JPH07165427A - Purification of iron chloride solution - Google Patents

Purification of iron chloride solution

Info

Publication number
JPH07165427A
JPH07165427A JP31326193A JP31326193A JPH07165427A JP H07165427 A JPH07165427 A JP H07165427A JP 31326193 A JP31326193 A JP 31326193A JP 31326193 A JP31326193 A JP 31326193A JP H07165427 A JPH07165427 A JP H07165427A
Authority
JP
Japan
Prior art keywords
iron
solution
precipitate
chloride solution
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31326193A
Other languages
Japanese (ja)
Other versions
JP3188573B2 (en
Inventor
Atsunori Kono
野 敦 則 河
Takashi Takagi
木 堅 志 高
Fumiaki Yoshikawa
川 文 明 吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP31326193A priority Critical patent/JP3188573B2/en
Publication of JPH07165427A publication Critical patent/JPH07165427A/en
Application granted granted Critical
Publication of JP3188573B2 publication Critical patent/JP3188573B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To provide a process for purification of iron chloride solution which can solve the problems in the conventional processes all together such as unsatisfactory separation of impurities and controllability. CONSTITUTION:This purification process is for producing iron oxide of high purity from the waste solution after steel pickling. Iron or iron compound are allowed to contact with the pickling waste solution in the form of iron chloride solution to neutralize free hydrochloric acid until the pH is adjusted to 2 to 4. Then, the pH is adjusted to 2 to 5, as oxygen or an oxygen-containing gas is brought into contact with the neutralized solution to form a precipitation mainly containing 0.5 to 15% of Fe in the solution. The precipitation is removed, and the remaining solution is used as a purified ferrous chloride solution. The oxidation is effected with an oxidizing agent to convert ferrous chloride into ferric chloride, alkali is used to precipitate the ferric chloride. The precipitate is dissolved in hydrochloric acid to give the purified iron chloride solution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋼板等の鋼材の塩酸酸
洗廃液から、Si,Al,P,Na,Ca,B等の不純
物含有量の少ないフェライト原料用酸化鉄を製造するの
に用いる塩化鉄溶液の精製方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is for producing iron oxide for a ferrite raw material containing a small amount of impurities such as Si, Al, P, Na, Ca and B from a hydrochloric acid pickling waste liquid of a steel material such as a steel plate. It relates to a method for purifying an iron chloride solution to be used.

【0002】[0002]

【従来の技術】鉄鋼板の酸洗廃液として発生する塩化鉄
水溶液は、通常Si,Al,P,Cr,Cu,Ti,N
a,Ca,B等の不純物を含有しており、この廃液を焙
焼して酸化鉄を生成する際、これらの不純物が酸化鉄中
に残存する。そのため、この生成酸化鉄をフェライト原
料用として使用したとき、その残留不純物は磁気特性を
低下させる原因となる。小型化、高性能を要求されるソ
フトフェライト材料に使用する際は、Si,P,Bのよ
うにフェライト粒子の結晶を粗大化させたり、Alのよ
うにフェライト結晶内に固溶したりして電気的・磁気的
特性を著しく低下させるような微量不純物を特に低減し
なければならない。
2. Description of the Related Art Iron chloride aqueous solution generated as a pickling waste liquid for iron and steel sheets is usually Si, Al, P, Cr, Cu, Ti, N.
Impurities such as a, Ca and B are contained, and when the waste liquid is roasted to produce iron oxide, these impurities remain in the iron oxide. Therefore, when the produced iron oxide is used as a ferrite raw material, the residual impurities cause deterioration of magnetic properties. When used in soft ferrite materials that require miniaturization and high performance, the crystal of ferrite particles is coarsened like Si, P, B, or solid-dissolved in the ferrite crystal like Al. It is necessary to particularly reduce the trace impurities that significantly deteriorate the electrical and magnetic characteristics.

【0003】従来、鋼材酸洗廃液中の不純物を低減する
ために、主に脱SiO2 を目的(SiはSiO2 として
存在)とした凝集−濾過分離方式が利用されているが、
強酸性条件下での凝集効果は充分でなく、また、SiO
2 以外の不純物の除去率は低いという問題があった。
Conventionally, in order to reduce impurities in the steel pickling waste liquid, a coagulation-filtration separation system has been mainly used for the purpose of removing SiO 2 (Si exists as SiO 2 ).
The aggregation effect under strongly acidic conditions is not sufficient, and SiO
There was a problem that the removal rate of impurities other than 2 was low.

【0004】凝集効果を高めるため特開昭61−256
925号では、廃酸に鉄あるいは鉄化合物を添加し、p
Hを2〜4に調整し、析出したコロイド状のSiO2
合物を沈降あるいは濾過分離し、廃酸中のSiO2 を低
減する方法が報告されている。この方法では廃酸中の不
純物としてSiO2 に注目しているのみで、他の不純物
については触れられておらず、事実、P,Al等の不純
物の除去効果は低い。また、鉄あるいは鉄化合物添加の
後、アンモニアを添加することで更にSiO2低減の効
果を水酸化鉄の沈澱生成により達成するとしているが、
鉄あるいは鉄化合物添加によるpH調整後では水酸化第
二鉄の生成は少なく、SiO2 、その他P,Al等の除
去効果は充分でないという問題を有している。
To enhance the aggregating effect, JP-A-61-256
In No. 925, iron or iron compound is added to waste acid, and p
A method has been reported in which H is adjusted to 2 to 4 and the precipitated colloidal SiO 2 compound is precipitated or separated by filtration to reduce SiO 2 in waste acid. This method focuses only on SiO 2 as an impurity in the waste acid and does not mention other impurities, and in fact, the effect of removing impurities such as P and Al is low. Further, it is stated that the effect of further reducing SiO 2 can be achieved by adding iron or an iron compound and then adding ammonia, by the precipitation of iron hydroxide.
After the pH is adjusted by adding iron or an iron compound, ferric hydroxide is less produced, and there is a problem that the effect of removing SiO 2 , other P, Al and the like is not sufficient.

【0005】共沈吸着効果を利用する方法として、特開
昭63−49294号では、酸洗廃液中にアルカリを添
加し、pHを3〜4とすることで水酸化第二鉄沈澱を生
成させ、該沈澱にSiO2 を共沈吸着し、液中のSiO
2 を低減させる方法を提案をしている。しかし、水酸化
第二鉄の生成量は第二鉄含有量に依存するしかないた
め、第二鉄の含有量が少ない場合は効果が小さく、逆に
多い場合、鉄ロスも多くなるという制御性に対する問題
がある。
As a method for utilizing the coprecipitation adsorption effect, in JP-A-63-49294, an alkali is added to the pickling waste liquid to adjust the pH to 3 to 4 to form a ferric hydroxide precipitate. , SiO 2 is co-precipitated and adsorbed on the precipitate,
We are proposing a method to reduce 2 . However, since the production amount of ferric hydroxide depends only on the ferric iron content, the effect is small when the ferric iron content is small, and conversely, the iron loss also increases when it is large. Have a problem with.

【0006】特開平1−153532号では、廃酸中に
Al,Cr,V,B,Zn金属の一種類あるいは二種類
以上添加した後、アルカリによりpHを3.5〜6に調
整し、SiO2 ほか不純物を金属水酸化物に共沈吸着さ
せ、廃酸の精製を行なうことを提案しているが、上記鉄
ロスの問題、さらには高価な金属を利用するというコス
ト的デメリットを有する。
In JP-A-1-153532, after adding one or more kinds of Al, Cr, V, B and Zn metals to waste acid, the pH is adjusted to 3.5 to 6 by alkali and SiO 2 is added. 2 In addition, it has been proposed to coprecipitate and adsorb impurities into metal hydroxide to purify the waste acid, but it has the above-mentioned iron loss problem and further has the cost disadvantage of using expensive metal.

【0007】また、特開平3−5324号では、鉄、鉄
化合物を廃酸中に添加し、pH調整を行った後、酸素あ
るいは酸素含有気体を吹き込んで含水酸化鉄沈澱を生成
させ、その含水酸化沈澱の吸着効果にて、SiO2 他、
P,Al,Cr等の不純物低減を達成している。
Further, in JP-A-3-5324, iron and an iron compound are added to waste acid, pH is adjusted, and then oxygen or an oxygen-containing gas is blown to form an iron hydroxide hydrate precipitate, which is then hydrated. Due to the adsorption effect of oxidative precipitation, SiO 2 , etc.,
The reduction of impurities such as P, Al and Cr has been achieved.

【0008】しかし、含酸素気体の吹き込みによる酸化
でpHが低下し、SiO2 の再溶出が起こり、SiO2
除去効果においてマイナス面となるという問題点があっ
た。このpH低下は含水酸化鉄沈澱の生成の促進に伴い
進行するため、除去効果が相反する。
However, pH is lowered by oxidation by blowing oxygen-containing gas, it occurs again dissolution of SiO 2, SiO 2
There is a problem in that the removal effect is a negative aspect. This decrease in pH progresses with the promotion of the formation of hydrous iron oxide precipitates, so the removal effects are contradictory.

【0009】また特願平4−120367号では、塩化
鉄水溶液を鉄または鉄化合物で液中の遊離塩酸を中和し
てpHを2〜4に調整した後、酸素もしくは酸素含有気
体と接触させながらpHを2〜5となるようにアルカリ
処理等により調整することで溶液中の鉄(Fe)分の
0.5〜15%を鉄を主成分とする沈澱物として生成さ
せ、該沈澱物を分離し、精製塩化鉄溶液としたのち、高
温焙焼する方法が紹介されている。しかしながら、この
方法では液側に残留しやすい、B,Ca,Na等の不純
物は低減できない。
Further, in Japanese Patent Application No. 4-120367, an aqueous solution of iron chloride is neutralized with free hydrochloric acid in the solution with iron or an iron compound to adjust the pH to 2 to 4, and then contacted with oxygen or an oxygen-containing gas. While adjusting the pH to 2 to 5 by alkali treatment or the like, 0.5 to 15% of iron (Fe) in the solution is produced as a precipitate containing iron as a main component, and the precipitate is formed. A method of separating and making a purified iron chloride solution and then high-temperature roasting is introduced. However, this method cannot reduce impurities such as B, Ca, and Na that tend to remain on the liquid side.

【0010】[0010]

【発明が解決しようとする課題】以上のように、廃液中
の不純物除去に関して、従来技術である、特開昭61−
256925号においてはSiO2 のみの除去効果だけ
であり、特開昭63−49294号においては、第二鉄
の量に依存し、制御性に劣る。特開平1−153532
号においては、コスト面の問題があった。また、特開平
3−5324号では空気酸化でのpHの低下でSiO2
除去効果が低下するという問題があった。また、いずれ
もB,Na,Ca等の不純物には効果がないという問題
点があった。
As described above, Japanese Patent Laid-Open Publication No. 61-
No. 256925 has only the effect of removing SiO 2 , and in JP-A No. 63-49294, it depends on the amount of ferric iron and is inferior in controllability. JP-A-1-153532
In the issue, there was a cost problem. Further, in Japanese Patent Laid-Open No. 3-5324, SiO 2 is reduced due to a decrease in pH during air oxidation.
There is a problem that the removal effect is reduced. Further, there is a problem that they are not effective against impurities such as B, Na and Ca.

【0011】本発明は、このような廃酸中の不純物除去
技術における、上述の従来技術での不純物除去効果、制
御性といった問題点を一挙に解決することができる塩化
鉄溶液の精製方法を提供することを目的とする。
The present invention provides a method for purifying an iron chloride solution, which can solve all the problems of the above-mentioned conventional techniques such as the impurity removal effect and the controllability in the technique of removing impurities in waste acid. The purpose is to do.

【0012】[0012]

【課題を解決するための手段】本発明者らは、フェライ
ト原料用酸化鉄の製造工程において、特に塩化鉄水溶液
の工業的な精製方法について鋭意研究を重ねた結果、一
段階目にpH効果と沈澱の共沈吸着によりSiO2
P,Al等の不純物を同時に低減し、二段階目には酸化
後のpH調製により、水酸化第二鉄を沈澱生成させ、こ
の沈澱の塩酸再溶解にてB,Na,Caを低減できるこ
とを見いだし、本発明を完成するに至った。
Means for Solving the Problems In the manufacturing process of iron oxide for a ferrite raw material, the inventors of the present invention have earnestly conducted research on an industrial refining method of an aqueous solution of iron chloride, and as a result, found that the pH effect was found in the first step. SiO 2 due to coprecipitation adsorption of the precipitate,
Impurities such as P and Al are reduced at the same time, and in the second step, ferric hydroxide is precipitated by pH adjustment after oxidation, and B, Na, and Ca can be reduced by redissolving the precipitate with hydrochloric acid. They have found the present invention and completed the present invention.

【0013】すなわち、本発明によれば、鋼材酸洗廃液
より高純度の酸化鉄を製造するための酸洗廃液の精製方
法において、塩化鉄溶液である酸洗廃酸に鉄または鉄化
合物を接触させ遊離塩酸を中和してpHを2〜4に調整
した後、酸素もしくは酸素含有気体と接触させながらp
Hを2〜5となるようにアルカリ処理により調整するこ
とで溶液中の鉄(Fe)分0.5〜15%を鉄を主成分
とする沈澱物として生成させ、該沈澱物を分離し、精製
塩化第一鉄水溶液とし、その後、酸化剤にて塩化第一鉄
を塩化第二鉄に酸化し、さらにアルカリを用いて中和し
て塩化第二鉄沈澱を得、当該沈澱を塩酸にて溶解し精製
塩化鉄溶液を得る塩化鉄溶液の精製方法が提供される。
That is, according to the present invention, in a method for purifying a pickling waste liquid for producing iron oxide having a higher purity than a steel material pickling waste liquid, iron or an iron compound is contacted with a pickling waste acid which is an iron chloride solution. After neutralizing the free hydrochloric acid and adjusting the pH to 2 to 4, while contacting with oxygen or an oxygen-containing gas, p
By adjusting H to be 2 to 5 by alkali treatment, 0.5 to 15% of iron (Fe) in the solution is produced as a precipitate containing iron as a main component, and the precipitate is separated, A purified ferrous chloride aqueous solution is prepared, and then ferric chloride is oxidized to ferric chloride with an oxidizing agent and neutralized with an alkali to obtain a ferric chloride precipitate. Provided is a method for purifying an iron chloride solution which is dissolved to obtain a purified iron chloride solution.

【0014】[0014]

【作用】以下に本発明をさらに詳細に説明する。まず、
本発明が適用される原料は、前述の通り鋼板等の塩酸酸
洗廃液もしくはこれを加熱濃縮した濃縮廃塩酸等の塩化
鉄水溶液である。これらは通常遊離塩酸を含有してお
り、pHが1未満の強酸性状態であることが多い。
The present invention will be described in more detail below. First,
As described above, the raw material to which the present invention is applied is a hydrochloric acid pickling waste liquid such as a steel plate or an aqueous iron chloride solution such as concentrated waste hydrochloric acid obtained by heating and concentrating the same. They usually contain free hydrochloric acid and are often in a strongly acidic state with a pH below 1.

【0015】本発明の塩化鉄溶液の精製方法は上記原料
を用いて二段階で処理する。その方法を簡単に説明す
る。一段階目ではスクラップ等による還元ののち含酸素
気体を吹き込むと同時にアルカリを添加し、水溶液のp
Hをコントロールすることで、SiO2 ,P,Al等の
不純物を同時に低減する。二段階目には、酸化剤にて第
一鉄を第二鉄とし、アルカリを添加してpHをコントロ
ールすることで水酸化第二鉄沈澱を生成させた後、この
生成した沈澱を塩酸に再溶解することによりB,Na,
Ca等を低減でき、精製塩化鉄溶液とすることができ
る。
In the method for purifying the iron chloride solution of the present invention, the above raw materials are used for two-step treatment. The method will be briefly described. In the first stage, after reducing with scraps, etc., oxygen-containing gas is blown in and alkali is added at the same time,
By controlling H, impurities such as SiO 2 , P and Al are simultaneously reduced. In the second step, ferric iron was changed to ferric iron with an oxidizing agent, and by adding an alkali to control the pH, a ferric hydroxide precipitate was formed, and then the formed precipitate was regenerated into hydrochloric acid. By dissolving, B, Na,
Ca and the like can be reduced, and a purified iron chloride solution can be obtained.

【0016】この方法の第一段階では、鉄あるいは鉄化
合物添加によりpH上昇とFe3++1/2Fe→3/2
Fe2+の反応でのFe3+の完全消費を行う。その後、酸
素もしくは含酸素気体を吹き込みながらアルカリの添加
を行い、含水酸化鉄および水酸化第二鉄沈澱を生成させ
る。その際のpH、処理時間等の変化にて、沈澱生成量
のコントロールが可能であり、SiO2 他、P,Al,
Cr等の不純物除去効果に対する制御性を有する。
In the first step of this method, the pH is raised by adding iron or an iron compound and Fe 3+ + 1 / 2Fe → 3/2
Complete consumption of Fe 3+ in the reaction of Fe 2+ . After that, alkali is added while blowing oxygen or oxygen-containing gas to form iron oxide hydroxide and ferric hydroxide precipitate. PH at that time, at the changing of such processing time, but may be controlled in precipitation amount, SiO 2 others, P, Al,
It has controllability for removing impurities such as Cr.

【0017】本発明法の第一段階においては、鉄または
鉄化合物を利用して遊離塩酸の中和を行い、pHを2〜
4、好ましくは2.5〜3.5に調整する。中和に利用
する鉄または鉄化合物は、ミルスケール、スクラップ、
鉄粉等製鉄所内に発生する鉄源が利用可能であり、特に
金属鉄であれば液中にある3価の鉄(Fe3+)を迅速に
還元させるためpH上昇に対して有利である。また、反
応速度面より比表面積の大きい形状がのぞましい。pH
を2〜4に調製するのは、pH2未満では実質的に不純
物低減効果が望めず、pH4超ではpH上昇までの時間
が非常に長くなり、実操業上問題があるためである。
In the first step of the method of the present invention, free hydrochloric acid is neutralized using iron or an iron compound to adjust the pH to 2
4, preferably adjusted to 2.5 to 3.5. Iron or iron compounds used for neutralization are mill scale, scrap,
An iron source such as iron powder generated in an iron mill can be used. Particularly, metallic iron is advantageous for increasing pH because it rapidly reduces trivalent iron (Fe 3+ ) in the liquid. Also, a shape having a larger specific surface area than the reaction rate surface is desirable. pH
2 to 4 is prepared because the effect of reducing impurities cannot be expected at a pH of less than 2, and the time until the pH rises becomes very long at a pH of more than 4, which causes a problem in practical operation.

【0018】上記の反応は60℃以上、好ましくは80
℃以上において迅速に進行し、処理液の塩化第一鉄濃度
は任意であるが高濃度(40wt%以上)で取り扱うの
が経済的にみて有利である。
The above reaction is carried out at 60 ° C. or higher, preferably 80 ° C.
The treatment proceeds rapidly at a temperature of not less than 0 ° C., and the ferrous chloride concentration of the treatment liquid is arbitrary, but it is economically advantageous to handle it at a high concentration (40 wt% or more).

【0019】このように調整された塩化第一鉄水溶液は
前述の鉄または鉄化合物と分離して次工程へ送られる。
まず第一段階では、こうして得られた塩化第一鉄水溶液
は酸素もしくは酸素含有気体(空気が好適である)と接
触しながら、アルカリを添加することで、酸素酸化によ
るpH低下を防止する、あるいはpHをコントロールし
て2〜5にする。これにより、溶液中のFe分の0.2
〜5%を含水酸化第二鉄(FeOOH)に酸化し沈澱さ
せると同時に、Fe3+を水酸化物沈澱として生成させ、
凝集後、濾過あるいは沈降分離等でSi,Al,P等の
不純物を共沈・吸着分離する(沈澱となるFeは液中の
鉄分の内0.5〜15%)。
The ferrous chloride aqueous solution thus prepared is separated from the above-mentioned iron or iron compound and sent to the next step.
First, in the first stage, the aqueous solution of ferrous chloride thus obtained is added with an alkali while being in contact with oxygen or an oxygen-containing gas (air is preferable) to prevent pH decrease due to oxygen oxidation, or Control pH to 2-5. As a result, the Fe content in the solution is 0.2
-5% is oxidized to ferric oxide hydroxide (FeOOH) to cause precipitation, and at the same time Fe 3+ is produced as hydroxide precipitate,
After coagulation, impurities such as Si, Al and P are coprecipitated / adsorbed and separated by filtration or sedimentation separation (precipitated Fe is 0.5 to 15% of iron content in the liquid).

