JPH07161811A - Method of forming semiconductor thin film - Google Patents

Method of forming semiconductor thin film

Info

Publication number
JPH07161811A
JPH07161811A JP31097693A JP31097693A JPH07161811A JP H07161811 A JPH07161811 A JP H07161811A JP 31097693 A JP31097693 A JP 31097693A JP 31097693 A JP31097693 A JP 31097693A JP H07161811 A JPH07161811 A JP H07161811A
Authority
JP
Japan
Prior art keywords
substrate
film
thin film
semiconductor thin
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31097693A
Other languages
Japanese (ja)
Inventor
Naoki Nagashima
直樹 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP31097693A priority Critical patent/JPH07161811A/en
Publication of JPH07161811A publication Critical patent/JPH07161811A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PURPOSE:To form a semiconductor integrated circuit whose integration degree is high without undergoing restriction due to the minimum line width of lithography. CONSTITUTION:A silicon oxide film 14 and a polycrystal silicon film 15 are formed on the surface of a silicon substrate 11 on which a recessed part 11A has been formed. The polycrystal silicon film 15 is left only inside the recessed part 11A. After that, silicon oxide films 17, 18 and the like are formed. A silicon substrate 20 is pasted via a polycrystal silicon film 19. The back of the silicon substrate 11 is ground and polished, to exposure the polycrystal silicon film 15. Thereby, the polycrystal silicon film 15 and the silicon substrate 11 can be separated by the silicon oxide film 14 which is narrower than the minimum line width of lithography.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体薄膜の形成方
法に関し、例えばSOI(silicon−on−in
sulator)半導体装置の製造分野で利用すること
ができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a semiconductor thin film, for example, SOI (silicon-on-in).
It can be used in the field of manufacturing semiconductor devices.

【0002】[0002]

【従来の技術】近年、超LSI(二次元LSI)の集積
度は、年々飛躍的に向上している。しかし基本素子がサ
ブミクロン,ハーフミクロンレベルの大きさになってか
ら、素子の微細化は次第に困難になりつつあり、二次元
LSIの限界が見え始めている。この二次元LSIを絶
縁膜を介して何層も積層化した三次元半導体装置(三次
元LSI)は、二次LSIに対して高密度であるのみな
らず、高速,多機能,信号の並列処理など二次元LSI
にない特徴をもったものとして開発が行われている。こ
のような三次元LSIを製造するためには、絶縁膜上に
単結晶シリコン薄膜を形成するSOI技術が不可欠であ
る。
2. Description of the Related Art In recent years, the degree of integration of VLSIs (two-dimensional LSIs) has dramatically improved year by year. However, since the size of the basic element has become submicron or half-micron, it is becoming difficult to miniaturize the element, and the limit of the two-dimensional LSI is beginning to be seen. A three-dimensional semiconductor device (three-dimensional LSI) in which multiple layers of this two-dimensional LSI are laminated with an insulating film is not only high in density with the secondary LSI but also high-speed, multi-functional, and parallel processing of signals. 2D LSI
It is being developed as a product with features not found in. In order to manufacture such a three-dimensional LSI, the SOI technique of forming a single crystal silicon thin film on an insulating film is indispensable.

【0003】従来、この種のSOI技術としては、第1
と第2の半導体基板を貼り合わせ、第1の半導体基板か
らなるSOI半導体薄膜に素子を形成する方法が知られ
ている。この方法は、SOI半導体薄膜の両面側に素子
を形成できるという利点のため様々な応用が期待できる
方法である。
Conventionally, this type of SOI technology is the first
There is known a method in which an element is formed on an SOI semiconductor thin film made of the first semiconductor substrate by bonding the first semiconductor substrate and the second semiconductor substrate together. This method is a method that can be expected to have various applications because of the advantage that elements can be formed on both sides of the SOI semiconductor thin film.

【0004】図6(A)〜図7(B)は、従来のSOI
半導体薄膜の具体的な形成方法を工程順に示した要部断
面図である。従来方法では、まず、図6(A)に示すよ
うに、第1の半導体基板1にレジスト2を塗布した後、
フォトリソグラフィー技術にてレジスト2を素子形成領
域1A上にパターニングする。そして、このレジスト2
をマスクとして、第1の半導体基板1を例えば100n
m程度異方性エッチングする。次に、レジスト2を剥離
した後、図6(B)に示すように、凹凸部が形成された
第1の半導体基板1の表面に熱酸化を施しシリコン酸化
膜3を形成する。さらに、このシリコン酸化膜3上に、
図6(C)に示すように、CVD法によるシリコン酸化
膜4を例えば100nm〜1000nmの厚さに堆積さ
せる。次に、図7(A)に示すように、多結晶シリコン
膜5をCVD法により形成し、その多結晶シリコン膜5
の表面を研磨して平坦な貼り合せ面とする。なお、図7
(A)は多結晶シリコン膜5の研磨後の状態を示す。
FIGS. 6A to 7B show a conventional SOI.
FIG. 6 is a sectional view of a key portion, showing a specific method of forming a semiconductor thin film in the order of steps. In the conventional method, first, as shown in FIG. 6A, after applying the resist 2 to the first semiconductor substrate 1,
The resist 2 is patterned on the element formation region 1A by a photolithography technique. And this resist 2
The first semiconductor substrate 1 is, for example, 100 n
Anisotropically etch about m. Next, after removing the resist 2, as shown in FIG. 6B, the surface of the first semiconductor substrate 1 on which the uneven portion is formed is subjected to thermal oxidation to form a silicon oxide film 3. Furthermore, on this silicon oxide film 3,
As shown in FIG. 6C, a silicon oxide film 4 is deposited by the CVD method to have a thickness of 100 nm to 1000 nm, for example. Next, as shown in FIG. 7A, a polycrystalline silicon film 5 is formed by a CVD method, and the polycrystalline silicon film 5 is formed.
The surface of is polished to form a flat bonding surface. Note that FIG.
(A) shows a state after polishing the polycrystalline silicon film 5.

【0005】次に、多結晶シリコン膜5に第2の半導体
基板6の表面を貼り合わせ、図7(B)に示すように、
第1の半導体基板1を裏面から研削して薄膜化する。こ
の際、第1の半導体基板1の裏面を素子分離領域のシリ
コン酸化膜3をストッパとして研磨することにより、図
7(B)に示すようなSOI層1Cが形成される。ここ
で、研磨は研磨液を使用しながらの、謂わば化学的研磨
を併用した物理的研磨により行う。このとき、図7
(B)に示したようにSOI層1Cは、図6(A)に示
した工程で形成された凹部の幅に応じた素子分離領域1
Bによって、隣接するSOI層1Cと分離される。この
ようにして形成されたSOI層1Cには、周知の方法で
各種の半導体素子を形成することができる。
Next, the surface of the second semiconductor substrate 6 is attached to the polycrystalline silicon film 5, and as shown in FIG.
The first semiconductor substrate 1 is ground from the back surface to form a thin film. At this time, the back surface of the first semiconductor substrate 1 is polished using the silicon oxide film 3 in the element isolation region as a stopper to form an SOI layer 1C as shown in FIG. 7B. Here, the polishing is carried out by physical polishing while using a polishing liquid, that is, so-called chemical polishing. At this time,
As shown in FIG. 6B, the SOI layer 1C has the element isolation region 1 corresponding to the width of the recess formed in the step shown in FIG.
B separates it from the adjacent SOI layer 1C. Various semiconductor elements can be formed on the SOI layer 1C thus formed by a known method.

【0006】[0006]

【発明が解決しようとする課題】上記SOI半導体薄膜
の形成方法により、膜厚の制御性の良好な単結晶薄膜が
形成できるものの、素子分離領域1Bの幅は、露光光,
露光装置,レジストの種類及びその特性等の要素から成
り立つリソグラフィーの性能によってその最小線幅は制
限される。即ち、この最小線幅より狭い素子分離領域1
Bを形成することができず、集積回路の集積度を上げら
れないなどの問題がある。
Although a single crystal thin film having good film thickness controllability can be formed by the above method of forming an SOI semiconductor thin film, the width of the element isolation region 1B is not limited to exposure light,
The minimum line width is limited by the lithography performance, which consists of factors such as exposure equipment, type of resist and its characteristics. That is, the element isolation region 1 narrower than this minimum line width
There is a problem that B cannot be formed and the degree of integration of the integrated circuit cannot be increased.

【0007】近年までULSIの集積度の向上を支えて
きたフォトリソグラフィー技術は、現在曲がり角に差し
かかっている。これは、主に要求されるULSIの最小
寸法が、露光に用いている光の波長と同等になってきた
ことによる。例えば、開発が進められている64MDR
AMでは、i線(波長:0.365μm)が露光光とし
て用いられる可能性が高いが、ここでの最小寸法は0.
35〜0.4μmが主なパターンルールである。因みに
4MDRAM,16MDRAMでもi線が用いられてき
たが、最小寸法は夫々0.8μm,0.5〜0.6μm
と露光光の波長より大きかった。そこで、最小寸法を小
さくしようとすれば、露光光の波長を短くすれば良いこ
とになる。しかし、現実には短波長化には様々な問題が
あり、簡単には実現ができない。
The photolithography technology, which has been supporting the improvement in the integration degree of ULSI until recently, is now approaching a corner. This is mainly because the minimum size of ULSI required has become equivalent to the wavelength of light used for exposure. For example, 64MDR under development
In AM, i-line (wavelength: 0.365 μm) is likely to be used as exposure light, but the minimum dimension here is 0.
The main pattern rule is 35 to 0.4 μm. By the way, the i-line has been used in 4M DRAM and 16M DRAM, but the minimum dimensions are 0.8 μm and 0.5 to 0.6 μm, respectively.
And was larger than the wavelength of the exposure light. Therefore, in order to reduce the minimum dimension, the wavelength of the exposure light should be shortened. However, in reality, there are various problems in shortening the wavelength, which cannot be easily realized.

【0008】この発明が解決しようとする課題は、リソ
グラフィーにより形成されるレジストパターンの最小線
幅によって制限を受けずに半導体集積回路の集積度を高
めることの可能な半導体薄膜の形成方法を得るには、ど
のような手段を講じればよいかという点にある。
The problem to be solved by the present invention is to obtain a method for forming a semiconductor thin film capable of increasing the degree of integration of a semiconductor integrated circuit without being limited by the minimum line width of a resist pattern formed by lithography. The question is what kind of measures should be taken.

【0009】[0009]

【課題を解決するための手段】この出願の請求項1記載
の発明は、第1基板の表面に凹部を形成する工程と、該
第1基板の表面に沿って絶縁膜を形成する工程と、該絶
縁膜上に半導体薄膜を形成した後、前記凹部内に該半導
体薄膜を残すように平坦化する工程と、次いで、該第1
基板の表面側に第2基板を他の膜を介して接着する工程
と、前記第1基板の裏面を研磨して前記半導体薄膜を露
出させる工程と、を備えることをその解決手段としてい
る。
According to a first aspect of the present invention, a step of forming a recess on the surface of a first substrate, a step of forming an insulating film along the surface of the first substrate, Forming a semiconductor thin film on the insulating film, and flattening the semiconductor thin film so that the semiconductor thin film remains in the recess;
The solution is to include a step of adhering the second substrate to the front surface side of the substrate via another film, and a step of polishing the back surface of the first substrate to expose the semiconductor thin film.

【0010】また、この出願の請求項2記載の発明は、
第1基板の表面に所定間隔を介して複数の凹部を形成す
る工程と、該第1基板の表面に絶縁膜を形成する工程
と、該凹部のうち所定の凹部内に半導体薄膜を埋め込む
工程と、該凹部のうち他の凹部内に絶縁膜を埋め込む工
程と、次いで、該第1基板の表面側に第2基板を他の膜
を介して接着する工程と、前記第1基板の裏面を研磨し
て前記半導体薄膜を露出させる工程と、を備えることを
解決手段としている。
The invention according to claim 2 of this application is
A step of forming a plurality of recesses on the surface of the first substrate at predetermined intervals, a step of forming an insulating film on the surface of the first substrate, and a step of embedding a semiconductor thin film in a predetermined recess of the recesses. A step of embedding an insulating film in another of the recesses, a step of adhering a second substrate to the front surface side of the first substrate via the other film, and a back surface of the first substrate being polished. And a step of exposing the semiconductor thin film.

【0011】[0011]

【作用】請求項1記載の発明においては、第1基板表面
の凹部に絶縁膜を介して半導体薄膜を埋め込んだ後に少
なくとも絶縁膜を堆積し、その上に第2基板を接着し、
次に第1基板裏面を研磨して半導体薄膜を露出させるこ
とにより、SOI半導体薄膜が確実に形成できる。第1
基板が半導体基板である場合は、上記の露出された半導
体薄膜と第1基板(半導体領域)とは絶縁膜によって分
離される。このため、この絶縁膜の厚さを制御(例えば
熱酸化条件,CVD条件などの成膜条件の制御)するこ
とにより、リソグラフィーの限界より短い幅寸法の分離
膜構造が形成できる。このとき、絶縁膜の厚さを絶縁破
壊が起こらない幅まで短くすることにより、半導体薄膜
と第1基板との間の素子分離距離(従来の最小線幅で形
成できる)を狭めることができる。このため、従来リソ
グラフィーで規定されていた素子間領域内に素子を形成
することにより、集積度を高めることが可能となる。ま
た、上記半導体薄膜と第1基板との間の絶縁膜を、貼り
合せ工程の前に、第1基板の裏面側からの深さを(半導
体薄膜及び第1基板の厚さより)浅くなるように加工し
ておくことにより、トレンチアイソレーションやトレン
チキャパシタとして形成することも可能となる。
According to the first aspect of the present invention, at least the insulating film is deposited after the semiconductor thin film is embedded in the concave portion of the surface of the first substrate through the insulating film, and the second substrate is bonded thereon.
Then, by polishing the back surface of the first substrate to expose the semiconductor thin film, the SOI semiconductor thin film can be reliably formed. First
When the substrate is a semiconductor substrate, the exposed semiconductor thin film and the first substrate (semiconductor region) are separated by an insulating film. Therefore, by controlling the thickness of this insulating film (for example, controlling the film forming conditions such as the thermal oxidation condition and the CVD condition), the separation film structure having a width dimension shorter than the limit of lithography can be formed. At this time, the element isolation distance between the semiconductor thin film and the first substrate (which can be formed with the conventional minimum line width) can be narrowed by reducing the thickness of the insulating film to a width that does not cause dielectric breakdown. Therefore, it is possible to increase the degree of integration by forming the elements in the inter-element region, which has been conventionally defined by lithography. In addition, the insulating film between the semiconductor thin film and the first substrate is made shallower (from the thickness of the semiconductor thin film and the first substrate) from the back surface side of the first substrate before the bonding step. By processing it, it becomes possible to form it as a trench isolation or a trench capacitor.

【0012】請求項2記載の発明においては、凹部に埋
め込まれた半導体薄膜は素子形成領域となり、絶縁膜が
埋め込まれた部分は完全分離膜又はトレンチアイソレー
ションとすることができる。
According to the second aspect of the present invention, the semiconductor thin film embedded in the recess serves as an element forming region, and the portion in which the insulating film is embedded can be a complete isolation film or trench isolation.

【0013】[0013]

【実施例】以下、この発明に係る半導体薄膜の形成方法
の詳細を図面に示す実施例に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the method for forming a semiconductor thin film according to the present invention will be described below with reference to the embodiments shown in the drawings.

【0014】図1(A)〜(C)、図2(A)〜
(C)、図3(A)〜(B)、図4(A),(B)、及
び図5(A),(B)は、この発明をSOI半導体薄膜
の形成に適用した実施例を工程順に示す要部断面図であ
る。
1A to 1C and 2A to
(C), FIG. 3 (A)-(B), FIG. 4 (A), (B), and FIG. 5 (A), (B) show an embodiment in which the present invention is applied to the formation of an SOI semiconductor thin film. It is a principal part sectional view shown in order of a process.

【0015】先ず、本実施例は、図1(A)に示すよう
に、第1半導体基板としてのシリコン基板11の表面上
に例えばポジ型のレジスト12を塗布し、リソグラフィ
ー技術を用いてレジスト12を露光する。同図(A)中
13は露光用マスクであり、12Aはレジストにおける
露光部、12Bは未露光部を示している。この際、レジ
スト12の露光部12Aと未露光部12Bとの境界は素
子分離部を形成しようとする位置となるように設計回路
に応じて露光用マスクを設定しておく。なお、本実施例
では、レジストの最小線幅は例えば500nmである。
First, in this embodiment, as shown in FIG. 1 (A), for example, a positive resist 12 is applied on the surface of a silicon substrate 11 as a first semiconductor substrate, and the resist 12 is formed by using a lithography technique. To expose. In FIG. 9A, 13 is an exposure mask, 12A is an exposed portion of the resist, and 12B is an unexposed portion. At this time, an exposure mask is set according to the design circuit so that the boundary between the exposed portion 12A and the unexposed portion 12B of the resist 12 is at the position where the element isolation portion is to be formed. In this embodiment, the minimum line width of the resist is 500 nm, for example.

【0016】次に、図1(B)に示すように、レジスト
の現象を行った後、図1(C)に示すように、レジスト
12の未露光部12Bをマスクとして用いて、以下に示
す条件で異方性エッチングを行い、作成する半導体薄膜
の所望の厚さ寸法に素子分離部の所望の膜厚相当分を加
えた深さ(例えば100nm)まで異方性加工して凹部
11Aを形成する。なお、本実施例においては、この異
方性エッチングに際してμ波エッチャーを用いた。
Next, as shown in FIG. 1B, after the phenomenon of resist is performed, the unexposed portion 12B of the resist 12 is used as a mask as shown in FIG. Anisotropic etching is performed under the conditions, and the recess 11A is formed by anisotropically processing to a depth (for example, 100 nm) obtained by adding a desired film thickness of the element isolation portion to the desired thickness dimension of the semiconductor thin film to be formed. To do. In this example, a μ wave etcher was used for this anisotropic etching.

【0017】(異方性エッチンの条件) ・μ波パワー:250W ・RFパワー:150W ・エッチングガス:SF6及びC2Cl33 ・ガス圧力:0.01Torr ・時間:12秒 次に、レジストを剥離した後、熱酸化またはCVD法に
よって、図2(A)に示すように、シリコン基板11の
表面に沿ってシリコン酸化膜14を例えば100nmの
膜厚となるように形成する。次いで、図2(B)に示す
ように、多結晶シリコン膜15を減圧CVD法によっ
て、例えば500nmの膜厚に堆積させる。その後、図
3(A)に示すように、シリコン酸化膜14をストッパ
としてシリコン酸化膜14が露出するまで多結晶シリコ
ン膜15を表面から平坦に研磨する。これによって、多
結晶シリコン膜15は、図2(C)に示すように、凹部
11A内のみに埋め込まれた構造となる。
(Conditions for anisotropic etching) μ wave power: 250 W RF power: 150 W Etching gas: SF 6 and C 2 Cl 3 F 3 Gas pressure: 0.01 Torr Time: 12 seconds After the resist is peeled off, a silicon oxide film 14 is formed along the surface of the silicon substrate 11 by thermal oxidation or a CVD method so as to have a film thickness of 100 nm, for example, as shown in FIG. Next, as shown in FIG. 2B, the polycrystalline silicon film 15 is deposited by the low pressure CVD method to have a film thickness of, for example, 500 nm. After that, as shown in FIG. 3A, the polycrystalline silicon film 15 is polished flat from the surface using the silicon oxide film 14 as a stopper until the silicon oxide film 14 is exposed. As a result, the polycrystalline silicon film 15 has a structure in which only the recess 11A is filled, as shown in FIG.

【0018】その後、シリコン基板11の表面側にレジ
スト16を塗布し、リソグラフィー技術によって、多結
晶シリコン膜15を残す部分の上を覆うようにレジスト
16をパターニングする。次いで、レジスト16をマス
クとして異方性エッチングを行った後、等方性エッチン
グを施して埋め込まれた多結晶シリコン膜15のうち必
要としない部分を除去する。
After that, a resist 16 is applied on the surface side of the silicon substrate 11, and the resist 16 is patterned by a lithographic technique so as to cover the portion where the polycrystalline silicon film 15 is left. Next, anisotropic etching is performed using the resist 16 as a mask, and then isotropic etching is performed to remove unnecessary portions of the buried polycrystalline silicon film 15.

【0019】次に、レジスト16を剥離した後、熱酸化
により多結晶シリコン15の表面に、図3(B)に示す
ようなシリコン酸化膜17を、例えば10nmの厚さに
形成し、さらに、図3(B)に示すように、CVD法に
てシリコン酸化膜18を空の凹部11Aに完全に埋め込
める膜厚例えば300nmに堆積させる。次いで、この
シリコン酸化膜18の上に、CVD法にて多結晶シリコ
ン膜19を堆積させ、図3(C)に示すように、その表
面を研磨して平坦な貼り合わせ面とする。次に、図4
(A)に示すように、この多結晶シリコン膜19の貼り
合わせ面に、第2基板としてのシリコン基板20を貼り
合わせる。なお、図4(A)は第1基板であるシリコン
基板11の裏面を上にした状態を示している。そして、
シリコン基板11の裏面を研削した後、シリコン酸化膜
14をストッパとして研磨を行い、図4(B)に示すよ
うに、SOI構造の、単結晶シリコンでなるシリコン基
板11が形成できる。
Next, after removing the resist 16, a silicon oxide film 17 as shown in FIG. 3B is formed on the surface of the polycrystalline silicon 15 by thermal oxidation to a thickness of, for example, 10 nm. As shown in FIG. 3B, a silicon oxide film 18 is deposited by a CVD method to a film thickness of 300 nm, for example, which completely fills the empty recess 11A. Then, a polycrystalline silicon film 19 is deposited on the silicon oxide film 18 by the CVD method and the surface thereof is polished to form a flat bonding surface, as shown in FIG. 3 (C). Next, FIG.
As shown in (A), the silicon substrate 20 as the second substrate is bonded to the bonding surface of the polycrystalline silicon film 19. Note that FIG. 4A shows a state in which the back surface of the silicon substrate 11, which is the first substrate, is faced up. And
After the back surface of the silicon substrate 11 is ground, polishing is performed using the silicon oxide film 14 as a stopper to form a silicon substrate 11 made of single crystal silicon having an SOI structure as shown in FIG. 4B.

【0020】さらに、機械的研磨の強い研磨剤を使用し
てシリコン基板11とシリコン酸化膜14とに対して選
択比を持たない研磨を行い、図5(A)に示すように多
結晶シリコン膜15を露出させる。このとき、研磨量は
例えば時間制御で行う。このようにして単結晶シリコン
のシリコン基板11と多結晶シリコン膜15がシリコン
酸化膜14で分離され、夫々SOI構造に形成できる。
ここで、シリコン酸化膜14は、上記したように、膜厚
(幅)が50nmであるため、素子分離幅はリソグラフ
ィーの最小線幅(500nm)より小さい。このように
本実施例によれば、SOI構造により形成した素子領域
を分離する素子分離領域をリソグラフィーの最小線幅以
下に抑えることができ、また、リソグラフィーの解像度
に依存せずに絶縁破壊を起こさない幅まで素子分離距離
を狭めることができるため、半導体集積回路の集積度を
高めることができる。
Further, a polishing agent having a strong mechanical polishing is used to perform polishing without a selection ratio between the silicon substrate 11 and the silicon oxide film 14, and as shown in FIG. 5A, a polycrystalline silicon film is formed. Expose 15 At this time, the polishing amount is controlled by time, for example. In this way, the silicon substrate 11 of single crystal silicon and the polycrystalline silicon film 15 are separated by the silicon oxide film 14, and each can be formed into an SOI structure.
Here, since the silicon oxide film 14 has a film thickness (width) of 50 nm as described above, the element isolation width is smaller than the minimum line width (500 nm) of lithography. As described above, according to this embodiment, the element isolation region for isolating the element region formed by the SOI structure can be suppressed to be equal to or smaller than the minimum line width of lithography, and the dielectric breakdown does not occur depending on the resolution of lithography. Since the element separation distance can be narrowed to a certain width, the degree of integration of the semiconductor integrated circuit can be increased.

【0021】なお、図5(B)は、レーザ光21を照射
してアニールを行い、多結晶シリコン膜15を大粒径の
多結晶シリコン膜15Aに変える工程を示している。
FIG. 5B shows a step of irradiating the laser beam 21 to anneal it to change the polycrystalline silicon film 15 into a polycrystalline silicon film 15A having a large grain size.

【0022】以上、この発明の実施例について説明した
が、この発明は、このような構造の素子分離部以外のト
レンチアイソレーションやトレンチキャパシタを備える
半導体薄膜構造をも形成することが可能である。
Although the embodiments of the present invention have been described above, the present invention can also form a semiconductor thin film structure including a trench isolation and a trench capacitor other than the element isolation portion having such a structure.

【0023】また、上記実施例では、凹部11Aにポリ
シリコンを減圧CVD法にて埋め込んだが、他のCVD
条件でもよく、さらには、シリコンをエピタキシャル成
長させても勿論よい。
In the above embodiment, the recess 11A is filled with polysilicon by the low pressure CVD method.
Conditions may be used, and further, silicon may be epitaxially grown.

【0024】さらに、上記実施例では、第2基板として
シリコン基板20を用いたが、他の材料でなる基板でも
よい。
Further, although the silicon substrate 20 is used as the second substrate in the above embodiment, a substrate made of another material may be used.

【0025】[0025]

【発明の効果】以上の説明から明らかなように、この発
明によれば、リソグラフィーにより形成されるレジスト
パターンの最小線幅によって制限を受けずに半導体集積
回路の集積度を高める効果を奏する。
As is clear from the above description, according to the present invention, there is an effect of increasing the degree of integration of a semiconductor integrated circuit without being limited by the minimum line width of a resist pattern formed by lithography.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)〜(C)はこの発明の実施例の工程を示
す要部断面図。
FIG. 1A to FIG. 1C are cross-sectional views of essential parts showing steps of an embodiment of the present invention.

【図2】(A)〜(C)はこの発明の実施例の工程を示
す要部断面図。
FIG. 2A to FIG. 2C are cross-sectional views of essential parts showing the steps of the embodiment of the present invention.

【図3】(A)〜(C)はこの発明の実施例の工程を示
す要部断面図。
3 (A) to 3 (C) are cross-sectional views of essential parts showing the steps of the embodiment of the present invention.

【図4】(A)及び(B)はこの発明の実施例の工程を
示す要部断面図。
4A and 4B are cross-sectional views of the essential part showing the steps of the embodiment of the present invention.

【図5】(A)及び(B)はこの発明の実施例の工程を
示す要部断面図。
5 (A) and 5 (B) are cross-sectional views of essential parts showing the steps of the embodiment of the present invention.

【図6】(A)〜(C)は従来例の工程を示す要部断面
図。
FIG. 6A to FIG. 6C are cross-sectional views of main parts showing the steps of a conventional example.

【図7】(A)及び(B)は従来例の工程を示す要部断
面図。
7A and 7B are cross-sectional views of a main part showing the steps of a conventional example.

【符号の説明】[Explanation of symbols]

11…シリコン基板(第1基板) 11A…凹部 12…レジスト 14…シリコン酸化膜(絶縁膜) 15…多結晶シリコン膜 15A…多結晶シリコン膜 20…シリコン基板(第2基板) 11 ... Silicon substrate (first substrate) 11A ... Recessed portion 12 ... Resist 14 ... Silicon oxide film (insulating film) 15 ... Polycrystalline silicon film 15A ... Polycrystalline silicon film 20 ... Silicon substrate (second substrate)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 27/12 F ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01L 27/12 F

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1基板の表面に凹部を形成する工程
と、 該第1基板の表面に沿って絶縁膜を形成する工程と、 該絶縁膜上に半導体薄膜を形成した後、前記凹部内に該
半導体薄膜を残すように平坦化する工程と、 次いで、該第1基板の表面側に第2基板を他の膜を介し
て接着する工程と、 前記第1基板の裏面を研磨して前記半導体薄膜を露出さ
せる工程と、を備えることを特徴とする半導体薄膜の形
成方法。
1. A step of forming a concave portion on the surface of a first substrate, a step of forming an insulating film along the surface of the first substrate, and a step of forming a semiconductor thin film on the insulating film, and then forming the inside of the concave portion. And a step of adhering a second substrate to the front surface side of the first substrate via another film, and a back surface of the first substrate is polished to remove the semiconductor thin film. A method of forming a semiconductor thin film, comprising: exposing the semiconductor thin film.
【請求項2】 第1基板の表面に所定間隔を介して複数
の凹部を形成する工程と、 該第1基板の表面に絶縁膜を形成する工程と、 該凹部のうち所定の凹部内に半導体薄膜を埋め込む工程
と、 該凹部のうち他の凹部内に絶縁膜を埋め込む工程と、 次いで、該第1基板の表面側に第2基板を他の膜を介し
て接着する工程と、 前記第1基板の裏面を研磨して前記半導体薄膜を露出さ
せる工程と、を備えることを特徴とする半導体薄膜の形
成方法。
2. A step of forming a plurality of recesses on a surface of a first substrate with a predetermined space therebetween, a step of forming an insulating film on a surface of the first substrate, and a semiconductor in a predetermined recess of the recesses. A step of embedding a thin film, a step of embedding an insulating film in another recess of the recess, a step of adhering a second substrate to the front surface side of the first substrate via another film, A step of polishing the back surface of the substrate to expose the semiconductor thin film.
JP31097693A 1993-12-13 1993-12-13 Method of forming semiconductor thin film Pending JPH07161811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31097693A JPH07161811A (en) 1993-12-13 1993-12-13 Method of forming semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31097693A JPH07161811A (en) 1993-12-13 1993-12-13 Method of forming semiconductor thin film

Publications (1)

Publication Number Publication Date
JPH07161811A true JPH07161811A (en) 1995-06-23

Family

ID=18011664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31097693A Pending JPH07161811A (en) 1993-12-13 1993-12-13 Method of forming semiconductor thin film

Country Status (1)

Country Link
JP (1) JPH07161811A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010045310A (en) * 2008-08-18 2010-02-25 Disco Abrasive Syst Ltd Working method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010045310A (en) * 2008-08-18 2010-02-25 Disco Abrasive Syst Ltd Working method

Similar Documents

Publication Publication Date Title
JP3506645B2 (en) Semiconductor device and manufacturing method thereof
JP3406302B2 (en) Method of forming fine pattern, method of manufacturing semiconductor device, and semiconductor device
US6559029B2 (en) Method of fabricating semiconductor device having trench isolation structure
JPH09107028A (en) Element isolation method for semiconductor device
JPH06268055A (en) Forming recessed part oxidation insulation
JP3581505B2 (en) Method for forming element isolation region of semiconductor device
US5907783A (en) Method of fabricating silicon-on-insulator substrate
JP2723598B2 (en) Method for manufacturing semiconductor device
JP3651344B2 (en) Manufacturing method of semiconductor device
US6103581A (en) Method for producing shallow trench isolation structure
JPH07161811A (en) Method of forming semiconductor thin film
US6184106B1 (en) Method for manufacturing a semiconductor device
TWI855681B (en) Memory device and fabricating method thereof
KR19990015463A (en) Trench element isolation method for semiconductor devices
JP2000232153A (en) Manufacture of semiconductor device
KR20060076498A (en) Method of forming an isolation layer in a semiconductor device
JPS5913342A (en) Manufacture of semiconductor device
TW202437891A (en) Memory device and fabricating method thereof
KR100849079B1 (en) Method for element isolating of semiconductor device
KR100273244B1 (en) Method for fabricating isolation region of semiconductor device
KR100305643B1 (en) Method for manufacturing isolation layer of semiconductor device
JP3688860B2 (en) Manufacturing method of semiconductor integrated circuit
JP2002050682A (en) Method for manufacturing semiconductor device and reticle mask
JP2762501B2 (en) Semiconductor substrate manufacturing method
JP2000100934A (en) Manufacture of semiconductor device