JPH07165644A - Production of 1,4-butanediol and/or tetrahydrofuran - Google Patents

Production of 1,4-butanediol and/or tetrahydrofuran

Info

Publication number
JPH07165644A
JPH07165644A JP6255500A JP25550094A JPH07165644A JP H07165644 A JPH07165644 A JP H07165644A JP 6255500 A JP6255500 A JP 6255500A JP 25550094 A JP25550094 A JP 25550094A JP H07165644 A JPH07165644 A JP H07165644A
Authority
JP
Japan
Prior art keywords
catalyst
reaction
tetrahydrofuran
butanediol
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6255500A
Other languages
Japanese (ja)
Other versions
JP3704728B2 (en
Inventor
Yoshinori Hara
善則 原
Hiroyoshi Endou
浩悦 遠藤
Haruhiko Kusaka
晴彦 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP25550094A priority Critical patent/JP3704728B2/en
Publication of JPH07165644A publication Critical patent/JPH07165644A/en
Application granted granted Critical
Publication of JP3704728B2 publication Critical patent/JP3704728B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Furan Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To produce 1,4-butanediol and/or tetrahydrofuran in high yield under relatively mild reaction condition by using a catalyst having high reaction activity. CONSTITUTION:1,4-Butanediol and/or tetrahydrofuran are produced by the catalytic hydrogenation reaction of maleic anhydride, maleic acid, succinic anhydride, succinic acid, gamma-butyrolactone or their mixture. The reaction is carried out by using a catalyst produced by supporting Ru, tin and at least one kind of element selected between Pt and Rh on a carrier.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、無水マレイン酸、マレ
イン酸、無水コハク酸、コハク酸、γ−ブチロラクトン
又はこれらの混合物を原料とし、接触水素化反応により
1,4−ブタンジオール及び/又はテトラヒドロフラン
を製造する方法に関する。1,4−ブタンジオールは、
主にポリブチレンテレフタレートやポリウレタン等のプ
ラスチック原料として使用されるほか、ピロリジン、ア
ジピン酸等の製造中間体等として使用されている。ま
た、テトラヒドロフランは、沸点が低く優れた溶解力を
もつため溶媒として使用されるほか、ポリテトラメチレ
ンエーテルグリコール、テトラヒドロチオフェン等の原
料として使用されている。
FIELD OF THE INVENTION The present invention uses maleic anhydride, maleic acid, succinic anhydride, succinic acid, γ-butyrolactone or a mixture thereof as a raw material, and produces 1,4-butanediol and / or by a catalytic hydrogenation reaction. It relates to a method for producing tetrahydrofuran. 1,4-butanediol is
It is mainly used as a raw material for plastics such as polybutylene terephthalate and polyurethane, and is also used as a production intermediate for pyrrolidine and adipic acid. Tetrahydrofuran is used as a solvent because it has a low boiling point and an excellent dissolving power, and is also used as a raw material for polytetramethylene ether glycol, tetrahydrothiophene and the like.

【0002】[0002]

【従来の技術】従来、無水マレイン酸等の含酸素C4
化水素を水素化する方法は数多く報告されている。例え
ば、最も良く知られている方法として、銅系の触媒を用
いる方法がある。しかしながら、この方法では、マレイ
ン酸等の有機カルボン酸を直接還元することができず、
カルボン酸を一旦エステルに転換後還元しなければなら
ないので、製造工程が長くなる。また、この方法では、
一般に200気圧以上の水素圧下で反応を行うので、エ
ネルギー的にも設備的にも不経済な方法である。
2. Description of the Related Art Heretofore, many methods have been reported for hydrogenating oxygen-containing C 4 hydrocarbons such as maleic anhydride. For example, the best known method is to use a copper-based catalyst. However, in this method, an organic carboxylic acid such as maleic acid cannot be directly reduced,
Since the carboxylic acid has to be once converted into an ester and then reduced, the manufacturing process becomes long. Also, with this method,
Generally, the reaction is carried out under a hydrogen pressure of 200 atm or more, which is an uneconomical method in terms of energy and equipment.

【0003】一方、マレイン酸等のカルボン酸を直接還
元できる触媒もいくつか提案されている。例えば、特開
昭63−218636号公報及び米国特許4,659,
686号明細書には、活性炭に担持したパラジウム−レ
ニウム触媒を用いてマレイン酸水溶液からテトラヒドロ
フラン又はγ−ブチロラクトンを製造する方法が記載さ
れている。しかしながら、特開昭63−218636号
公報に記載の方法では反応基質濃度が低く、米国特許
4,659,686号明細書に記載の方法では、反応を
行う際に150気圧以上の水素圧力が必要であるという
欠点がある。
On the other hand, some catalysts which can directly reduce carboxylic acids such as maleic acid have been proposed. For example, JP-A-63-218636 and US Pat.
No. 686 describes a method for producing tetrahydrofuran or γ-butyrolactone from an aqueous maleic acid solution using a palladium-rhenium catalyst supported on activated carbon. However, the method described in JP-A-63-218636 has a low reaction substrate concentration, and the method described in US Pat. No. 4,659,686 requires a hydrogen pressure of 150 atm or higher when carrying out the reaction. There is a drawback that

【0004】また、米国特許4,827,001号明細
書には、ルテニウム−鉄酸化物を触媒としてマレイン酸
を直接還元する方法が提案されているが、この方法にお
いては、1,4−ブタンジオール、テトラヒドロフラ
ン、γ−ブチロラクトンの選択率が十分でない。
US Pat. No. 4,827,001 proposes a method for directly reducing maleic acid using ruthenium-iron oxide as a catalyst. In this method, 1,4-butane is used. The selectivity of diol, tetrahydrofuran and γ-butyrolactone is not sufficient.