【0020】ここで、pHを2〜5に調製するのは、p
H5超では水酸化第一鉄の沈澱生成があり、Feロスが
はげしいためである。また、沈澱となるFeは液中の鉄
分の内0.5〜15%とするのは、0.5%未満では共
沈による不純物除去効果が十分得られず15%を超える
とFeロスが多くなり、歩止りが低下するためである。
Here, the pH is adjusted to 2 to 5 by adjusting p
This is because if H5 is exceeded, ferrous hydroxide precipitates and Fe loss is excessive. Further, the amount of Fe as a precipitate is set to 0.5 to 15% of the iron content in the liquid, because if it is less than 0.5%, the effect of removing impurities by coprecipitation cannot be sufficiently obtained, and if it exceeds 15%, Fe loss is large. This is because the yield is reduced.

【0021】第二段階では、第一段階処理後の塩化第一
鉄溶液に酸化剤を添加し、塩化第二鉄溶液とする。酸化
剤としては、過酸化水素、サラシ粉等などを用いること
ができる。当該溶液にアルカリを添加し、pHを好まし
くは3〜4に制御し、液中のFe分を水酸化第二鉄沈澱
とする。pHが3より低い場合はFe分が全て水酸化第
二鉄沈澱として析出しない恐れがある。また、pHが4
より大きいと添加するアルカリをロスする量がふえる。
さらに精製した沈澱物を濾過脱水あるいは遠心脱水等に
より、水酸化第二鉄沈澱物を取り出し、次に塩酸を加
え、塩化鉄溶液とする。溶液のFe濃度は任意である
が、焙焼の効率のため20〜30g/100ml程度に
するのが望ましい。また、Fe濃度については結晶化を
させないよう、同時に温度管理も重要となる。60℃以
上となるようにするのがよい。
In the second step, an oxidizing agent is added to the ferrous chloride solution after the first step treatment to obtain a ferric chloride solution. As the oxidant, hydrogen peroxide, coconut powder, etc. can be used. An alkali is added to the solution to control the pH to preferably 3 to 4, and the Fe content in the solution is ferric hydroxide precipitated. If the pH is lower than 3, all the Fe content may not be precipitated as ferric hydroxide precipitate. Also, the pH is 4
If it is larger, the amount of alkali added will be lost.
The purified precipitate is filtered and dehydrated or centrifuged to remove the ferric hydroxide precipitate, and then hydrochloric acid is added to form a ferric chloride solution. The Fe concentration of the solution is arbitrary, but it is desirable to set it to about 20 to 30 g / 100 ml for the efficiency of roasting. Further, regarding the Fe concentration, temperature control is also important at the same time so as not to crystallize. It is preferable that the temperature be 60 ° C. or higher.

【0022】以上の工程で用いるアルカリとしては、ア
ンモニア水、NaOHなどを用いるのがよい。
As the alkali used in the above steps, ammonia water, NaOH or the like is preferably used.

【0023】本発明での不純物除去機構を以下に簡単に
説明する。SiはSiO2 (シリカ)として存在し、強
酸性域では主に珪酸イオンとして存在するが、pH2〜
5に中和すると、コロイド重合化が進行し、負帯電のコ
ロイダルシリカとして不溶化する。
The impurity removing mechanism of the present invention will be briefly described below. Si exists as SiO 2 (silica), and mainly exists as silicate ions in the strongly acidic region, but pH 2 to
When neutralized to 5, colloidal polymerization progresses and becomes insoluble as negatively charged colloidal silica.

【0024】Alは強酸性域で塩化物として存在する
が、pH上昇にともない水酸化物として析出する。C
r,Cu,Ti等も同様の挙動を示す。
Al exists as a chloride in a strongly acidic region, but it precipitates as a hydroxide with an increase in pH. C
r, Cu, Ti and the like also exhibit similar behavior.

【0025】Pに関しては、強酸性域で主にリン酸イオ
ン(PO4 3- ) として解離しており、金属類とは第一塩
(Me+ 2 PO4 ;Meは金属)として溶存する。p
Hを2〜5の範囲に上昇させると、金属類と第二塩(M
2+2 PO4 )、さらに第3塩(Me3+2 PO4
を形成し、特に第三塩は難溶性であり、沈澱として析出
する。
Regarding P, it dissociates mainly as a phosphate ion (PO 4 3− ) in a strongly acidic region, and it is dissolved as a primary salt (Me + H 2 PO 4 ; Me is a metal) with metals. . p
When H is increased to the range of 2 to 5, metals and second salts (M
e 2+ H 2 PO 4 ), and the third salt (Me 3+ H 2 PO 4 ).
In particular, the third salt is sparingly soluble and precipitates as a precipitate.

【0026】一方、湿式酸化により生成する含水酸化鉄
FeOOHと水酸化第二鉄Fe(OH)3 は構造上多孔
質で表面積が大きい、液中で正帯電し、コロイダルシリ
カ等の負帯電物質のゼータ電位を下げ電荷的に中和凝集
させる、アニオン性の凝集剤で容易に凝集し、沈降分離
性および濾過特性に優れている等の特性を有する。
On the other hand, hydrous iron oxide FeOOH and ferric hydroxide Fe (OH) 3 produced by wet oxidation are structurally porous and have a large surface area, are positively charged in a liquid, and are negatively charged substances such as colloidal silica. It has properties such as lowering the zeta potential for neutralizing and aggregating in a charge-wise manner, easily aggregating with an anionic aggregating agent, and excellent sedimentation and separability and filtration properties.

【0027】Na,Ca,B等の不純物は、特に吸着効
果が低く、上記の様な手法では液側に必ず残留する。第
二段階では、その特性を利用し精製を行う。
Impurities such as Na, Ca and B have a particularly low adsorbing effect, and inevitably remain on the liquid side in the above method. In the second step, purification is carried out by utilizing that characteristic.

【0028】以上の点より、本発明者らはpH調整によ
るSi,Al,P等の不溶化効果と、含水酸化鉄、水酸
化第二鉄を担体とする共沈・吸着効果を同時に利用する
こと、さらにNa,Ca,B等は液側へ残留させる方法
により、効率よく、塩化鉄溶液中のSi,Al,P,
B,Na,Ca等の不純物を高除去率で取り除くことが
できる。
From the above points, the present inventors should simultaneously utilize the insolubilizing effect of Si, Al, P, etc. by pH adjustment and the coprecipitation / adsorption effect using iron oxide hydroxide and ferric hydroxide as a carrier. , And further, Na, Ca, B, etc. are efficiently left in the liquid side by the method of leaving Si, Al, P,
Impurities such as B, Na and Ca can be removed at a high removal rate.

【0029】以下に本発明のフローの一例を図1に基づ
いて説明する。原料塩化第一鉄水溶液を還元(pH調
整)装置1に導入し、鉄あるいは鉄化合物(例としてス
クラップ片)を加えて、遊離塩酸を中和してpH2〜4
とした後、溶液のみをバッファータンク2を経由して酸
化装置3に送液する。
An example of the flow of the present invention will be described below with reference to FIG. The raw material ferrous chloride aqueous solution is introduced into the reduction (pH adjustment) device 1, and iron or an iron compound (for example, scrap pieces) is added to neutralize free hydrochloric acid to pH 2 to 4.
After that, only the solution is sent to the oxidizer 3 via the buffer tank 2.

【0030】次に酸化装置3において酸素または酸素含
有気体(例として空気)を液中に分散させることに並行
して、アルカリによりpHを2〜5の範囲で維持あるい
はコントロールすることで含水酸化鉄および水酸化第二
鉄の沈降を生成させる。Si,Al,P等の不純物を共
沈・吸着した含水酸化鉄および水酸化第二鉄の沈澱はア
ニオン性高分子凝集剤(片山化学製、ミラクルフロフラ
ン EA−50)で凝集させ、シックナー4で濃縮後、
脱水分離してケーキとして系外へ排出する。一方、シッ
クナーからは塩化第一鉄水溶液を得る。酸化槽5にて酸
化剤を加え、塩化第二鉄溶液とする。中和槽6にて、そ
の塩化鉄溶液にアルカリを加えて中和(pH3〜4)
し、水酸化鉄の沈澱を生成させる。水酸化鉄を分離機7
にて分離し、Ca,Na,B等の残留した中和液は排水
する。分離した後の水酸化鉄を、溶解槽8にて塩酸で溶
解し、精製塩化鉄溶液とする。
Next, in the oxidizing apparatus 3, in parallel with dispersing oxygen or an oxygen-containing gas (eg, air) in the liquid, the pH is maintained or controlled in the range of 2 to 5 by alkali, and the iron oxide hydroxide is obtained. And producing a sedimentation of ferric hydroxide. The precipitates of hydrous iron oxide and ferric hydroxide co-precipitated and adsorbed impurities such as Si, Al and P are aggregated with an anionic polymer flocculant (Miracle Furofuran EA-50 manufactured by Katayama Chemical Co., Ltd.) and thickener 4 After concentrating with
It is dehydrated and separated and discharged as a cake out of the system. On the other hand, an aqueous ferrous chloride solution is obtained from the thickener. An oxidizing agent is added in the oxidizing tank 5 to prepare a ferric chloride solution. Neutralize by adding alkali to the iron chloride solution in the neutralization tank 6 (pH 3-4)
Form a precipitate of iron hydroxide. Iron hydroxide separator 7
The separated neutralization liquid such as Ca, Na and B is drained. The separated iron hydroxide is dissolved in hydrochloric acid in the dissolution tank 8 to obtain a purified iron chloride solution.

【0031】[0031]

【実施例】以下に本発明を実施例に基づき具体的に説明
する。
EXAMPLES The present invention will be specifically described below based on examples.

【0032】(実施例)鋼板酸洗廃液を原料として、ス
クラップ(製鉄所内発生の冷延鋼板スクラップ片)を論
理消費量の5倍以上を充填したバッチ式の溶解槽内で温
度90℃、2.5時間攪拌して、原料中の遊離塩酸を中
和するとともに、Fe3+をFe2+に還元してpHを2.
7に調整した。
(Example) Using a steel plate pickling waste liquid as a raw material, a temperature (90 ° C.) was set in a batch type melting tank in which scrap (cold rolled steel plate scrap pieces generated in a steelworks) was filled at 5 times or more of the theoretical consumption amount. The mixture was stirred for 5 hours to neutralize free hydrochloric acid in the raw material and reduce Fe 3+ to Fe 2+ to adjust the pH to 2.
Adjusted to 7.

【0033】次に液をスクラップ材と分離した後、酸化
槽内で液温を70〜80℃に保ちながら1時間の間、1
分間に液体積と同量の空気を液中に分散させた。同時に
アンモニア水を添加し、空気酸化によるpH低下を防止
あるいは任意のpH値にコントロールして溶液中のFe
分の2〜4%を沈澱として析出するようにした。
Next, after the liquid is separated from the scrap material, the liquid temperature is kept at 70 to 80 ° C. in the oxidation tank for 1 hour during 1 hour.
The same amount of air as the liquid volume was dispersed in the liquid per minute. At the same time, ammonia water is added to prevent the pH from decreasing due to air oxidation or to control the pH to an arbitrary value so that Fe in the solution
2 to 4% of the fraction was allowed to precipitate as a precipitate.

【0034】さらにアニオン性高分子凝集剤(片山化学
製、ミラクルフロフラン EA−50)を攪拌添加後、
静置・沈降分離し、塩化第一鉄溶液を得た。その溶液に
酸化剤(過酸化水素)を添加し、Fe全量をFe3+に酸
化した。その溶液にアンモニア水をpH4になるまで添
加し、水酸化鉄沈澱を生成させた。沈澱を濾過分離後、
塩酸に溶解し塩化鉄溶液を得た。表1に結果として、そ
の液処理条件と処理後の不純物濃度(代表してSi
2 ,P,Al,Ca,Na,B)を示す(不純物濃度
は酸化鉄中濃度に換算してある)。 発明例1 エア酸化時pH2.5、中和時pH4 発明例2 エア酸化時pH3.5、中和時pH4
Further, an anionic polymer flocculant (Miracle Furofuran EA-50, manufactured by Katayama Chemical Co., Ltd.) was added with stirring, and then,
The solution was left standing and separated by sedimentation to obtain a ferrous chloride solution. An oxidizing agent (hydrogen peroxide) was added to the solution to oxidize all Fe to Fe 3+ . Aqueous ammonia was added to the solution until pH 4 was reached to form an iron hydroxide precipitate. After separating the precipitate by filtration,
It was dissolved in hydrochloric acid to obtain an iron chloride solution. As a result, Table 1 shows the liquid treatment conditions and the impurity concentration after the treatment (typically Si
O 2 , P, Al, Ca, Na, B) (impurity concentration is converted to iron oxide concentration). Invention Example 1 pH 2.5 during air oxidation, pH 4 during neutralization Invention Example 2 pH 3.5 during air oxidation, pH 4 during neutralization

【0035】表中の比較例としては、鋼板酸洗の塩化鉄
溶液(元試料)および、スクラップpH調整の後、pH
保持酸化を行った例(すなわち、強制酸化+中和工程の
第2段階のない例)を示す。 比較例1 元試料 比較例2 エア酸化時pH2.5、後処理なし 比較例3 エア酸化時pH3.5、後処理なし
As comparative examples in the table, iron chloride solution (original sample) for pickling steel sheets and pH after scrap pH adjustment
An example of carrying out retentive oxidation (that is, an example without the second stage of the forced oxidation + neutralization step) is shown. Comparative Example 1 Original Sample Comparative Example 2 pH 2.5 at Air Oxidation, No Post Treatment Comparative Example 3 pH 3.5 at Air Oxidation, No Post Treatment

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【発明の効果】本発明では2段階で廃酸液を処理するこ
とにより、同液の処理の制御が可能となり、また同液中
の不純物(Si,Al,Cr,Cu,Ti,Na,C
a,B等)を除去でき、フェライト製造用の高度に精製
された塩化鉄溶液を調製することができる。
According to the present invention, by treating the waste acid solution in two steps, it becomes possible to control the treatment of the solution, and the impurities (Si, Al, Cr, Cu, Ti, Na, C) in the solution can be controlled.
a, B, etc.) can be removed, and a highly purified iron chloride solution for ferrite production can be prepared.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明方法のフローチャートを示す図であ
る。
FIG. 1 shows a flow chart of the method of the present invention.

【符号の説明】[Explanation of symbols]

1 還元装置 2 バッファー 3 酸化装置 4 シックナー 5 酸化槽 6 中和槽 7 脱水分離機 8 溶解槽 1 Reduction Device 2 Buffer 3 Oxidation Device 4 Thickener 5 Oxidation Tank 6 Neutralization Tank 7 Dehydration Separator 8 Dissolution Tank

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鋼材酸洗廃液より高純度の酸化鉄を製造す
るための酸洗廃液の精製方法において、塩化鉄溶液であ
る酸洗廃酸に鉄または鉄化合物を接触させ遊離塩酸を中
和してpHを2〜4に調整した後、酸素もしくは酸素含
有気体と接触させながらpHを2〜5となるようにアル
カリ処理により調整することで溶液中の鉄(Fe)分
0.5〜15%を鉄を主成分とする沈澱物として生成さ
せ、該沈澱物を分離し、精製塩化第一鉄水溶液とし、そ
の後、酸化剤にて塩化第一鉄を塩化第二鉄に酸化し、さ
らにアルカリを用いて中和して塩化第二鉄沈澱を得、当
該沈澱を塩酸にて溶解し精製塩化鉄溶液を得る塩化鉄溶
液の精製方法。
1. A method for purifying a pickling waste liquid for producing iron oxide of higher purity than a steel pickling waste liquid, wherein iron or an iron compound is contacted with a pickling waste acid which is an iron chloride solution to neutralize free hydrochloric acid. After adjusting the pH to 2 to 4 and adjusting the pH to 2 to 5 by contacting with oxygen or oxygen-containing gas by alkali treatment, the iron (Fe) content in the solution is 0.5 to 15 % As a precipitate containing iron as a main component, the precipitate is separated and made into a purified ferrous chloride aqueous solution, and then ferrous chloride is oxidized to ferric chloride with an oxidizing agent, and further alkali A method for purifying a ferric chloride solution, which comprises neutralizing with iron to obtain a ferric chloride precipitate, and dissolving the precipitate with hydrochloric acid to obtain a purified iron chloride solution.
JP31326193A 1993-12-14 1993-12-14 Purification method of iron chloride solution Expired - Fee Related JP3188573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31326193A JP3188573B2 (en) 1993-12-14 1993-12-14 Purification method of iron chloride solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31326193A JP3188573B2 (en) 1993-12-14 1993-12-14 Purification method of iron chloride solution

Publications (2)

Publication Number Publication Date
JPH07165427A true JPH07165427A (en) 1995-06-27
JP3188573B2 JP3188573B2 (en) 2001-07-16

Family

ID=18039081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31326193A Expired - Fee Related JP3188573B2 (en) 1993-12-14 1993-12-14 Purification method of iron chloride solution

Country Status (1)

Country Link
JP (1) JP3188573B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990050174A (en) * 1997-12-16 1999-07-05 이구택 How to Clean Pickling Wastes
JP2001354426A (en) * 2000-06-07 2001-12-25 Toagosei Co Ltd Method for manufacturing high purity ferric chloride aqueous solution
JP2003019484A (en) * 2001-07-06 2003-01-21 Tsukishima Kikai Co Ltd Waste water treatment method for reducing chlorine content in treated sludge

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101541356B1 (en) 2015-01-08 2015-08-03 동진프로텍 주식회사 Exercise equipment for toe blow
KR102438429B1 (en) * 2020-12-21 2022-08-30 서울시립대학교 산학협력단 Self-centering connection system of modular unit column base

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990050174A (en) * 1997-12-16 1999-07-05 이구택 How to Clean Pickling Wastes
JP2001354426A (en) * 2000-06-07 2001-12-25 Toagosei Co Ltd Method for manufacturing high purity ferric chloride aqueous solution
JP2003019484A (en) * 2001-07-06 2003-01-21 Tsukishima Kikai Co Ltd Waste water treatment method for reducing chlorine content in treated sludge

Also Published As

Publication number Publication date
JP3188573B2 (en) 2001-07-16

Similar Documents

Publication Publication Date Title
CN106191463B (en) A kind of purification method of zinc hydrometallurgy leachate
US4241039A (en) Method of removal of arsenic from a sulfuric acid solution
CN113195412A (en) Pure iron-containing compound
JPS63502890A (en) Production of ultra-pure silver nitrate
JP3188573B2 (en) Purification method of iron chloride solution
JPH01153532A (en) Purification of ferrous ion-containing solution
JP4231934B2 (en) How to remove selenium in wastewater
CN100351181C (en) Method of preparing high purity iron oxide for soft magnet using titanium white by product ferrous sulphate
JPS61261446A (en) Method for recovering zn from zn containing material
JP4448286B2 (en) Manufacturing method of iron oxide for ferrite raw material
JP4507267B2 (en) Water treatment method
JP2953863B2 (en) Production method of iron oxide for ferrite raw material
JP3549560B2 (en) Method for recovering valuable metals and calcium fluoride from waste solution of pickling process
US3549321A (en) Removal of iron from solution
US2718455A (en) Process for producing basic iron sulfate
JPH035324A (en) Production of iron oxide for rerrite material
JP3824709B2 (en) Manufacturing method of high purity iron oxide powder
KR0119001B1 (en) Process for iron chloride utilizing the ferrite iron oxide
JP4279022B2 (en) Manufacturing method of high purity iron oxide powder
KR100328064B1 (en) Acid pickling wastewater purification method
JPH085676B2 (en) A method of recovering high-purity iron sulfate from the sulfuric acid pickling waste liquid of stainless steel
JPS61261447A (en) Method for recovering high-purity zinc sulfate from zinc-containing dust
CN115896474A (en) Leaching process of zinc roasted ore
JPH0264025A (en) Purification of aqueous solution of ferrous sulfate
JPH0615412B2 (en) Method for removing silicon in hydrochloric acid pickling waste liquid of steel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010424

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees