JPH0716477A - Regenerating method for condenser cleaning system ion exchange resin - Google Patents

Regenerating method for condenser cleaning system ion exchange resin

Info

Publication number
JPH0716477A
JPH0716477A JP5150111A JP15011193A JPH0716477A JP H0716477 A JPH0716477 A JP H0716477A JP 5150111 A JP5150111 A JP 5150111A JP 15011193 A JP15011193 A JP 15011193A JP H0716477 A JPH0716477 A JP H0716477A
Authority
JP
Japan
Prior art keywords
exchange resin
regenerant
resin
ion exchange
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5150111A
Other languages
Japanese (ja)
Inventor
Tomotaka Nakamura
友隆 中村
Noboru Miura
襄 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5150111A priority Critical patent/JPH0716477A/en
Publication of JPH0716477A publication Critical patent/JPH0716477A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To remarkably lessen the generated amount of a radioactive solid waste product compared with a conventional method by using an org. acid for a cation exchange resin and an org. base for an anion exchange resin as each regenerant and subjecting the spent regenerant to decomposition treatment. CONSTITUTION:The ion exchange resin which has been to the condenser cleaning of a nuclear power plant and is captured a radioactive corrosion product and the impurities of other ion component, has brought into contact with the regeneant to separate the impurities and to regenerate the resin. At that time, each aq. soln. of org. acid (e.g. oxalic acid) and org. base (e.g. tetramethyl- ammonium hydroxide) is used as the regenerant for the cation exchange resin and the anion exchange resin. The spent regenerant generating by the regeneration is subjected to a decomposition treatment with electrolysis equipment 16. In such a way, the radioactive corrosion product and the impurities of dissolved ions captured by the ion exchange resin are separated efficiently to regenerate the resin, and the generated amount of the radioactive solid waste product is lessened remarkably compared with the conventional method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子力発電プラントの
復水浄化系の脱塩装置に装荷され腐食生成物やイオン成
分を捕捉したイオン交換樹脂から、これらの不純物を除
去してイオン交換能力等を回復するためのイオン交換樹
脂の再生方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to an ion exchange capacity by removing these impurities from an ion exchange resin loaded in a demineralizer for a condensate purification system of a nuclear power plant and trapping corrosion products and ionic components. The present invention relates to a method for regenerating an ion exchange resin for recovering the like.

【0002】[0002]

【従来の技術】原子力発電プラントの復水脱塩装置には
イオン交換樹脂が使用されるが、復水器上流で発生した
鉄,コバルトなどの放射性腐食生成物やその他の溶存イ
オンを捕捉するに伴いイオン交換能力が低下する。そこ
で定期的に樹脂からこれらを除去し、イオン交換能力を
回復するための再生が実施される。従来から、H型強酸
性陽イオン交換樹脂に対しては硫酸を、OH型強塩基性
陰イオン交換樹脂に対しては水酸化ナトリウムを樹脂層
に通液することで樹脂の再生を達成している。また、
「原子力プラントの水化学管理と基盤技術」(社団法人
日本原子力学会発行、1991年)P34には、硫酸を
陽イオン樹脂層に16時間程度浸漬させることで樹脂の
ミクロポア内部に浸入した鉄を効果的に除去できた結
果、陽イオン樹脂に要求される復水からの除鉄性能の向
上が達成できたことが示されている。
2. Description of the Related Art Ion exchange resins are used in condensate demineralizers for nuclear power plants, but they are used to capture radioactive corrosion products such as iron and cobalt generated upstream of the condenser and other dissolved ions. Along with this, the ion exchange capacity decreases. Therefore, they are periodically removed from the resin and regeneration is carried out to restore the ion exchange capacity. Conventionally, regeneration of the resin has been achieved by passing sulfuric acid for the H-type strongly acidic cation exchange resin and sodium hydroxide for the OH-type strongly basic anion exchange resin through the resin layer. There is. Also,
"Water Chemistry Management and Basic Technology for Nuclear Power Plants"
In Japan, Atomic Energy Society, 1991) P34 is required to be a cation resin as a result of being able to effectively remove iron that has penetrated inside the resin micropores by immersing sulfuric acid in the cation resin layer for about 16 hours. It is shown that the improvement of the iron removal performance from the condensate was achieved.

【0003】[0003]

【発明が解決しようとする課題】上記の従来技術では、
硫酸ナトリウムを主成分とする放射性溶液が再生廃液と
して発生していた。これは例えば、濃縮後に乾燥処理し
て水分を除去し、最終的に硫酸ナトリウム粉体または造
粒体の放射性固体廃棄物として保管されており、今後、
セメントなどの固型化剤で固化された後に浅地中処分さ
れるものである。この方法では、硫酸ナトリウムはそれ
以上分解できない塩であることから再生廃液の濃縮減容
率には限界があり、固体廃棄物は発電所から発生する全
放射性固体廃棄物の中でも大きな割合を占めるものにな
っている。
SUMMARY OF THE INVENTION In the above prior art,
A radioactive solution containing sodium sulfate as a main component was generated as a waste liquid for regeneration. For example, it is dried after concentration to remove water, and finally stored as radioactive solid waste of sodium sulfate powder or granules.
After being solidified with a solidifying agent such as cement, it is disposed in the shallow ground. In this method, sodium sulfate is a salt that cannot be further decomposed, so there is a limit to the concentration and volume reduction rate of recycled waste liquid, and solid waste accounts for a large proportion of all radioactive solid waste generated from power plants. It has become.

【0004】本発明の目的は、イオン交換樹脂が捕捉し
た放射性腐食生成物や溶存イオンの不純物を効率良く分
離して樹脂の再生をし、放射性固体廃棄物の発生量が従
来法に比べ著しく少なくなる復水浄化系イオン交換樹脂
の再生方法を提供することにある。
The object of the present invention is to efficiently separate the radioactive corrosion products captured by the ion exchange resin and impurities of dissolved ions to regenerate the resin, so that the amount of radioactive solid waste generated is significantly smaller than that of the conventional method. Another object of the present invention is to provide a method for regenerating a condensate purification system ion exchange resin.

【0005】[0005]

【課題を解決するための手段】上記の目的は、陽イオン
交換樹脂に対して有機酸を、陰イオン交換樹脂に対して
有機塩基を、それぞれの再生剤として使用し、使用後の
再生剤成分を分解処理することにより達成される。
The above object is to use an organic acid as a regenerant for the cation exchange resin and an organic base for the anion exchange resin as a regenerant component. It is achieved by decomposing.

【0006】[0006]

【作用】原子力発電プラントの復水中には材料の腐食生
成物である放射性の鉄やコバルト並びに潜在的にナトリ
ウムイオンや塩素イオン,硫酸イオンなどの陽・陰イオ
ンが存在する。復水系に設置された脱塩装置の陽・陰イ
オン交換樹脂は、その交換基(水素イオンと水酸化物イ
オン)を不純物イオンとイオン交換することで不純物を
捕捉し、これらの原子炉水への浸入を阻止する役目を担
う。復水の処理に伴いイオン交換能が低下した樹脂で
は、過剰な酸性溶液と塩基性溶液を接触させることで不
純物イオンを水素イオンあるいは水酸化物イオンとイオ
ン交換させて再びH型,OH型に再生してイオン交換能
を回復する必要がある。本発明は多量の固体廃棄物を発
生する従来の硫酸水溶液と水酸化ナトリウム水溶液を用
いる方法の代わりに、気体に分解が可能な有機酸の水溶
液と有機塩基の水溶液を再生剤として用いるものであ
る。イオン交換能の回復効果は、再生剤が強酸,強塩基
であることが望ましく、本発明では陰イオン交換樹脂の
再生剤として水酸化ナトリウムと同等な塩基度を有する
水酸化テトラメチルアンモニウム(N(CH3)4OH)が最
適である。一方、陽イオン交換樹脂ではコバルトイオン
等のイオン交換基に捕捉されたイオンの他、樹脂表面に
吸着した鉄クラッド(Fe23)が樹脂表面での溶解に
伴い樹脂内部のミクロポアに浸入した鉄イオンを効率良
く除去することが望まれるため、従来の硫酸イオン以上
に鉄イオンと強い錯形成力を有するシュウ酸(H2
24)が効果的である。すなわち、シュウ酸イオンは鉄
イオンと化1に代表されるような錯陰イオンを形成し、
イオン交換樹脂からの鉄イオン除去に効果が大きい。
[Operation] In the condensate of a nuclear power plant, radioactive iron and cobalt, which are corrosion products of materials, and potentially positive and negative ions such as sodium ion, chloride ion, and sulfate ion exist. The cation-anion exchange resin of the desalination unit installed in the condensate system captures impurities by exchanging the exchange groups (hydrogen ions and hydroxide ions) with impurity ions, and then transfers them to the reactor water. Plays a role in preventing the invasion of. For resins whose ion exchange capacity has decreased due to the treatment of condensate, by contacting an excess of acidic solution and basic solution, the impurity ions are ion-exchanged with hydrogen ions or hydroxide ions and converted to H type and OH type again. It is necessary to regenerate and restore the ion exchange capacity. The present invention uses, as a regenerant, an aqueous solution of an organic acid and an aqueous solution of an organic base which can be decomposed into gas, instead of the conventional method of using an aqueous solution of sulfuric acid and an aqueous solution of sodium hydroxide which generate a large amount of solid waste. . For the effect of recovering the ion exchange ability, it is desirable that the regenerant is a strong acid or a strong base. In the present invention, tetramethylammonium hydroxide (N (N (N CH 3) 4 OH) is optimal. On the other hand, in the cation exchange resin, in addition to ions captured by ion exchange groups such as cobalt ions, iron clad (Fe 2 O 3 ) adsorbed on the resin surface penetrated into the micropores inside the resin as it dissolved on the resin surface. Since it is desired to remove iron ions efficiently, oxalic acid (H 2 C), which has a stronger complex forming power with iron ions than conventional sulfate ions, is desired.
2 O 4 ) is effective. That is, the oxalate ion forms a complex anion represented by the chemical formula 1 with the iron ion,
Greatly effective in removing iron ions from ion exchange resins.

【0007】[0007]

【化1】 [Chemical 1]

【0008】使用済みのシュウ酸水溶液,水酸化テトラ
メチルアンモニウム水溶液を混合するとシュウ酸テトラ
メチルアンモニウム中性塩([N(CH3)4224)を
含む放射性廃液となる。この中性塩を電気分解あるいは
熱分解により二酸化炭素に分解することにより固体廃棄
物発生量を低減することが可能になる。
When the used aqueous solution of oxalic acid and the aqueous solution of tetramethylammonium hydroxide are mixed, a radioactive liquid waste containing a neutral salt of tetramethylammonium oxalate ([N (CH 3 ) 4 ] 2 C 2 O 4 ) is obtained. The amount of solid waste generated can be reduced by decomposing this neutral salt into carbon dioxide by electrolysis or thermal decomposition.

【0009】[0009]

【実施例】以下、本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0010】(実施例1)図1は本発明によるイオン交
換樹脂の再生方法とその装置の一実施例を示したもので
ある。
(Embodiment 1) FIG. 1 shows an embodiment of a method for regenerating an ion exchange resin and an apparatus therefor according to the present invention.

【0011】再生が必要となった復水系脱塩装置の陽・
陰イオン交換樹脂のそれぞれは陽イオン交換樹脂再生カ
ラム1と陰イオン交換樹脂再生カラム2に装荷される。
陽イオン交換樹脂の再生剤であるシュウ酸水溶液の調製
は、高濃度シュウ酸タンク3からのシュウ酸と純水タン
ク4からの純水の所定量の供給によりシュウ酸水溶液調
製槽5で行われる。一方、陰イオン交換樹脂の再生剤で
ある水酸化テトラメチルアンモニウムも同様に高濃度水
酸化テトラメチルアンモニウムタンク6,純水タンク7
からの供給により水酸化テトラメチルアンモニウム水溶
液調製槽8で所定濃度に調製される。ここで調製濃度は
イオン交換樹脂の不純物負荷量により決定されるもので
ある。調製された各再生剤はポンプ9,10の動作によ
りカラム1,2へ連続的に供給されカラム内で各樹脂の
再生が行われる。イオン交換能が回復し、また陽イオン
交換樹脂ミクロポア内の鉄イオンが除去された時、ポン
プ1,2の停止により再生剤の供給が終了し、三方バル
ブ11,12の操作により樹脂層の残留再生剤を除去す
るためにポンプ13,14を介して純水が各カラムに供
給される。これらの操作によりカラム層を出た廃液は再
生廃液受タンク15に集められた後、再生剤の電気分解
設備16へ送られシュウ酸テトラメチルアンモニウムの
分解処理が行われる。再生剤分解後の放射性廃液は濃縮
設備へ送られ、濃縮物が最終的な放射性廃棄物として回
収される。
The condensate demineralizer that needed to be regenerated
Each of the anion exchange resin is loaded into the cation exchange resin regeneration column 1 and the anion exchange resin regeneration column 2.
The oxalic acid aqueous solution which is a regenerant of the cation exchange resin is prepared in the oxalic acid aqueous solution preparation tank 5 by supplying a predetermined amount of oxalic acid from the high concentration oxalic acid tank 3 and pure water from the pure water tank 4. . On the other hand, tetramethylammonium hydroxide, which is a regenerant of the anion exchange resin, is also highly concentrated tetramethylammonium hydroxide tank 6, pure water tank 7
It is adjusted to a predetermined concentration in the tetramethylammonium hydroxide aqueous solution preparation tank 8 by the supply from. Here, the prepared concentration is determined by the impurity loading amount of the ion exchange resin. The prepared regenerants are continuously supplied to the columns 1 and 2 by the operation of the pumps 9 and 10 to regenerate the resins in the columns. When the ion exchange capacity is restored and iron ions in the cation exchange resin micropores are removed, the supply of the regenerant is stopped by stopping the pumps 1 and 2, and the resin layer remains by operating the three-way valves 11 and 12. Pure water is supplied to each column via pumps 13 and 14 to remove the regenerant. The waste liquid discharged from the column layer by these operations is collected in the regeneration waste liquid receiving tank 15 and then sent to the regenerant electrolysis facility 16 to decompose tetramethylammonium oxalate. The radioactive liquid waste after decomposing the regenerant is sent to the concentrating facility, and the concentrated product is collected as the final radioactive waste.

【0012】(実施例2)本実施例は使用済み再生剤の
分解方法における他の実施例を示したものである。
(Example 2) This example shows another example of the method for decomposing the used regenerant.

【0013】再生廃液受タンク15を出た再生廃液は蒸
発濃縮器17へ送られ、水分が除去される。蒸発による
濃縮残物スラリ18はシュウ酸テトラメチルアンモニウ
ム塩と再生廃液中に含まれていた放射性の鉄,コバルト
等のシュウ酸塩である。このスラリは次段の熱分解炉1
9へ供給され、約210℃に加熱される。この際、酸素
供給管20より酸素を十分に供給することで、テトラメ
チルアンモニウムの分解ガスであるトリメチルアミンを
二酸化炭素及び酸化窒素の無機ガスに酸化することがで
きる。一方のシュウ酸も同様に効率的に二酸化炭素へ分
解し、最終的には分解し得なかった熱分解残渣が最終的
な放射性固体廃棄物となる。
The recycled waste liquid discharged from the recycled waste liquid receiving tank 15 is sent to the evaporative concentrator 17 to remove water. The concentrated residue slurry 18 resulting from evaporation is tetramethylammonium oxalate and radioactive oxalates such as iron and cobalt contained in the reclaimed waste liquid. This slurry is the next thermal decomposition furnace 1
9 and heated to about 210 ° C. At this time, by sufficiently supplying oxygen from the oxygen supply pipe 20, trimethylamine, which is a decomposition gas of tetramethylammonium, can be oxidized into an inorganic gas of carbon dioxide and nitrogen oxide. Similarly, oxalic acid is also efficiently decomposed into carbon dioxide, and the pyrolysis residue that cannot be decomposed finally becomes the final radioactive solid waste.

【0014】本実施例によれば、従来の硫酸と水酸化ナ
トリウムを再生剤に用いる方法に対し、放射性固体廃棄
物の発生量を一桁以上低減できる。
According to this embodiment, the amount of radioactive solid waste generated can be reduced by one digit or more as compared with the conventional method using sulfuric acid and sodium hydroxide as the regenerant.

【0015】[0015]

【発明の効果】本発明によれば、原子力発電プラントの
復水浄化に使用されたイオン交換樹脂の再生剤を分解処
理できるので、従来の硫酸と水酸化ナトリウムを再生剤
に用いる方法に対し、放射性固体廃棄物の発生量を大幅
に低減できる。
According to the present invention, since the regenerant of the ion exchange resin used for condensate purification of a nuclear power plant can be decomposed, the conventional method using sulfuric acid and sodium hydroxide as the regenerant is The amount of radioactive solid waste generated can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す装置の系統図。FIG. 1 is a systematic diagram of an apparatus showing an embodiment of the present invention.

【図2】再生剤の分解処理装置の説明図。FIG. 2 is an explanatory view of a decomposition treatment device for a regenerant.

【符号の説明】[Explanation of symbols]

1…陽イオン交換樹脂再生カラム、2…陰イオン交換樹
脂再生カラム、3…高濃度シュウ酸タンク、4,7…純
水タンク、5…シュウ酸水溶液調製槽、6…高濃度水酸
化テトラメチルアンモニウムタンク、8…水酸化テトラ
メチルアンモニウム水溶液調製槽、9,10,13,1
4…ポンプ、11,12…三方バルブ、15…再生廃液
受タンク、16…再生剤の電気分解設備。
1 ... Cation exchange resin regeneration column, 2 ... Anion exchange resin regeneration column, 3 ... High concentration oxalic acid tank, 4, 7 ... Pure water tank, 5 ... Oxalic acid aqueous solution preparation tank, 6 ... High concentration tetramethyl hydroxide Ammonium tank, 8 ... Tetramethylammonium hydroxide aqueous solution preparation tank, 9, 10, 13, 1
4 ... Pump, 11, 12 ... Three-way valve, 15 ... Regenerated waste liquid receiving tank, 16 ... Electrolyzer for regenerant.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】原子力発電プラントの復水浄化に使用され
放射性腐食生成物や他のイオン成分の不純物を捕捉した
イオン交換樹脂を再生剤と接触させることで不純物を分
離し、樹脂を再生する方法において、有機酸と有機塩基
の水溶液のそれぞれを陽イオン交換樹脂と陰イオン交換
樹脂の再生剤として使用することを特徴とする復水浄化
系イオン交換樹脂の再生方法。
1. A method of regenerating a resin by contacting an ion exchange resin, which is used for condensate water purification of a nuclear power plant and has captured radioactive corrosion products and impurities of other ionic components, with a regenerant to separate the impurities and regenerate the resin. 2. A method for regenerating a condensate purifying system ion-exchange resin, wherein an aqueous solution of an organic acid and an organic base is used as a regenerant for a cation-exchange resin and an anion-exchange resin.
【請求項2】請求項1記載の再生により発生する使用済
み再生剤を分解処理する復水系イオン交換樹脂の再生方
法。
2. A method for regenerating a condensate-based ion exchange resin, which comprises decomposing a used regenerant generated by the regeneration according to claim 1.
【請求項3】請求項1に記載の前記有機酸がシュウ酸
で、前記有機塩基が水酸化テトラメチルアンモニウムで
ある復水浄化系イオン交換樹脂の再生方法。
3. A method for regenerating a condensate purifying system ion exchange resin according to claim 1, wherein the organic acid is oxalic acid and the organic base is tetramethylammonium hydroxide.
JP5150111A 1993-06-22 1993-06-22 Regenerating method for condenser cleaning system ion exchange resin Pending JPH0716477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5150111A JPH0716477A (en) 1993-06-22 1993-06-22 Regenerating method for condenser cleaning system ion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5150111A JPH0716477A (en) 1993-06-22 1993-06-22 Regenerating method for condenser cleaning system ion exchange resin

Publications (1)

Publication Number Publication Date
JPH0716477A true JPH0716477A (en) 1995-01-20

Family

ID=15489733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5150111A Pending JPH0716477A (en) 1993-06-22 1993-06-22 Regenerating method for condenser cleaning system ion exchange resin

Country Status (1)

Country Link
JP (1) JPH0716477A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022135731A1 (en) * 2020-12-24 2022-06-30 Framatome Gmbh Mineralization of organic compounds with boron-doped-diamond electrode during radionuclides stripping process
CN115069313A (en) * 2022-06-30 2022-09-20 金川集团股份有限公司 Ion exchange column desorption regeneration process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022135731A1 (en) * 2020-12-24 2022-06-30 Framatome Gmbh Mineralization of organic compounds with boron-doped-diamond electrode during radionuclides stripping process
CN115069313A (en) * 2022-06-30 2022-09-20 金川集团股份有限公司 Ion exchange column desorption regeneration process

Similar Documents

Publication Publication Date Title
JP4936505B2 (en) Method and apparatus for treating ammonia-containing water
EP3221048B1 (en) Method and apparatus for the recovery of radioactive nuclides from spent resin materials
JP2735232B2 (en) Liquid treatment method
JP2001215294A (en) Condensate demineralizer
JPH0716477A (en) Regenerating method for condenser cleaning system ion exchange resin
JP4619955B2 (en) Uranium waste treatment method
JP4311811B2 (en) Treatment method of radioactive liquid waste
KR100764904B1 (en) METHOD FOR RECOVERING OF THE SPENT ION EXCHANGE MATERIALS SELECTIVE FOR THE Cs AND Sr ION SORPTION
JP7247343B2 (en) Method for conditioning ion exchange resin and apparatus for carrying it out
JPH07232915A (en) Method for recovering fluorine in waste water
JP3714076B2 (en) Fluorine-containing wastewater treatment apparatus and treatment method
JP3519112B2 (en) Method and apparatus for treating liquid to be treated such as waste liquid containing ammonia compound
JP2003315496A (en) Method for regenerating ion-exchange resin and method for refining regenerant used for it
JP2002126543A (en) Processing method of ion-containing water
JPS61155898A (en) Treater for regenerated waste liquor of ion exchnage resin
JPH07209489A (en) Radioactive waste solution disposing device
JP2019203832A (en) Radioactive waste liquid processing system
JPS62130396A (en) Method of removing oxide film containing radioactive substance
KR102360529B1 (en) Method for decontaminating oxide layer
JP3364308B2 (en) Wastewater treatment method and apparatus
JPS603593A (en) Method of electrolytically decontaminating radioactive metallic waste
JPS59136141A (en) Regenerating method of ion exchange resin for condensate desalting device
JP2002159867A (en) Method for regenerating anion-exchange resin
JPS61234951A (en) Regenerating method for anion exchange resin in mixed bed type condensate desalting method
JP3709645B2 (en) Regeneration method of condensate demineralizer