【0005】[0005]

【発明が解決しようとする課題】このように、従来、マ
レイン酸等の水素化反応においては、反応性を高めるた
めに比較的高い水素圧の条件下又は低基質濃度の条件下
で反応を行う必要があった。従って、本発明は反応活性
の高い触媒を用いてマレイン酸等を水素化して、1,4
−ブタンジオール及び/又はテトラヒドロフランを製造
する方法を提供することを目的とする。
As described above, in the conventional hydrogenation reaction of maleic acid or the like, the reaction is carried out under relatively high hydrogen pressure conditions or low substrate concentration conditions in order to enhance the reactivity. There was a need. Therefore, according to the present invention, a maleic acid or the like is hydrogenated using a catalyst having a high reaction activity to obtain 1,4
-To provide a method for producing butanediol and / or tetrahydrofuran.

【0006】[0006]

【課題を解決するための手段】本発明方法では、無水マ
レイン酸、マレイン酸、無水コハク酸、コハク酸、γ−
ブチロラクトン又はこれらの混合物を原料とし、接触水
素化反応により1,4−ブタンジオール及び/又はテト
ラヒドロフランを製造するに際し、ルテニウム(以下、
「Ru」と表記する)と白金(以下、「Pt」と表記す
る)及びロジウム(以下、「Rh」と表記する)から選
ばれた少なくとも1種と錫とを担体に担持してなる触媒
を用いることを特徴とする。
In the method of the present invention, maleic anhydride, maleic acid, succinic anhydride, succinic acid, γ-
When producing 1,4-butanediol and / or tetrahydrofuran by catalytic hydrogenation reaction using butyrolactone or a mixture thereof as a raw material, ruthenium (hereinafter,
A catalyst comprising at least one selected from “Ru”), platinum (hereinafter “Pt”) and rhodium (hereinafter “Rh”) and tin supported on a carrier. It is characterized by using.

【0007】以下に本発明について詳細に説明する。本
発明方法では、無水マレイン酸、マレイン酸、無水コハ
ク酸、コハク酸、γ−ブチロラクトン又はこれらの混合
物を反応原料とする。本発明方法では、推定される反応
機構及び反応生成物の分析結果等からみて、(無水)マ
レイン酸が水素添加されて、(無水)コハク酸となり、
次いで、γ−ブチロラクトンとなり、更に最終生成物と
して、1,4−ブタンジオール及び/又はテトラヒドロ
フランを生成するものと推定される。従って、本発明で
は、上記の化合物のいずれをも反応原料として用いるこ
とができるし、これらの2種以上の混合物であってもよ
い。
The present invention will be described in detail below. In the method of the present invention, maleic anhydride, maleic acid, succinic anhydride, succinic acid, γ-butyrolactone or a mixture thereof is used as a reaction raw material. In the method of the present invention, in view of the estimated reaction mechanism and the analysis result of the reaction product, the (anhydrous) maleic acid is hydrogenated to become (anhydrous) succinic acid,
Then, it is supposed to be γ-butyrolactone and further produce 1,4-butanediol and / or tetrahydrofuran as a final product. Therefore, in the present invention, any of the above compounds can be used as a reaction raw material, and a mixture of two or more of these may be used.

【0008】本発明方法においては、RuとPt及びR
hの少なくとも1種(以下、Ru、Pt、Rhを総称し
て、「貴金属成分」とする。)と錫とを担体に担持して
なる触媒を使用する。担体としては、活性炭、けいそう
土、シリカ、アルミナ、チタニア、ジルコニア等の多孔
質担体を単独又は2種以上を組み合わせて用いることが
できる。
In the method of the present invention, Ru, Pt and R
A catalyst in which at least one kind of h (hereinafter, Ru, Pt, and Rh are collectively referred to as "noble metal component") and tin are supported on a carrier is used. As the carrier, porous carriers such as activated carbon, diatomaceous earth, silica, alumina, titania and zirconia can be used alone or in combination of two or more kinds.

【0009】触媒の調整法は特に制限はないが、通常、
浸漬法が採用される。浸漬法によるときは、例えば、触
媒原料化合物の上記貴金属成分の化合物及び錫化合物を
溶解可能な溶媒、例えば、水に溶解して溶液とし、この
溶液に別途調整した多孔質担体を浸漬して、担体に貴金
属成分及び錫からなる触媒成分を担持させる方法があ
る。
The method of preparing the catalyst is not particularly limited, but usually,
The immersion method is adopted. When the dipping method is used, for example, the compound of the precious metal component of the catalyst raw material compound and a tin compound can be dissolved in a solvent, for example, water to form a solution, and a separately prepared porous carrier is immersed in this solution, There is a method of supporting a precious metal component and a catalyst component composed of tin on a carrier.

【0010】担体に各触媒成分を担持する順序について
は特に制限はなく、全ての金属成分を一度に同時に担持
しても、各成分を個別に1つずつ担持しても、または成
分のいくつかを組み合わせて複数回にわたって担持して
も、本発明の効果は達成される。しかし、その中でも特
に、まずRuと錫とを担体に担持し、次にPt及びRh
から選ばれる少なくとも1種を追加して担体に担持する
と、本発明の効果を更に高めることができる。Pt及び
Rhから選ばれた少なくとも1種をRuと錫の後から担
持することによる反応活性向上の原因は、詳細には分か
っていないが、水素の活性化能、又は水素化反応活性の
高いPt、又はRhを他の成分よりも後から担持するこ
とで、これらの金属成分が触媒表面に担持され、この表
面の金属成分が水素化反応において有効に機能している
ためと考えられる。
The order of loading each catalyst component on the carrier is not particularly limited, and all the metal components may be loaded simultaneously at the same time, each component may be loaded individually one by one, or some of the components may be loaded. The effect of the present invention can be achieved even when the above are combined and carried a plurality of times. However, among them, especially, Ru and tin are first supported on a carrier, and then Pt and Rh are supported.
The effect of the present invention can be further enhanced by additionally supporting at least one selected from the group. The cause of the improvement of the reaction activity by supporting at least one selected from Pt and Rh after Ru and tin is not known in detail, but Pt having a high hydrogen activation ability or a high hydrogenation reaction activity. It is considered that the metal component on the catalyst is supported on the catalyst surface by supporting Rh or Rh later than the other components, and the metal component on the surface effectively functions in the hydrogenation reaction.

【0011】触媒成分の溶液を浸漬担持した後には(複
数回にわたって浸漬担持処理を行う場合には、その都
度)、乾燥する。該乾燥は、例えば減圧下、50〜10
0℃の温度条件下で処理した後、アルゴンガス等の不活
性ガス気流下、100〜150℃の温度条件下で処理す
ること等によって行う。その後、必要に応じて焼成、還
元処理を行う。焼成処理を行う場合には、通常100〜
600℃の温度範囲で行われる。また、還元処理を行う
場合には、公知の液相還元法、気相還元法が採用される
が、気相還元法の場合、通常100〜500℃の温度範
囲、好ましくは200〜350℃の範囲で行われる。還
元処理を行った後の触媒の構造に関しては、その詳細は
不明であるが、上記のような還元条件では、貴金属成分
は実質的に全てが金属に還元されると推定され、錫は、
一部分が2価又は4価で残存すると推定される。
After the catalyst component solution is immersed and supported (when the immersion and supporting treatment is carried out a plurality of times, each time), it is dried. The drying is performed under reduced pressure, for example, 50 to 10
After the treatment under the temperature condition of 0 ° C., the treatment is conducted under the temperature condition of 100 to 150 ° C. under the flow of an inert gas such as argon gas. Then, if necessary, firing and reduction treatments are performed. When performing the firing treatment, usually 100 to
It is performed in the temperature range of 600 ° C. Further, when performing the reduction treatment, a known liquid-phase reduction method or vapor-phase reduction method is adopted, but in the case of the vapor-phase reduction method, it is usually in the temperature range of 100 to 500 ° C, preferably 200 to 350 ° C. Done in range. Regarding the structure of the catalyst after the reduction treatment, the details are unknown, but it is estimated that under the above-mentioned reducing conditions, substantially all of the noble metal component is reduced to metal, and tin is
It is presumed that a part remains divalent or tetravalent.

【0012】貴金属成分(RuとPt又はRhの合計
量)及び錫の担持量は、それぞれ金属元素換算で担体に
対して、通常0.5〜50重量%、好ましくは1〜20
重量%である。Pt及び/又はRhは、Ruに対して
0.01〜10重量倍量共存させるのが活性向上の観点
から好ましい。錫は、貴金属成分に対して、通常0.1
〜5重量倍量共存させるのが、生成物の選択性向上の観
点から好ましい。なお、貴金属成分と錫の原料化合物と
しては、それらの金属の硝酸、硫酸、塩酸等の鉱酸塩が
一般的に使用されるが、酢酸等の有機酸塩、水酸化物、
酸化物又は錯塩も使用することもできる。これらの原料
化合物としては、担体に浸漬担持する際に使用する溶
媒、例えば水等に可溶性のものが良く、例えば、塩化ル
テニウム、塩化ロジウム、塩化スズ、硝酸ロジウム、酢
酸錫、ヘキサクロロ白金酸等が挙げられる。
The amount of the noble metal component (the total amount of Ru and Pt or Rh) and tin supported is usually 0.5 to 50% by weight, preferably 1 to 20%, based on the carrier in terms of metal element.
% By weight. It is preferable that Pt and / or Rh coexist in an amount of 0.01 to 10 times by weight relative to Ru from the viewpoint of improving the activity. Tin is usually 0.1 with respect to the noble metal component.
It is preferable to coexist in an amount of up to 5 times by weight from the viewpoint of improving the selectivity of the product. Incidentally, as the raw material compound of the noble metal component and tin, nitric acid, sulfuric acid, mineral acid salts such as hydrochloric acid of these metals are generally used, but organic acid salts such as acetic acid, hydroxides,
Oxides or complex salts can also be used. As these raw material compounds, a solvent used for dipping and supporting on a carrier, for example, those soluble in water and the like are preferable, for example, ruthenium chloride, rhodium chloride, tin chloride, rhodium nitrate, tin acetate, hexachloroplatinic acid and the like. Can be mentioned.

【0013】本発明方法によって、1,4−ブタンジオ
ール及び/又はテトラヒドロフランを製造するには、通
常、温度130〜350℃、好ましくは160〜300
℃、水素圧10〜300kg/cm2、好ましくは50
〜200kg/cm2の条件が採用される。回分反応の
場合には、使用される触媒の量は、無水マレイン酸等の
反応原料100重量部に対し0.1〜100重量部であ
ることが望ましいが、反応温度又は反応圧力等の諸条件
に応じ、実用的な反応速度が得られる範囲内で任意に選
ぶことができる。
To produce 1,4-butanediol and / or tetrahydrofuran by the method of the present invention, the temperature is usually 130 to 350 ° C., preferably 160 to 300.
C, hydrogen pressure 10-300 kg / cm 2 , preferably 50
The condition of ~ 200 kg / cm 2 is adopted. In the case of the batch reaction, the amount of the catalyst used is preferably 0.1 to 100 parts by weight with respect to 100 parts by weight of the reaction raw material such as maleic anhydride, but various conditions such as reaction temperature or reaction pressure. Can be arbitrarily selected within a range in which a practical reaction rate can be obtained.

【0014】反応方式は、液相懸濁反応又は固定床反応
のいずれであってもよい。また反応は、無溶媒で行って
もよいし、必要に応じて、反応に悪影響を与えない種類
の溶媒を使用してもよい。この際使用できる溶媒として
は、特に制限されないが、具体的には、水;メタノー
ル、エタノール、オクタノール、ドデカノール等のアル
コール類;テトラヒドロフラン、ジオキサン、テトラエ
チレングリコールジメチルエーテル等のエーテル類;そ
の他、ヘキサン、シクロヘキサン、デカリン等の炭化水
素類が挙げられる。
The reaction system may be either a liquid phase suspension reaction or a fixed bed reaction. The reaction may be carried out without a solvent, or if necessary, a solvent which does not adversely influence the reaction may be used. The solvent that can be used at this time is not particularly limited, but specifically, water; alcohols such as methanol, ethanol, octanol, and dodecanol; ethers such as tetrahydrofuran, dioxane, tetraethylene glycol dimethyl ether; and others, hexane, cyclohexane , And hydrocarbons such as decalin.

【0015】なお、反応で生成した1,4−ブタンジオ
ール及び/又はテトラヒドロフランは、蒸留等の公知の
方法により分離精製される。また、この分離精製後に残
る未反応原料又は反応中間体としてのγ−ブチロラクト
ン等は、反応原料として再使用することができる。
The 1,4-butanediol and / or tetrahydrofuran produced in the reaction is separated and purified by a known method such as distillation. In addition, the unreacted raw material remaining after the separation and purification or γ-butyrolactone as a reaction intermediate can be reused as a reaction raw material.

【0016】[0016]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り詳細に説明するが、本発明はその要旨を超えない限
り、以下の実施例の記載に限定されるものではない、な
お、以下において「%」は「重量%」を示す。 実施例1 容量30mlのサンプル瓶に、RuCl3・3H2Oを0.
790g、H2PtCl6・6H2Oを0.228g、S
nCl2・2H2Oを0.476gそれぞれ秤量して入
れ、更に5N−HCl水溶液を1.8ml入れて溶解後、
担体としてSiO2(富士デヴィソン社製品、スペシャ
ルグレード12、比表面積679m2/g、細孔容量
0.37ml/g)を4.36g加え、よく振とうした。
その後内容物を容量100mlナス型フラスコに移し、回
転減圧乾燥器で60℃、25mmHg下で溶媒の水を除去し
た後、窒素雰囲気下150℃で2時間焼成処理し、つい
で水素雰囲気下、300℃で2時間還元処理して、6.
1%Ru−1.7%Pt−5%Sn/SiO2の触媒を
調製した。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples below, but the present invention is not limited to the description of the following Examples unless it exceeds the gist thereof. In the following, “%” means “% by weight”. Example 1 A sample bottle having a volume of 30 ml was charged with RuCl 3 .3H 2 O in an amount of 0.
790 g, 0.228 g of H 2 PtCl 6 .6H 2 O, S
0.476 g of nCl 2 .2H 2 O was weighed and put in each, and 1.8 ml of 5N-HCl aqueous solution was further put in to dissolve it.
4.36 g of SiO2 (Fuji Davison product, special grade 12, specific surface area of 679 m 2 / g, pore volume of 0.37 ml / g) was added as a carrier and shaken well.
After that, the contents were transferred to a 100 ml eggplant-shaped flask, and the solvent water was removed at 60 ° C. and 25 mmHg in a rotary vacuum dryer, and the mixture was baked at 150 ° C. for 2 hours in a nitrogen atmosphere and then 300 ° C. in a hydrogen atmosphere. Reduced for 2 hours at 6.
The 1% Ru-1.7% Pt- 5% Sn / the SiO 2 catalyst was prepared.

【0017】容量200mlのオートクレーブに、水35
gに無水マレイン酸15gを溶解した溶液を仕込み、更
に上記方法で調製した触媒4gを仕込み、室温下攪拌し
つつ20kg/cm2の水素を圧入し、240℃まで昇
温した。オートクレーブ内温を240℃に維持しつつ、
水素を圧入して水素圧を100Kg/cm2まで高め、この
圧力で2時間反応を行った。反応終了後、反応生成物に
つきガスクロマトグラフィーで分析を行った。その結果
を表1に示した。
In a 200 ml autoclave, water 35
A solution prepared by dissolving 15 g of maleic anhydride in g was charged, and then 4 g of the catalyst prepared by the above method was charged, 20 kg / cm 2 of hydrogen was injected under stirring at room temperature, and the temperature was raised to 240 ° C. While maintaining the internal temperature of the autoclave at 240 ° C,
Hydrogen was injected under pressure to increase the hydrogen pressure up to 100 kg / cm 2, and the reaction was carried out at this pressure for 2 hours. After completion of the reaction, the reaction product was analyzed by gas chromatography. The results are shown in Table 1.

【0018】実施例2 RuCl3・3H2Oを0.680g、RhCl3・3H2
Oを0.245g、SnCl2・2H2Oを0.475
g、5N−HCl水溶液を1.8ml、及び担体としてS
iO2を4.40g用い、実施例1におけると同様の手
順で調製を行い、5.3%Ru−1.8%Rh−5%S
n/SiO2の触媒を調製した。
Example 2 0.680 g of RuCl 3 .3H 2 O, RhCl 3 .3H 2
0.245 g of O and 0.475 of SnCl 2 .2H 2 O
g, 1.8 ml of 5N-HCl aqueous solution, and S as a carrier
Preparation was carried out by the same procedure as in Example 1 using 4.40 g of iO 2, and was 5.3% Ru-1.8% Rh-5% S.
A catalyst of n / SiO 2 was prepared.

【0019】この触媒を用い、実施例1に記載の例にお
けると同様の手順で無水マレイン酸の水素添加反応を行
った。反応生成物についての分析結果を、表1に示し
た。 比較例1 RuCl3・3H2Oを0.906g、SnCl2・2H2
Oを0.475g、5N−HCl水溶液を1.8ml、及
び担体としてSiO2を4.40gを用い、実施例1に
おけると同様の手順で調製を行い、7%Ru−5%Sn
/SiO2の触媒を調製した。
Using this catalyst, hydrogenation reaction of maleic anhydride was carried out in the same procedure as in the example described in Example 1. The analysis results of the reaction product are shown in Table 1. Comparative Example 1 RuCl 3 .3H 2 O 0.906 g, SnCl 2 .2H 2
Using 0.475 g of O, 1.8 ml of a 5N-HCl aqueous solution, and 4.40 g of SiO 2 as a carrier, the preparation was carried out in the same manner as in Example 1 to obtain 7% Ru-5% Sn.
A / SiO 2 catalyst was prepared.

【0020】この触媒を用い、実施例1に記載の例にお
けると同様の手順で無水マレイン酸の水素添加反応を行
った。反応生成物についての分析結果を、表1に示し
た。
Using this catalyst, hydrogenation reaction of maleic anhydride was carried out in the same procedure as in the example described in Example 1. The analysis results of the reaction product are shown in Table 1.

【0021】[0021]

【表1】 表1中、略号は以下の意味を示す。 CML:無水マレイン酸 THF:テトラヒドロフラン GBL:γ−ブチロラクトン BDO:1,4−ブタンジオール[Table 1] In Table 1, the abbreviations have the following meanings. CML: maleic anhydride THF: tetrahydrofuran GBL: γ-butyrolactone BDO: 1,4-butanediol

【0022】実施例3 容量50mlのサンプル瓶に、RuCl3・3H2Oを1.
691g、H2PtCl6・6H2Oを0.226g、S
nCl2・2H2Oを0.950gそれぞれ秤量して入
れ、更に5N−HCl水溶液を3.6ml入れて溶解後、
担体としてSiO 2(富士デヴィソン社製品、スペシャ
ルグレード12、比表面積679m2/g、細孔容量
0.37ml/g)を8.76g加え、よく振とうした。
その後内容物を容量100mlナス型フラスコに移し、回
転減圧乾燥器で60℃、25mmHgの条件下で溶媒の水を
除去した後、窒素ガス雰囲気下150℃で2時間焼成処
理し、ついで水素雰囲気下、300℃で2時間還元処理
して、6.5%Ru−0.85%Pt−5%Sn/Si
2の触媒を調製した。
Example 3 A 50 ml sample bottle was charged with RuCl.3・ 3H2O to 1.
691g, H2PtCl6・ 6H20.226 g of O, S
nCl2・ 2H2Weigh 0.950 g of O and put it in
Then, 3.6 ml of 5N-HCl aqueous solution was further added and dissolved,
SiO as carrier 2(Fuji Davison products, specialists
Grade 12, specific surface area 679m2/ G, pore volume
8.76 g of 0.37 ml / g) was added and shaken well.
Then, transfer the contents to a 100 ml eggplant-shaped flask,
In a vacuum dryer, add water as the solvent under the conditions of 60 ℃ and 25mmHg.
After removing, baking treatment is performed at 150 ° C. for 2 hours in a nitrogen gas atmosphere.
And then reduction treatment under hydrogen atmosphere at 300 ℃ for 2 hours
Then, 6.5% Ru-0.85% Pt-5% Sn / Si
O2Was prepared.

【0023】容量200mlのオートクレーブに、水35
gに無水マレイン酸15gを溶解した溶液を仕込み、更
に上記方法で調製した触媒4gを仕込み、室温下撹拌し
つつ20kg/cm2の水素を圧入し、240℃まで昇温し
た。この温度を維持しつつ、水素を圧入して、水素圧を
70kg/cm2まで高め、この圧力を保ちつつ水素ガスを
約25リットル/時で反応液をバブリングしながら流通
させ、揮発成分を系外に除去しながら2時間反応を行っ
た。反応終了後、釜残成分と系外に除去した揮発成分に
ついて、ガスクロマトグラフィーで分析した。その結果
を表2に示した。
In an autoclave having a capacity of 200 ml, water 35
A solution prepared by dissolving 15 g of maleic anhydride in g was charged, and then 4 g of the catalyst prepared by the above method was charged, 20 kg / cm 2 of hydrogen was injected under stirring at room temperature, and the temperature was raised to 240 ° C. While maintaining this temperature, hydrogen was introduced under pressure to increase the hydrogen pressure to 70 kg / cm 2 , and while maintaining this pressure, hydrogen gas was circulated while bubbling the reaction solution at about 25 liters / hour to remove volatile components from the system. The reaction was carried out for 2 hours while being removed to the outside. After the reaction was completed, the components remaining in the kettle and the volatile components removed outside the system were analyzed by gas chromatography. The results are shown in Table 2.

【0024】実施例4 容量50mlのサンプル瓶に、RuCl3・3H2Oを1.
691g、SnCl2・2H2Oを0.950gそれぞれ
秤量して入れ、更に5N−HCl水溶液を3.6ml入れ
て溶解後、担体としてSiO2(富士デヴィソン社製
品、スペシャルグレード12、比表面積679m2
g、細孔容量0.37ml/g)を8.76g加え、よく
振とうした。その後内容物を容量100mlナス型フラス
コに移し、回転減圧乾燥器で60℃、25mmHgの条件下
で溶媒の水を除去した後、窒素ガス雰囲気下150℃で
2時間焼成処理し、ついで水素雰囲気下、300℃で2
時間還元処理して、Ru−Sn/SiO2を得た。
Example 4 RuCl 3 .3H 2 O was added to a sample bottle having a volume of 50 ml.
691 g, 0.950 g of SnCl 2 .2H 2 O are weighed and put, respectively, and 3.6 ml of 5N-HCl aqueous solution is further put in to dissolve, and SiO 2 as a carrier (Fuji Devison product, special grade 12, specific surface area 679 m 2 /
g, pore volume 0.37 ml / g) and added 8.76 g, and shaken well. After that, the contents were transferred to a 100 ml eggplant-shaped flask, and the solvent water was removed under the conditions of 60 ° C. and 25 mmHg in a rotary vacuum dryer, followed by baking treatment at 150 ° C. for 2 hours in a nitrogen gas atmosphere, and then in a hydrogen atmosphere. , At 300 ° C 2
After reduction treatment for time, Ru—Sn / SiO 2 was obtained.

【0025】次に容量50mlのサンプル瓶に、H2Pt
Cl6・6H2Oを0.226g、秤量して入れ、更に5
N−HCl水溶液を3.6ml入れて溶解後、先に調製し
たRu−Sn/SiO2を全量加えてよく振とうした。
その後内容物を容量100mlナス型フラスコに移し、回
転減圧乾燥器で60℃、25mmHgの条件下で溶媒の水を
除去した後、窒素ガス雰囲気下150℃で2時間焼成処
理し、ついで水素雰囲気下、300℃で2時間還元処理
して、Pt追加型の触媒(6.5%Ru−5%Sn)+
0.85%Pt/SiO2を調製した。
Next, in a sample bottle having a volume of 50 ml, H 2 Pt was added.
Weigh out 0.226 g of Cl 6 .6H 2 O and add 5 more
After 3.6 ml of N-HCl aqueous solution was added and dissolved, the whole amount of Ru-Sn / SiO 2 prepared above was added and shaken well.
After that, the contents were transferred to a 100 ml eggplant-shaped flask, and the solvent water was removed under the conditions of 60 ° C. and 25 mmHg in a rotary vacuum dryer, followed by baking treatment at 150 ° C. for 2 hours in a nitrogen gas atmosphere, and then in a hydrogen atmosphere. , Pt addition type catalyst (6.5% Ru-5% Sn) + after reduction treatment at 300 ° C. for 2 hours
0.85% Pt / SiO 2 was prepared.

【0026】この触媒を用いて実施例3と同様に無水マ
レイン酸の水素化反応を行った。その結果を表2に示し
た。 実施例5 使用するSiO2の量を8.506g、H2PtCl6
6H2Oを0.903gとした以外は、実施例4と同様
の方法で、Pt追加型の触媒(6.5%Ru−5%S
n)+3.4%Pt/SiO2を調製した。
Using this catalyst, hydrogenation reaction of maleic anhydride was carried out in the same manner as in Example 3. The results are shown in Table 2. Example 5 The amount of SiO 2 used was 8.506 g, H 2 PtCl 6 ·
A Pt-added type catalyst (6.5% Ru-5% S) was prepared in the same manner as in Example 4 except that 6H 2 O was changed to 0.903 g.
n) + 3.4% Pt / SiO 2 was prepared.

【0027】この触媒を用いて実施例3と同様に無水マ
レイン酸の水素化反応を行った。その結果を表2に示し
た。
Using this catalyst, hydrogenation reaction of maleic anhydride was carried out in the same manner as in Example 3. The results are shown in Table 2.

【0028】[0028]

【表2】 表2中、略号は以下の意味を示す。 CML:無水マレイン酸 THF:テトラヒドロフラン GBL:γ−ブチロラクトン BDO:1,4−ブタンジオール[Table 2] In Table 2, the abbreviations have the following meanings. CML: maleic anhydride THF: tetrahydrofuran GBL: γ-butyrolactone BDO: 1,4-butanediol

【0029】[0029]

【発明の効果】本発明の方法によれば、無水マレイン
酸、マレイン酸、無水コハク酸、コハク酸、γ−ブチロ
ラクトン又はこれらの混合物を原料とし、接触水素化反
応により比較的温和な反応条件下で、1,4−ブタンジ
オール及び/又はテトラヒドロフランを高収率にて製造
することができ、その工業的利用価値は極めて大であ
る。
According to the method of the present invention, maleic anhydride, maleic acid, succinic anhydride, succinic acid, γ-butyrolactone or a mixture thereof is used as a raw material, and the reaction is carried out under relatively mild reaction conditions by catalytic hydrogenation reaction. Thus, 1,4-butanediol and / or tetrahydrofuran can be produced in a high yield, and its industrial utility value is extremely large.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 無水マレイン酸、マレイン酸、無水コハ
ク酸、コハク酸、γ−ブチロラクトン、又はこれらの混
合物を原料とし、接触水素化反応により1,4−ブタン
ジオール及び/又はテトラヒドロフランを製造するに際
し、ルテニウムと白金及びロジウムから選ばれた少なく
とも1種と錫とを担体に担持してなる触媒を用いる1,
4−ブタンジオール及び/又はテトラヒドロフランの製
造方法。
1. When producing 1,4-butanediol and / or tetrahydrofuran by catalytic hydrogenation reaction using maleic anhydride, maleic acid, succinic anhydride, succinic acid, γ-butyrolactone, or a mixture thereof as a raw material. Using a catalyst in which at least one selected from ruthenium, platinum and rhodium and tin are supported on a carrier 1,
A method for producing 4-butanediol and / or tetrahydrofuran.
【請求項2】 触媒が、担体にまずルテニウムと錫とを
担持し、次に白金及びロジウムから選ばれた少なくとも
1種を追加して担体に担持してなる触媒を用いる請求項
1に記載の1,4−ブタンジオール及び/又はテトラヒ
ドロフランの製造方法。
2. The catalyst according to claim 1, wherein the catalyst is such that ruthenium and tin are first supported on a carrier, and then at least one selected from platinum and rhodium is additionally supported on the carrier. A method for producing 1,4-butanediol and / or tetrahydrofuran.
【請求項3】 ルテニウム化合物と白金及びロジウムか
ら選ばれた少なくとも1種の金属の化合物と錫化合物の
溶液を担体に浸漬させる工程を経て調製された触媒を用
いる請求項1記載の1,4−ブタンジオール及び/又は
テトラヒドロフランの製造方法。
3. The catalyst according to claim 1, wherein the catalyst prepared through a step of immersing a solution of a ruthenium compound, a compound of at least one metal selected from platinum and rhodium, and a tin compound in a carrier is used. A method for producing butanediol and / or tetrahydrofuran.
【請求項4】 ルテニウム化合物と錫化合物の溶液を担
体に浸漬させる工程と、引き続く白金及びロジウムから
選ばれた少なくとも1種の金属化合物の溶液を担体に浸
漬させる工程を経て調製された触媒を用いる請求項3記
載の1,4−ブタンジオール及び/又はテトラヒドロフ
ランの製造方法。
4. A catalyst prepared through a step of immersing a solution of a ruthenium compound and a tin compound in a carrier and a subsequent step of immersing a solution of at least one metal compound selected from platinum and rhodium in the carrier. The method for producing 1,4-butanediol and / or tetrahydrofuran according to claim 3.
JP25550094A 1993-10-22 1994-10-20 Process for producing 1,4-butanediol and / or tetrahydrofuran Expired - Fee Related JP3704728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25550094A JP3704728B2 (en) 1993-10-22 1994-10-20 Process for producing 1,4-butanediol and / or tetrahydrofuran

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-265076 1993-10-22
JP26507693 1993-10-22
JP25550094A JP3704728B2 (en) 1993-10-22 1994-10-20 Process for producing 1,4-butanediol and / or tetrahydrofuran

Publications (2)

Publication Number Publication Date
JPH07165644A true JPH07165644A (en) 1995-06-27
JP3704728B2 JP3704728B2 (en) 2005-10-12

Family

ID=26542243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25550094A Expired - Fee Related JP3704728B2 (en) 1993-10-22 1994-10-20 Process for producing 1,4-butanediol and / or tetrahydrofuran

Country Status (1)

Country Link
JP (1) JP3704728B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5985789A (en) * 1997-03-27 1999-11-16 E. I. Du Pont De Nemours And Company Ru, Sn/oxide catalyst and process for hydrogenation in acidic aqueous solution
US6008384A (en) * 1998-03-03 1999-12-28 E. I. Du Pont De Nemours And Company Method and Ru,Re,Sn/carbon catalyst for hydrogenation in aqueous solution
US6294703B1 (en) 1998-06-22 2001-09-25 Mitsubishi Chemical Company Process for the manufacture of cycloalkyldimethanol
JP2013527835A (en) * 2010-04-07 2013-07-04 ロディア オペレーションズ Method for producing lactone
CN110963887A (en) * 2018-09-30 2020-04-07 中国石油化工股份有限公司 Fixed bed reaction process for directly preparing 1, 6-hexanediol from 1, 6-adipic acid

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5985789A (en) * 1997-03-27 1999-11-16 E. I. Du Pont De Nemours And Company Ru, Sn/oxide catalyst and process for hydrogenation in acidic aqueous solution
US6008384A (en) * 1998-03-03 1999-12-28 E. I. Du Pont De Nemours And Company Method and Ru,Re,Sn/carbon catalyst for hydrogenation in aqueous solution
US6294703B1 (en) 1998-06-22 2001-09-25 Mitsubishi Chemical Company Process for the manufacture of cycloalkyldimethanol
JP2013527835A (en) * 2010-04-07 2013-07-04 ロディア オペレーションズ Method for producing lactone
CN110963887A (en) * 2018-09-30 2020-04-07 中国石油化工股份有限公司 Fixed bed reaction process for directly preparing 1, 6-hexanediol from 1, 6-adipic acid
CN110963887B (en) * 2018-09-30 2022-10-28 中国石油化工股份有限公司 Fixed bed reaction process for directly preparing 1, 6-hexanediol from 1, 6-adipic acid

Also Published As

Publication number Publication date
JP3704728B2 (en) 2005-10-12

Similar Documents

Publication Publication Date Title
JPH06116182A (en) Hydrogenation of organic carboxylic acid and/or organic carboxylic acid ester
JP4472109B2 (en) Carboxylic acid hydrogenation catalyst
JPH10306047A (en) Production of 1,6-hexanediol
EP0055512A1 (en) Process for the manufacture of 1-4-butanediol and tetrahydrofuran
JPH11502811A (en) Method for producing 1,4-butanediol and tetrahydrofuran from furan
JP2008505154A (en) Method for producing 1,6-hexanediol having a purity exceeding 99.5%
JPS6111145A (en) Hydrogenation catalyst of diolefins
JP3704728B2 (en) Process for producing 1,4-butanediol and / or tetrahydrofuran
US5969194A (en) Process for preparing 1, 6-hexanediol
JP2000007596A (en) Production of 1,4-cyclohexanedimethanol
JP3744023B2 (en) Process for producing 1,4-butanediol and / or tetrahydrofuran
JP3726504B2 (en) Catalyst regeneration method and hydrogenation method using regenerated catalyst
JP4472108B2 (en) Carboxylic acid hydrogenation catalyst
JP3704758B2 (en) Process for producing 1,4-butanediol and / or tetrahydrofuran
KR0131203B1 (en) Process for the production of ñò-butyrolactone
JPS5918382B2 (en) Butene diacetate noiseikahou
JP3206183B2 (en) Method for producing 1,4-butanediol
JPH05246915A (en) Method for hydrogenating organic carboxylic acid and/or carboxylic acid ester
JP3845904B2 (en) Catalyst for hydrogenation reaction, method for producing the same, and method for hydrogenation reaction of carboxylic acids using the catalyst
JPH08217707A (en) Method for hydrogenating carboxylic acids
JP2001097904A (en) Method for producing 1,6-hexanediol
JP4282153B2 (en) Method for producing diol mixture
JP2001011000A (en) Method for producing 1,4-butanediol and/or tetrahydrofuran
JP4014287B2 (en) Method for producing 3-acyloxycyclohexene
JPH1160524A (en) Production of 1,6-hexanediol

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees