添加量が1
重量%以下では、微細粒子粉末を添加した効果がなく、
10重量%以上の添加では、ワニス粘度が著しく高ま
り、ガラスクロス等の繊維強化材に塗工できなくなるた
めである。
These are 1 to 10% by weight based on 50 to 300 parts by weight of the high dielectric constant ceramic powder.
(0.5-3 with respect to 100 parts by weight of high dielectric constant ceramics
0 parts by weight) is added and used. When the addition amount of the high dielectric constant ceramic powder is large, the addition amount of the fine particle powder is small within the above range, and when the addition amount of the high dielectric constant ceramic powder is small, the addition amount of the fine particle powder is used large. Further, it is better to add a small amount when the specific surface area of the fine particle powder is large, and conversely, add a large amount when the specific surface area is small. Addition amount of fine particle powder is 1
If it is less than wt%, the effect of adding fine particle powder is not obtained,
This is because the addition of 10% by weight or more significantly increases the viscosity of the varnish and makes it impossible to coat the fiber reinforced material such as glass cloth.

【0015】繊維強化材は、ガラスクロスやガラス不織
布、ポリエーテルイミドやアラミッド繊維等の高分子繊
維を用いた織布や不織布であり、ガラスクロスやガラス
不織布が好適に用いられる。またガラス組成にチタン、
ストロンチウム、カルシウム、バリウム、マグネシウ
ム、ジルコン、ニオブ、鉛等を添加して誘電率を高めた
繊維を用いた織布、不織布を用いることができる.
The fiber reinforcing material is a glass cloth or a glass non-woven fabric, or a woven or non-woven fabric using polymer fibers such as polyetherimide or aramid fiber, and the glass cloth or the glass non-woven fabric is preferably used. In addition, titanium in the glass composition,
It is possible to use a woven fabric or a non-woven fabric using a fiber whose dielectric constant is increased by adding strontium, calcium, barium, magnesium, zircon, niobium, lead or the like.

【0016】[0016]

【作用】樹脂と高誘電率セラミックス粉末の分離は、プ
レス成形時にプリプレグ中の樹脂と高誘電率セラミック
ス粉末の混合物が加熱加圧され流動するとき発生する。
プレス成形時、プリプレグが厚み方向に圧縮され面方向
への流動で高誘電率セラミックス粉末がガラスクロスな
どの繊維強化材に補捉され、加圧状態下にある流動可能
な樹脂が、補捉された高誘電率セラミックス粉末の弱い
部分を突き破り流動することにより樹脂成分に富んだす
じが発生するものと推定される。
The function of separating the resin and the high-permittivity ceramic powder occurs when the mixture of the resin and the high-permittivity ceramic powder in the prepreg flows under heat and pressure during press molding.
During press molding, the prepreg is compressed in the thickness direction and flows in the surface direction so that the high-dielectric-constant ceramic powder is captured by the fiber reinforcement such as glass cloth, and the flowable resin under pressure is captured. It is presumed that streaks rich in resin component are generated by breaking through the weak part of the high dielectric constant ceramic powder and flowing.

【0017】プリプレグ1枚の両面に銅箔を積層しプレ
ス成形した基板では、樹脂と高誘電率セラミックス粉末
の分離は、基板周辺部(端辺)で発生した。これは、加
圧されたとき大きく流動できる部分は、圧力が解放され
ているプリプレグの端部側面であり、その周辺で樹脂と
高誘電率セラミックス粉末が流動するので基板周辺部
(端辺)で発生するものと思われる。一方、多層板での
分離発生位置は、基板周辺部でも発生するが、内層コア
基板の導体回路形状により異なり基板の中央付近でも発
生し、その位置は樹脂と高誘電率セラミックス粉末が比
較的流動する部分である。
In a substrate in which copper foils were laminated on both sides of one prepreg and press-molded, the resin and the high-dielectric-constant ceramic powder were separated from each other in the peripheral portion (edge) of the substrate. This is because the part that can largely flow when pressurized is the side surface of the end of the prepreg where the pressure is released, and the resin and high-dielectric-constant ceramic powder flow around the end of the prepreg. It seems to occur. On the other hand, the separation occurrence position in the multilayer board also occurs in the peripheral area of the board, but it also occurs near the center of the board, depending on the shape of the conductor circuit of the inner layer core board, and at that position the resin and high-permittivity ceramic powder flow relatively. It is the part to do.

【0018】本願発明の熱硬化性樹脂に無機物粉末とし
て高誘電率セラミックス粉末の他に平均粒子径0.1μ
m以下の微細粒子粉末を添加すると、高誘電率セラミッ
クス粒子の隙間に微細粒子粉末が入り込み高誘電率セラ
ミックス粒子が流動するとき、ころのような役割を果た
し高誘電率セラミックス粉末がガラスクロス等の繊維強
化材に捕捉されずに流動できるようになる。また、微細
粒子粉末はその比表面積が大きく、樹脂に混合すること
により樹脂の溶融粘度が増加することから、高誘電率セ
ラミックスを含んだ樹脂が繊維強化材に捕捉されずに流
動するため分離が生じなくなると推定される。
In addition to the high dielectric constant ceramic powder as the inorganic powder, the thermosetting resin of the present invention has an average particle diameter of 0.1 μm.
When the fine particle powder of m or less is added, when the fine particle powder enters the gaps between the high dielectric constant ceramic particles and the high dielectric constant ceramic particles flow, the high dielectric constant ceramic powder plays a role like a roller and the high dielectric constant ceramic powder is It becomes possible to flow without being captured by the fiber reinforcement. In addition, since the fine particle powder has a large specific surface area and the melt viscosity of the resin increases when it is mixed with the resin, the resin containing the high dielectric constant ceramics flows without being captured by the fiber reinforcing material, so that separation occurs. It is estimated that it will not occur.

【0019】樹脂がエポキシ樹脂のように熱硬化性樹脂
の場合、加熱すると樹脂が溶融し一旦粘度が低くなり硬
化反応が進むにつれて粘度が増加していく。この粘度が
低い状態のとき加圧されているので樹脂は流動し高誘電
率セラミックス粉末粒子の隙間を縫って流出しやすくな
る。硬化が進んだり、比表面積の大きい粒子を添加した
ときの溶融粘度の高いときでは、セラミックス間の隙間
を縫って流動しにくくなり抵抗が増えるためセラミック
スと一緒になって流動するようになる。
When the resin is a thermosetting resin such as an epoxy resin, the resin melts when heated and the viscosity once decreases, and the viscosity increases as the curing reaction proceeds. Since the resin is pressurized when the viscosity is low, the resin flows and easily flows through the gaps between the high dielectric constant ceramic powder particles. When the hardening progresses or when the melt viscosity is high when particles having a large specific surface area are added, it becomes difficult to flow through the gaps between the ceramics and the resistance increases, so that they flow together with the ceramics.

【0020】しかしプリプレグは、多層板の層間接着に
も使用され内層コア基板の導体回路空間を埋めなければ
ならず内層回路充填性も要求されるので、溶融粘度が高
くなりすぎても良くない。硬化が進み溶融粘度の高い状
態では、流動性は悪く内層回路充填性は悪化する。とこ
ろが何が原因しているか不明であるが、樹脂に微細粒子
粉末を添加すると硬化反応が遅くなり、樹脂の溶融粘度
は微細粒子粉末を添加した分、高くなるだけで微細粒子
粉末を添加しない場合に比べて溶融粘度が比較的低い状
態にしばらく保たれる。そして微細粒子粉末を添加した
ことにより溶融粘度が高まり、この粘度の状態が硬化時
間が遅くなることでしばらく保たれるので、ガラスクロ
スの網目に高誘電率セラミックス粉末が捕捉され分離し
ないように徐々に流動し内層回路空間を充填する。硬化
が遅くなるのはおそらく比表面積の大きい微細粒子粉末
が硬化促進剤を吸着したり、過酸化物では過酸化物を吸
着したり水素イオン濃度(pH)を変化させる為である
と推定される。
However, since the prepreg is also used for adhesion between the layers of the multi-layer board and has to fill the conductor circuit space of the inner layer core substrate and is required to have the inner layer circuit filling property, too high melt viscosity is not good. When curing progresses and the melt viscosity is high, the fluidity is poor and the inner layer circuit filling property is poor. However, it is unclear what causes it, but when the fine particle powder is added to the resin, the curing reaction slows down, and the melt viscosity of the resin increases only by the amount of the fine particle powder added, and when the fine particle powder is not added It has a relatively low melt viscosity for a while. The addition of the fine particle powder increases the melt viscosity, and the state of this viscosity is maintained for a while due to the delay in the curing time. Flows to fill the inner layer circuit space. It is presumed that the reason why the curing slows down is that the fine particle powder with a large specific surface area adsorbs the curing accelerator, or the peroxide adsorbs the peroxide, or changes the hydrogen ion concentration (pH). .

【0021】以上のように微細粒子粉末を添加すること
によりその粒子が高誘電率セラミックス粉末の流動性に
対してころの役目をしたり、粘度を高めたり、硬化反応
を遅くしていることにより樹脂と高誘電率セラミックス
粉末の分離がなく、内層回路充填性にも優れていると思
われる。
As described above, by adding the fine particle powder, the particles play a role in the fluidity of the high dielectric constant ceramic powder, increase the viscosity, and slow the curing reaction. It seems that the resin and high-permittivity ceramic powder do not separate, and the inner layer circuit filling property is also excellent.

【0022】[0022]

【実施例】【Example】

実施例1 熱硬化性樹脂として表1に示すエポキシ樹脂ワニスの固
形分1000gに、無機物粉末のうち高誘電率セラミッ
クス粉末としてチタン酸ストロンチウム系セラミックス
SL250(富士チタン工業(株)商品名、平均粒子径
0.85μm、最大粒子径6μm)1500gを加え、
さらに平均粒子径が0.1μm以下の微細粒子粉末とし
て無水シリカのアエロジル200V(日本アエロジル
(株)商品名、平均粒子径0.012μm、比表面積2
00m2/g)を75g(SL250 1500gに対
して5重量%)を加え撹拌後3本ロールを2回通しエポ
キシ樹脂に無機物粉末を添加したワニスを調整した。
Example 1 In a solid content of 1000 g of the epoxy resin varnish shown in Table 1 as a thermosetting resin, strontium titanate-based ceramics SL250 (trade name, average particle diameter by Fuji Titanium Industry Co., Ltd.) as a high dielectric constant ceramics powder among inorganic powders 0.85 μm, maximum particle size 6 μm) 1500 g,
Further, as a fine particle powder having an average particle size of 0.1 μm or less, anhydrous silica Aerosil 200V (trade name of Nippon Aerosil Co., Ltd., average particle size 0.012 μm, specific surface area 2)
(100 m2 / g) (75% (5% by weight based on 1500 g of SL250)) was added, and after stirring, a three-roll mill was passed twice to prepare a varnish in which an inorganic powder was added to the epoxy resin.

【0023】このワニスに繊維強化材としてガラスクロ
ス(厚み55μm、坪量47.5g/m2)を用いて含
浸、乾燥させ厚み120μmのプリプレグ〔A〕を得
た。このプリプレグ〔A〕の両面に厚さ18μmの銅箔
を積層し20kg/cm2(1.96MPa)の圧力で
室温から170℃まで昇温し、170℃で90分間保持
した後室温付近まで冷却して銅張り積層基板を得た。基
板両面の銅箔をエッチングにより除去し誘電体の厚みを
測定した結果、80μmであった。この誘電体の表面を
観察したところエポキシ樹脂と高誘電率セラミックス粉
末の分離は見られなかった。空洞共振器法により12G
Hzでの誘電率を測定した結果12.5であった。
This varnish was impregnated with glass cloth (thickness 55 μm, basis weight 47.5 g / m 2 ) as a fiber reinforcing material and dried to obtain a prepreg [A] having a thickness of 120 μm. A 18 μm thick copper foil was laminated on both sides of this prepreg [A], heated from room temperature to 170 ° C. at a pressure of 20 kg / cm 2 (1.96 MPa), held at 170 ° C. for 90 minutes, and then cooled to around room temperature. Then, a copper-clad laminated substrate was obtained. The copper foil on both surfaces of the substrate was removed by etching, and the thickness of the dielectric was measured. As a result, it was 80 μm. Observation of the surface of this dielectric did not reveal any separation between the epoxy resin and the high dielectric constant ceramic powder. 12G by the cavity resonator method
As a result of measuring the dielectric constant at Hz, it was 12.5.

【0024】[0024]

【表1】 [Table 1]

【0025】多層板を作製するため、内層コア基板とし
て厚み35μmの銅箔を最外層に積層した厚み0.2m
mのエポキシ樹脂銅張り積層基板をエッチングにより最
大導体回路幅1mm、最小導体回路幅0.1mmを有す
る模擬銅箔回路を形成した。これを内層コア基板として
この基板の両面にプリプレグ〔A〕と18μmの銅箔を
積層し、前記と同じ条件でプレス成形して4層基板を得
た。この基板数カ所を切断し、注型用エポキシ樹脂で注
型封止後研磨して基板断面を顕微鏡を用いて観察した。
その結果、場所を変え100ヶ所調べたが内層コア基板
の銅箔回路空間は、プリプレグ中のエポキシ樹脂と無機
物粒子で完全に埋まりボイドは観察されず内層回路充填
性は良好であった。
In order to prepare a multilayer board, a copper foil having a thickness of 35 μm was laminated as an outermost layer as an inner layer core substrate to have a thickness of 0.2 m.
m of the epoxy resin copper-clad laminated board was etched to form a simulated copper foil circuit having a maximum conductor circuit width of 1 mm and a minimum conductor circuit width of 0.1 mm. Using this as an inner layer core substrate, a prepreg [A] and a 18 μm copper foil were laminated on both sides of this substrate and press-molded under the same conditions as above to obtain a four-layer substrate. This substrate was cut at several places, cast-molded with a casting epoxy resin, and then polished and the cross-section of the substrate was observed using a microscope.
As a result, 100 locations were changed, and the copper foil circuit space of the inner layer core substrate was completely filled with the epoxy resin and the inorganic particles in the prepreg and no void was observed, and the inner layer circuit filling property was good.

【0026】実施例2〜6及び比較例1〜4 実施例2〜6及び比較例1〜4は、配合を変更した以外
は実施例1と同様に行い、その結果を表2に示した。実
施例2、3は、高誘電率セラミックス粉末の添加量をそ
れぞれ50重量部、200重量部とし、それに応じて微
細粒子粉末の添加量をそれぞれ10重量%、1重量%添
加混合した実施例であり、それぞれ実施例1と同様に分
離がなく内層回路充填性に優れていた。実施例4、5
は、実施例1の微細粒子粉末を他の粒子に変えた場合
で、チタニウムダイオキサイドP25(日本アエロジル
(株)商品名、平均粒子径0.021μm、比表面積5
0m2/g)を高誘電率セラミックス粉末SL250
150重量部に対し5重量%、10重量%添加したもの
である。分離、内層回路充填性が共に良好であった。
Examples 2 to 6 and Comparative Examples 1 to 4 Examples 2 to 6 and Comparative Examples 1 to 4 were carried out in the same manner as Example 1 except that the composition was changed, and the results are shown in Table 2. Examples 2 and 3 are examples in which the addition amounts of the high dielectric constant ceramic powder were 50 parts by weight and 200 parts by weight, respectively, and the addition amounts of the fine particle powders were 10% by weight and 1% by weight, respectively. As in Example 1, there was no separation, and the inner layer circuit filling property was excellent. Examples 4, 5
Is a case where the fine particle powder of Example 1 was changed to another particle, and titanium dioxide P25 (trade name of Nippon Aerosil Co., Ltd., average particle diameter 0.021 μm, specific surface area 5)
0m 2 / g) high dielectric constant ceramic powder SL250
5 wt% and 10 wt% were added to 150 parts by weight. Both the separation and the inner layer circuit filling property were good.

【0027】実施例6は、実施例1の微細粒子粉末アエ
ロジル200Vの添加量をSL250 150重量部に
対し1重量%添加混合した場合であるが、分離が僅かで
あるが見られた。しかし微細粒子粉末を添加しない比較
例2に比べると顕著な差があった。比較例1は、無機物
粉末を添加しない場合で、通常のエポキシ樹脂基板と同
じであり分離、内層回路充填性は良好であった。比較例
3は、微細粒子粉末チタニウムダイオキサイドP25を
20重量%添加した場合であるが、分離は発生しない
が、内層回路充填性は悪くなった。
In Example 6, the fine particle powder Aerosil 200V of Example 1 was added and mixed in an amount of 1% by weight with respect to 150 parts by weight of SL250, but slight separation was observed. However, there was a remarkable difference as compared with Comparative Example 2 in which the fine particle powder was not added. In Comparative Example 1, no inorganic powder was added, which was the same as a normal epoxy resin substrate, and the separation and inner layer circuit fillability were good. Comparative Example 3 is a case where 20% by weight of fine-particle powder titanium dioxide P25 was added. Separation did not occur, but the inner layer circuit filling property was deteriorated.

【0028】比較例4は、アエロジル200VをSL2
50 150重量部に対し15重量%添加した場合であ
る。エポキシ樹脂ワニスに高誘電率セラミックス粉末S
L250とアエロジル200Vを徐々に添加していくと
ワニス中の溶剤がこれらの粒子に吸われてワニスがゲル
状となりガラスクロスに塗工できないようになった。多
量に溶剤を追加して無理にワニスにしたもので塗工して
得られたプリプレグは、ガラスクロスから所々エポキシ
樹脂と無機物粒子の混合物が剥離しており、またカッタ
ーでプリプレグを所定寸法に切断するときでも粉状にガ
ラスクロスからはげ落ちてしまいプリプレグとして使用
できないものであった。
In Comparative Example 4, Aerosil 200V is SL2.
This is the case where 15% by weight is added to 50 150 parts by weight. High dielectric constant ceramic powder S on epoxy resin varnish
When L250 and Aerosil 200V were gradually added, the solvent in the varnish was absorbed by these particles and the varnish became a gel so that the glass cloth could not be coated. The prepreg obtained by applying a varnish forcibly by adding a large amount of solvent has a mixture of epoxy resin and inorganic particles peeled from the glass cloth in some places, and the prepreg is cut to a specified size with a cutter. Even when it was carried out, it fell off from the glass cloth into powder and could not be used as a prepreg.

【0029】[0029]

【表2】 [Table 2]

【0030】実施例1、2、比較例2、3のワニスにつ
いて170℃でゲル化時間を測定したところ、比較例1
のエポキシ樹脂に無機物粒子を添加してない配合では、
7分11秒で、比較例2の高誘電率セラミックスSL2
50を150重量部添加した配合では、7分20秒で僅
かに遅くなるが、比較例2の配合に微細粒子アエロジル
200Vを5重量%添加した実施例1では、13分10
秒と遅くなった。またアエロジル200Vを10重量%
添加した実施例2では、21分30秒と遅くなった。
When the gelling time was measured at 170 ° C. for the varnishes of Examples 1 and 2 and Comparative Examples 2 and 3, Comparative Example 1
In the formulation that does not add inorganic particles to the epoxy resin of,
In 7 minutes and 11 seconds, the high dielectric ceramic SL2 of Comparative Example 2
In the formulation in which 150 parts by weight of 50 was added, it was slightly delayed in 7 minutes and 20 seconds, but in Example 1 in which 5% by weight of fine particle Aerosil 200V was added to the formulation of Comparative Example 2, 13 minutes and 10 minutes.
It was late for a second. Aerosil 200V 10% by weight
In the added example 2, the time was delayed to 21 minutes and 30 seconds.

【0031】このように平均粒子径0.1μm以下の微
細粒子粉末を添加することで樹脂の溶融粘度が高く、硬
化速度が遅くなることで内層コア基板の導体回路空間を
埋めるのに遅くなった分、粘度が高くても流動でき、ま
た高誘電率セラミックス粒子の隙間に入り込んでころの
ように作用することで流動性が増し分離、内層回路充填
性が著しく改良されると思われる。
By adding the fine particle powder having an average particle diameter of 0.1 μm or less, the melt viscosity of the resin is high, and the curing speed is slow, so that it becomes slow to fill the conductor circuit space of the inner core substrate. In addition, it is thought that even if the viscosity is high, it can flow, and by entering into the gaps of the high dielectric constant ceramic particles and acting like a roller, the fluidity is increased and the separation and the inner layer circuit filling property are remarkably improved.

【0032】硬化速度を遅くするだけならば、硬化促進
剤量を減らせば良く比較例2で硬化促進剤の量を減らし
ゲル化時間が10分30秒となったワニスで実施してみ
たが分離が発生した。硬化時間の影響だけでないようで
ある。また比較例2に平均粒子径0.44μmの二酸化
チタン50重量部をさらに追加したが分離が発生した。
If the curing speed is only slowed down, it is sufficient to reduce the amount of the curing accelerator. In Comparative Example 2, the amount of the curing accelerator was reduced and the gelling time was 10 minutes and 30 seconds. There has occurred. It seems that it is not only the effect of curing time. Further, 50 parts by weight of titanium dioxide having an average particle size of 0.44 μm was further added to Comparative Example 2, but separation occurred.

【0033】[0033]

【発明の効果】実施例、比較例で示したように熱硬化性
樹脂に無機物粉末として高誘電率セラミックス粉末と平
均粒子径が0.1μm以下の微細粒子粉末を添加するこ
とにより誘電率が高くしかも熱硬化性樹脂と高誘電率セ
ラミックス粉末の分離がなく内層回路充填性の良好なプ
リプレグや基板を得ることができる。その結果、誘電率
が均一で外観良好なそしてはんだ工程などでふくれや層
間剥離のない多層板や基板を製造することができる。
As shown in Examples and Comparative Examples, the dielectric constant is increased by adding a high dielectric constant ceramic powder as an inorganic powder and a fine particle powder having an average particle diameter of 0.1 μm or less to a thermosetting resin. Moreover, it is possible to obtain a prepreg or a substrate having a good inner layer circuit filling property without separating the thermosetting resin and the high dielectric constant ceramic powder. As a result, it is possible to manufacture a multilayer board or substrate having a uniform dielectric constant, a good appearance, and no blister or delamination in the soldering process or the like.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B32B 27/38 7421−4F C08K 3/34 C08L 63/00 NKX // B29K 63:00 105:06 309:02 (72)発明者 小野瀬 勝博 茨城県筑波市和台48番地 日立化成工業株 式会社筑波開発研究所内 (72)発明者 根岸 春巳 茨城県下館市大字小川1500番地 日立化成 工業株式会社下館工場内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B32B 27/38 7421-4F C08K 3/34 C08L 63/00 NKX // B29K 63:00 105: 06 309: 02 (72) Inventor Katsuhiro Onose 48 Wadai, Tsukuba-shi, Ibaraki Hitachi Chemical Co., Ltd. Tsukuba Development Laboratory (72) Inventor Harumi Negishi Haruka, Ibaraki Ogawa 1500 Oita Hitachi Chemical Co., Ltd. Shimodate in the factory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 熱硬化性樹脂、無機物粉末および繊維強
化材を主成分として構成されるプリプレグにおいて、無
機物粉末が高誘電率セラミックス粉末と平均粒子径が
0.1μm以下の微細粒子粉末を用いることを特徴とす
る高誘電率プリプレグ。
1. In a prepreg composed mainly of a thermosetting resin, an inorganic powder and a fiber reinforcement, a high dielectric constant ceramic powder and a fine particle powder having an average particle diameter of 0.1 μm or less are used as the inorganic powder. High-permittivity prepreg characterized by.
【請求項2】 高誘電率セラミックス粉末が、熱硬化性
樹脂100重量部に対し50〜300重量部、平均粒子
径が0.1μm以下の微細粒子粉末を高誘電率セラミッ
クス粉末の添加量に対して1〜10重量%添加すること
を特徴とする請求項1記載の高誘電率プリプレグ。
2. High-dielectric-constant ceramic powder is 50 to 300 parts by weight with respect to 100 parts by weight of thermosetting resin, and fine particle powder having an average particle diameter of 0.1 μm or less is added to the high-dielectric-constant ceramic powder. 1 to 10% by weight of the high dielectric constant prepreg according to claim 1.
【請求項3】 熱硬化性樹脂が、エポキシ樹脂である請
求項1記載の高誘電率プリプレグ。
3. The high dielectric constant prepreg according to claim 1, wherein the thermosetting resin is an epoxy resin.
【請求項4】 請求項1乃至3のいずれかに記載の高誘
電率プリプレグを用いた積層板。
4. A laminated board using the high dielectric constant prepreg according to claim 1.
JP28104993A 1993-11-10 1993-11-10 Prepreg with high dielectric constant and laminated board Pending JPH07165949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28104993A JPH07165949A (en) 1993-11-10 1993-11-10 Prepreg with high dielectric constant and laminated board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28104993A JPH07165949A (en) 1993-11-10 1993-11-10 Prepreg with high dielectric constant and laminated board

Publications (1)

Publication Number Publication Date
JPH07165949A true JPH07165949A (en) 1995-06-27

Family

ID=17633598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28104993A Pending JPH07165949A (en) 1993-11-10 1993-11-10 Prepreg with high dielectric constant and laminated board

Country Status (1)

Country Link
JP (1) JPH07165949A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265797A (en) * 2001-03-08 2002-09-18 Hitachi Chem Co Ltd Resin composition and its use
JP2003064240A (en) * 2001-08-24 2003-03-05 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
WO2004102589A1 (en) * 2003-05-19 2004-11-25 Hitachi Chemical Co., Ltd. Insulating material, film, circuit board and method for manufacture thereof
WO2007032424A1 (en) * 2005-09-15 2007-03-22 Sekisui Chemical Co., Ltd. Resin composition, sheet-like formed body, prepreg, cured body, laminate, and multilayer laminate
JP2008024761A (en) * 2006-07-19 2008-02-07 Sumitomo Bakelite Co Ltd Method for producing resin varnish and the resultant resin varnish
EP2246732A1 (en) * 2009-04-28 2010-11-03 Samsung Corning Precision Materials Co., Ltd. Flexible substrate for display panel and manufacturing method thereof
WO2011010672A1 (en) * 2009-07-24 2011-01-27 住友ベークライト株式会社 Resin compositions, resin sheet, prepreg, metal-clad laminate, printed wiring board, and semiconductor device
JP2011026419A (en) * 2009-07-24 2011-02-10 Sumitomo Bakelite Co Ltd Resin composition, prepreg, laminated board, multilayer printed wiring, and semiconductor device
JP2011178883A (en) * 2010-03-01 2011-09-15 Sumitomo Bakelite Co Ltd Prepreg, laminated board, multilayer printed wiring board, and semiconductor device
US9775238B2 (en) 2011-11-07 2017-09-26 Mitsubishi Gas Chemical Company, Inc. Resin composition, and prepreg and laminate using the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265797A (en) * 2001-03-08 2002-09-18 Hitachi Chem Co Ltd Resin composition and its use
JP2003064240A (en) * 2001-08-24 2003-03-05 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP4742467B2 (en) * 2001-08-24 2011-08-10 住友ベークライト株式会社 Epoxy resin composition and semiconductor device
US7700185B2 (en) 2003-05-19 2010-04-20 Hitachi Chemical Company, Ltd. Insulation material, film, circuit board and method of producing them
WO2004102589A1 (en) * 2003-05-19 2004-11-25 Hitachi Chemical Co., Ltd. Insulating material, film, circuit board and method for manufacture thereof
WO2007032424A1 (en) * 2005-09-15 2007-03-22 Sekisui Chemical Co., Ltd. Resin composition, sheet-like formed body, prepreg, cured body, laminate, and multilayer laminate
GB2444010A (en) * 2005-09-15 2008-05-21 Sekisui Chemical Co Ltd Resin composition, sheet-like formed body, prepreg, cured body, laminate, and multilayer laminate
GB2444010B (en) * 2005-09-15 2010-12-08 Sekisui Chemical Co Ltd Resin composition, sheet-like formed body, prepreg, cured body, laminate, and multilayer laminate
JP2008024761A (en) * 2006-07-19 2008-02-07 Sumitomo Bakelite Co Ltd Method for producing resin varnish and the resultant resin varnish
EP2246732A1 (en) * 2009-04-28 2010-11-03 Samsung Corning Precision Materials Co., Ltd. Flexible substrate for display panel and manufacturing method thereof
US8415003B2 (en) 2009-04-28 2013-04-09 Cheil Industries Inc. Flexible substrate for display panel and manufacturing method thereof
WO2011010672A1 (en) * 2009-07-24 2011-01-27 住友ベークライト株式会社 Resin compositions, resin sheet, prepreg, metal-clad laminate, printed wiring board, and semiconductor device
JP2011026419A (en) * 2009-07-24 2011-02-10 Sumitomo Bakelite Co Ltd Resin composition, prepreg, laminated board, multilayer printed wiring, and semiconductor device
JP2011178883A (en) * 2010-03-01 2011-09-15 Sumitomo Bakelite Co Ltd Prepreg, laminated board, multilayer printed wiring board, and semiconductor device
US9775238B2 (en) 2011-11-07 2017-09-26 Mitsubishi Gas Chemical Company, Inc. Resin composition, and prepreg and laminate using the same

Similar Documents

Publication Publication Date Title
EP0902048B1 (en) High dielectric constant flexible polyimide film and process of preparation
KR102311641B1 (en) Resin composition, manufacturing method the same, prepreg including the same, laminated plate including the same, metal foil coated with resin including the same
JP5423602B2 (en) Low dielectric constant insulating resin composition
US20230192972A1 (en) Fluorine-Containing Resin Composition, and Resin Vanish, Fluorine-Containing Dielectric Sheet, Laminate, Copper Clad Laminate and Printed Circuit Board Containing the Same
JPH07165949A (en) Prepreg with high dielectric constant and laminated board
WO2004102589A1 (en) Insulating material, film, circuit board and method for manufacture thereof
KR102483625B1 (en) Resin composition having low dielectric constant, insulating film using the same and printed circuit board comprising the film
WO2010147083A1 (en) Prepreg comprising high-dielectric-constant resin composition, and copper-clad laminate sheet
JP4661196B2 (en) Low dielectric constant insulating resin composition
JP3838389B2 (en) Insulating material and multilayer printed wiring board using the same
JP2002265797A (en) Resin composition and its use
JP4075569B2 (en) Printed wiring board manufacturing material, printed wiring board and manufacturing method thereof
JPH0912742A (en) High dielectric constant film
KR101821009B1 (en) Varnish composition, method for preparation thereof, and prepreg, metal-clad laminate and printe circuit board using the varnish composition
JPS63264662A (en) Polyphenylene oxide resin composition
JPH05261870A (en) Laminated sheet for printed circuit board
JP2003017861A (en) Multilayer interconnection board and manufacturing method therefor
JPH07133359A (en) High-permittivity prepreg
JPH06237055A (en) Manufacture of circuit board
JP3243027B2 (en) Copper clad laminate
JPH079609A (en) High dielectric constant laminated sheet
JPH01146928A (en) Phenol resin/copper foil laminate
JPH05327150A (en) Laminated plate for printed circuit
JP2568347B2 (en) Copper clad laminate for printed circuit
CN116589961A (en) Resin composition and application thereof