JPH07161486A - Method for generating electron acceleration type sheet plasma - Google Patents

Method for generating electron acceleration type sheet plasma

Info

Publication number
JPH07161486A
JPH07161486A JP5342165A JP34216593A JPH07161486A JP H07161486 A JPH07161486 A JP H07161486A JP 5342165 A JP5342165 A JP 5342165A JP 34216593 A JP34216593 A JP 34216593A JP H07161486 A JPH07161486 A JP H07161486A
Authority
JP
Japan
Prior art keywords
plasma
plasma flow
discharge
sheet
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5342165A
Other languages
Japanese (ja)
Inventor
Joshin Uramoto
上進 浦本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP5342165A priority Critical patent/JPH07161486A/en
Publication of JPH07161486A publication Critical patent/JPH07161486A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a plasma CVD at a large area and at a high speed to perform the sputtering and etching by accelerating an electron component of a direct current discharge plasma flow at a large current, and changing the shape of the plasma flow from a cylindrical plasma flow to a sheet-like plasma flow. CONSTITUTION:Ar is supplied from a discharging negative electrode 2 to obtain a predetermined Ar gas pressure, and a predetermined voltage is applied between positive electrodes 12 to form a plasma flow at a predetermined diameter. This initial plasma flow is led to an intermediate area at a low gas-pressure along a magnetic field by a discharging pump 8. A cylindrical plasma current is deformed into a sheet-like plasma flow 7 at a predetermined width and thickness by a permanent magnet 9 formed with a pair of N, S poles facing to each other, and the sheet-like plasma flow 7 passes through a slit 11, and led to the area of the accelerating positive electrodes 12, and the Ar gas 13 is led to obtain a predetermined pressure, and a predetermined acceleration voltage is applied between the discharge area and the accelerating electrodes 12. An electron accelerating sheet plasma 14 is thereby stably generated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[産業上の利用分野]大面積で成膜速度が
大きいプラズマCVD装置、スパタリング装置は金属、
ガラス、プラスチック等の表面処理のために待望されて
いる。同様に、大面積で高速のプラズマエッチング装置
も微細加工のために待望されている。この発明のプラズ
マ生成法はこれ等の期待に充分答え得る。
[Industrial field of application] A plasma CVD apparatus with a large area and a high film-forming rate, a sputtering device is a metal,
Long-awaited for surface treatment of glass, plastic, etc. Similarly, a large-area and high-speed plasma etching apparatus is also desired for fine processing. The plasma generation method of the present invention can sufficiently meet these expectations.

【0002】[従来の技術] (1) 従来の大面積プラズマCVD装置の代表はマイ
クロ波の電子サイクロトロン共鳴によるプラズマ生成を
利用したものである。しかし、プラズマ密度の上昇と面
積の拡大が排反條件のため直径20cm程度のプラズマ
が限界である。また1KG以上の強磁場、パワーを増大
したときの局所的電界の集中による異常放電、高電子温
度による基板の損傷は大きな障害となっている。マイク
ロ波型以外のグロー放電型CVD装置はプラズマ密度が
著しく低く、またRF放電型CVD装置はプラズマの自
己電位による基板の損傷、アンテナの複雑さで上記マイ
クロ波型に比較しても遠く及ばない。 (2) スパタリング装置については平板マグネトロン
型が代表と考えられ、可成り大きな而積に10mA/c
程度のターゲットイオン電流密度が得られる。しか
し、欠点はターゲットのバイアス電圧とターゲットへの
イオン電流が独立に変えられないこと、グロー放電のた
め中性ガス圧力が高過ぎてターゲットと基板の距離が限
定されること、ターゲットが局所的に損傷すること、そ
して最後に、反応性スパタリングの場合の、反応性ガス
の電離が不充分なことである。その他の方式のスパタリ
ング装置はイオン電流密度と大面積の点で問題ににらな
い。 (3) プラズマエッチング装置に関しては、プラズマ
CVDと同様にマイクロ波型が代表と考えられる。従っ
てプラズマCVD装置と同様な欠点が生ずる。即ち、面
積の限界、強磁場、異常放電、基板損傷である。 (4) さて、磁場に沿った直流放電プラズマ流(一般
に円柱状)を浦本が発明した一対の永久磁石による方法
で(「真空」第25巻719頁)でシート形状に変える
と、従来装置にない大面積の、特長あるCVD装置、ス
パタリング装置、エッチング装置になることはすでに明
らかになっている。しかし、(A)CVD装置としての
弱点は、高速成膜のために必要な、3×10−3Tor
r程度以上の高い反応ガス圧力で、放電が不安定になる
ことである。これは、放電プラズマ中の電子流のエネル
ギー減衰による電離能率の著しい低下に起因する。
(B)スパタリング装置としての弱点は、ターゲットに
かける深い負のバイアス電圧によってシートプラズマ流
の表面へのターゲットの接近距離が限定され、ターゲッ
トへのイオン電流密度が低く抑えられることである。こ
の原因は、やはり一般の直流放電プラズマ中の電子エネ
ルギーが低いので、ターゲットの負のバイアス電圧に中
心のプラズマ電子流が妨げられるためである。またこの
低い電子エネルギーでは電離能率も小さく、プラズマ密
度が相対的に低くなるのでターゲットへの相対的イオン
電流密度も低下している。(C)エッチング装置として
の弱点は、エッチング用反応ガスを導入したとき、一般
に、負性イオンが発生するので、プラスマ電子流が妨げ
られて放電が不安定になることである。以上の(A)、
(B)、(C)の弱点の共通点は、一般の直流放電プラ
ズマ流の電子エネルギーの不足である。例えば、通常の
アルゴンガス放電では中心の電子流の電子エネルギー成
分は25eV程度が限界である。この電子エネルギーは
アルゴンガスでは最大電離能率(約15イオン対/cm
Torr)を与える80eVに比較して、低い電離能率
(25eVでは約5イオン対/cmTorr)の領域に
ある。かくて、浦本が発明したシートプラズマもマイク
ロ波型、平板マグネトロン型より優れた素質を有してい
るが、一般直流放電中の電子エネルギーの不足が障害と
なって、その特長を発揮できないのである。
[Prior Art] (1) A typical large-area plasma CVD apparatus in the related art utilizes plasma generation by electron cyclotron resonance of microwaves. However, since the increase of the plasma density and the increase of the area are exhausted, the plasma having a diameter of about 20 cm is the limit. Further, a strong magnetic field of 1 KG or more, abnormal discharge due to local electric field concentration when power is increased, and substrate damage due to high electron temperature are major obstacles. The glow discharge type CVD apparatus other than the microwave type has a remarkably low plasma density, and the RF discharge type CVD apparatus is far from the microwave type because of damage to the substrate due to plasma self-potential and complexity of the antenna. . (2) A flat plate magnetron type is considered to be the representative of the sputtering device, and it has a considerably large volume of 10 mA / c.
A target ion current density of about m 2 can be obtained. However, the drawbacks are that the bias voltage of the target and the ion current to the target cannot be changed independently, the neutral gas pressure is too high due to the glow discharge, and the distance between the target and the substrate is limited. Damage and, finally, insufficient ionization of the reactive gas in the case of reactive sputtering. Other types of sputtering devices do not pose a problem in terms of ion current density and large area. (3) Regarding the plasma etching apparatus, the microwave type is considered to be the representative, as in the plasma CVD. Therefore, the same drawbacks as those of the plasma CVD apparatus occur. That is, the area limit, strong magnetic field, abnormal discharge, and substrate damage. (4) Now, when the DC discharge plasma flow (generally columnar) along the magnetic field is converted into a sheet shape by the method using a pair of permanent magnets invented by Uramoto (“Vacuum”, Vol. 25, p. 719), the conventional apparatus is used. It has already been clarified that it will be a large-scale, unique CVD device, sputtering device, and etching device. However, the weak point of the (A) CVD apparatus is 3 × 10 −3 Tor required for high-speed film formation.
That is, the discharge becomes unstable at a high reaction gas pressure of about r or higher. This is due to a significant decrease in the ionization efficiency due to the energy decay of the electron flow in the discharge plasma.
(B) The weak point of the sputtering device is that the deep negative bias voltage applied to the target limits the approach distance of the target to the surface of the sheet plasma flow, and the ion current density to the target can be suppressed low. This is because the electron energy in the general DC discharge plasma is low, and the central plasma electron flow is blocked by the negative bias voltage of the target. Further, at this low electron energy, the ionization efficiency is small and the plasma density is relatively low, so that the relative ion current density to the target is also low. (C) A weak point of the etching apparatus is that when an etching reaction gas is introduced, generally, negative ions are generated, so that the plasma electron flow is disturbed and the discharge becomes unstable. Above (A),
The common point of the weak points of (B) and (C) is the lack of electron energy in a general DC discharge plasma flow. For example, in a normal argon gas discharge, the electron energy component of the central electron flow is limited to about 25 eV. This electron energy has the maximum ionization efficiency (about 15 ion pairs / cm 2) in argon gas.
It is in the region of low ionization efficiency (about 5 ion pairs / cmTorr at 25 eV) compared to 80 eV which gives Torr). Thus, the sheet plasma invented by Uramoto also has superior properties to the microwave type and the flat plate magnetron type, but the lack of electron energy during general DC discharge becomes an obstacle, and its features cannot be exhibited. is there.

【0003】[発明が解決しようとする課題]すでに浦
本が発明したシートプラズマ流の電子エネルギーを上げ
て、プラズマCVD、スパタリング、エッチング装置と
してその特長を発揮させることが課題である。即ち、
(1)プラズマCVD装置としては、高いガス圧力中で
も長い距離を電子が走行できて、電離能率も高くなるよ
うに放電プラズマ流の電子を加速する。(2)スパタリ
ング装置としては、中心のシートプラズマ面にターゲッ
トを近づけてもターゲットにかかっている負のバイアス
電圧で放電プラズマ流が妨げられないように、且つ、電
離能率が最大になるように放電プラズマ流の電子を加速
する。(3)プラズマエッチング装置としては、エッチ
ング用反応ガスの導入で発生する負性イオンで、放電が
不安定にならないように放電プラズマ流の電子を加速
し、そしてやはり電離能率が最大になるように放電プラ
ズマ流の電子を加速する。
[Problems to be Solved by the Invention] It is a problem to raise the electron energy of the sheet plasma flow already invented by Uramoto to bring out its characteristics as a plasma CVD, sputtering and etching apparatus. That is,
(1) The plasma CVD apparatus accelerates the electrons in the discharge plasma flow so that the electrons can travel a long distance even under a high gas pressure and the ionization efficiency becomes high. (2) As the sputtering device, even if the target is brought close to the sheet plasma surface in the center, the discharge plasma flow is not disturbed by the negative bias voltage applied to the target, and the discharge is performed so as to maximize the ionization efficiency. Accelerate the electrons in the plasma stream. (3) As a plasma etching device, negative ions generated by the introduction of the reaction gas for etching accelerate electrons in the discharge plasma flow so that the discharge does not become unstable, and also maximize the ionization efficiency. Accelerate the electrons in the discharge plasma stream.

【0004】[課題を解決するための手段]磁場に沿っ
た直流放電プラズマ流の電子を加速する原理と装置は、
すでに浦本の論文「真空」第20巻170頁、第26巻
15頁に発表されている。即ち、高いガス圧力領域(1
Torr〜2×10−3Torr)の熱陰極放電で生成
されたプラズマ流を、磁場に沿ってガス圧力のより低い
中間領域(10−4Torr〜8×10−4Torr程
度に排気する)に導き、次にこの中間領域より高いガス
圧力にした加速陽極領域(長い空間とガス導入が必要)
を設定する。放電プラズマ流の電子加速はこの中間領域
に加速電圧をかけて行う。加速陽極領域から中間領域へ
のイオン逆流によって、電子流を中和しながら安定に加
速するのがこの原理である。次に、磁場に沿った直流放
電プラズマ流をシート形状に変形する原理と装置も、論
文「真空」第25巻719頁にすでに発表されている。
即ち、磁場に沿った直流放電プラズマ流(円柱形)の両
側に同極で向き合った一対の永久磁石を配置し、円柱形
からシート形に変えるのである。本発明は放電陽極と加
速陽極の間の中間領域で、電子加速と同時に円柱プラズ
マ流からシートプラズマ流に変形を行ったところが妙手
である。即ち、電子加速で電子エネルギーを上昇させ、
シート変形でプラズマ流の表面積を拡大した。簡単に手
段を表現すれば、直流放電路の中間に真空ポンプを入
れ、この間に電圧をかけ、更に一対の永久磁石を配置し
たことである。
[Means for Solving the Problems] The principle and apparatus for accelerating electrons in a DC discharge plasma flow along a magnetic field are as follows:
It has already been published in Uramoto's paper "Vacuum" Vol. 20, p. 170, vol. 26, p. That is, the high gas pressure region (1
The Torr~2 × 10 -3 Torr) hot cathode plasma stream generated by the, evacuated to a lower intermediate area (about 10 -4 Torr~8 × 10 -4 Torr gas pressure along the magnetic field) to Guided, then accelerated anode area with gas pressure higher than this intermediate area (long space and gas introduction required)
To set. Electron acceleration of the discharge plasma flow is performed by applying an acceleration voltage to this intermediate region. This principle is to stably accelerate while neutralizing the electron flow by the ion backflow from the accelerating anode region to the intermediate region. Next, the principle and apparatus for transforming a direct-current discharge plasma flow along a magnetic field into a sheet shape have also been published in the paper "Vacuum", Vol. 25, p.
That is, a pair of permanent magnets having the same poles and facing each other are arranged on both sides of the DC discharge plasma flow (cylindrical shape) along the magnetic field to change from the cylindrical shape to the sheet shape. The present invention is unique in that, in the intermediate region between the discharge anode and the accelerating anode, the cylindrical plasma flow is transformed into the sheet plasma flow simultaneously with electron acceleration. That is, electron energy is increased by electron acceleration,
The surface area of the plasma flow was expanded by sheet deformation. The means is simply expressed by placing a vacuum pump in the middle of the DC discharge path, applying a voltage between them, and disposing a pair of permanent magnets.

【0005】[作用と実施例]本発明の実施方法と実験
結果を例にあげて説明する。先づ、図1に示したよう
な、磁場に沿った熱陰極直流放電によって、放電陽極領
域にアルゴンの円柱形プラズマ流を生成する。第1の実
験例では、放電陰極側からアルゴンガスが10SCCM
程度供給され、放電電流は約50A、放電陰極と放電陽
極間の電圧は約25V、放電陽極領域のアルゴンガス圧
力は約3×10−3Torrである。なお光っているプ
ラズマ流の直径は約10mmmである。次に、この初期
放電プラズマ流を、磁場に沿って、真空ポンプで排気さ
れてより低いガス圧力(5×10−4Torr)になっ
ている中間領域に導く。更に、この放電陽極からの円柱
プラズマ流は、一対の両極が向き合った永久磁石によっ
て、巾が約10cmで厚みが約3mm(プラズマの光っ
ている部分)のシート形のプラズマ流に変形される。こ
のシート変形されたプラズマ流はスリット(10cm×
1.5cm)を通過して加速陽極領域に導かれる。放電
陽極領域と加速陽極領域の間には、プラズマ流の電子成
分を加速するために約100Vの加速電圧がかかってい
る。なお加 速陽極領域にはアルゴンガスが導入され約
10−3Torrになっている。この様にして、加速陽
極領域に電子加速されたシートプラズマ(長さ40c
m、巾約13cm)が生成された。この電子加速型シー
トプラズマをスパタリング用としてテストするために、
巾12cm、長さ33cm(約400cm)の金属板
を、光っているシートプラズマ面に平行に配置し、その
距離を約5mmに近づけた。かくして、この金属板をス
パタリングのターゲットとして加速陽極に対して−20
0〜−500Vをかけても、電子加速されたこのシート
プラズマ流は安定であった。そのターゲットへのイオン
電流は約7.5Aであり、アルゴンイオン電流密度は約
19mA/cm達した。この平均プラズマ密度は電子
温度を5〜6eVとすれば約5×1011/ccであ
る。この実験では200A以上の電子加速型放電も可能
なので、タータットへのイオン電流密度として、70m
A/cm以上も期待できる。またシートプラズマの巾
は40cm長さは1m程度も可能である。なお、この第
1実験では、タータットへのイオン電流は全放電電流の
15%程度に達しているので従来の方式に比較して驚く
べき対放電電流効率である。第2の実験例では、プラズ
マCVD装置のために加速陽極領域への入口のスリット
を10cm巾で9mmに縮小して、加速陽極領域にアル
ゴンガスを導入した。かくして、中間領域のガス圧力8
×10−4Torr、加速陽極領域のガス圧力を1.5
×10−2Torrまでに上げて実験した。放電電流2
0Aから100A、中間領域の電子加速電圧80Vから
150Vで加速陽極領域内に巾約13cmで長さ40c
mのシートプラズマが安定に生成された。かくて、高い
ガス圧力のプラズマCVD装置になることも実証された
と考えられる。
[Operation and Examples] The method of carrying out the present invention and the experimental results will be described as an example. First, a cylindrical plasma flow of argon is generated in the discharge anode region by a hot cathode DC discharge along a magnetic field as shown in FIG. In the first experimental example, 10 SCCM of argon gas was supplied from the discharge cathode side.
The discharge current is about 50 A, the voltage between the discharge cathode and the discharge anode is about 25 V, and the argon gas pressure in the discharge anode region is about 3 × 10 −3 Torr. The diameter of the glowing plasma stream is about 10 mm. This initial discharge plasma stream is then directed along the magnetic field to an intermediate region that is evacuated by a vacuum pump to a lower gas pressure (5 × 10 −4 Torr). Further, the cylindrical plasma flow from the discharge anode is transformed into a sheet-shaped plasma flow having a width of about 10 cm and a thickness of about 3 mm (the portion where plasma is shining) by a permanent magnet having a pair of opposite electrodes facing each other. This sheet-deformed plasma flow has a slit (10 cm x
1.5 cm) and is guided to the accelerating anode region. An acceleration voltage of about 100 V is applied between the discharge anode region and the accelerating anode region to accelerate the electron component of the plasma flow. Argon gas was introduced into the accelerated anode region to about 10 −3 Torr. In this manner, electron-accelerated sheet plasma (length 40 c
m, width approximately 13 cm) was produced. In order to test this electron acceleration type sheet plasma for sputtering,
A metal plate having a width of 12 cm and a length of 33 cm (about 400 cm 2 ) was placed in parallel with the shining sheet plasma surface, and the distance was brought close to about 5 mm. Thus, this metal plate is used as a target for spattering with respect to the acceleration anode by −20.
The electron-accelerated sheet plasma flow was stable even when 0 to -500 V was applied. The ion current to the target was about 7.5 A, and the argon ion current density reached about 19 mA / cm 2 . This average plasma density is about 5 × 10 11 / cc when the electron temperature is 5 to 6 eV. In this experiment, an electron acceleration type discharge of 200 A or more is also possible, so the ion current density to the tart is 70 m
A / cm 2 or more can be expected. The width of the sheet plasma can be 40 cm and the length can be about 1 m. In this first experiment, the ion current to the tartat reached about 15% of the total discharge current, so that the discharge current efficiency was surprising as compared with the conventional method. In the second experimental example, for the plasma CVD apparatus, the slit at the entrance to the acceleration anode region was reduced to 9 mm with a width of 10 cm, and argon gas was introduced into the acceleration anode region. Thus, the gas pressure in the intermediate region is 8
× 10 −4 Torr, the gas pressure in the acceleration anode region is 1.5
The experiment was conducted by raising the pressure to × 10 −2 Torr. Discharge current 2
0A to 100A, electron accelerating voltage of 80V to 150V in the intermediate region, width of about 13cm and length of 40c in the accelerating anode region
m sheet plasma was stably generated. Thus, it can be considered that the plasma CVD apparatus has a high gas pressure.

【0006】[発明の効果果]本発明によって、従来技
術で不可能な大面積、高速成膜のプラズマCVD装置、
スパタリング装置ができることが明らかとなった。とく
に、現在注目されているダイヤ膜に関しては、反応ガス
の10−2Torr以上の大面積、大電流放電プラズマ
CVDによる展望が開けた。従来技術で不可能な大面
積、高速プラズマエッチング装置に関しても、電子加速
型プラズマが小面積ではすでに実証されているので、シ
ートプラズマ技術、大電流加速技術と結びついたこの電
子加速型シートプラズマに充分期待できる。
[Effects of the Invention] According to the present invention, a plasma CVD apparatus for large area, high speed film formation, which is impossible with the prior art,
It became clear that a sputtering device could be made. In particular, regarding the diamond film, which is currently attracting attention, the prospect of a large area of 10 −2 Torr or more of reaction gas and large current discharge plasma CVD has been opened. Even for large-area, high-speed plasma etching equipment that is impossible with conventional technology, electron-acceleration type plasma has already been demonstrated in a small area, so this electron-acceleration type sheet plasma combined with sheet plasma technology and large-current acceleration technology is sufficient. Can be expected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の装置構成図FIG. 1 is a device configuration diagram of the present invention.

【図2】本発明の装置のスリットとシートプラズマの断
面図
FIG. 2 is a sectional view of a slit and a sheet plasma of the device of the present invention.

【符号の説明】[Explanation of symbols]

1は放電陽極内円柱プラズマ流 2は放電陰極 3は
(キャリア)ガス 4は放電電源 5は加速電源 6は
排気ポンプ 7はシート(プラズマ)変形部 8は絶縁
管 9は(一対の)角形永久磁石 10は(2ヶの)磁
場コイル 11はスリット(加速陽極の1部)12は加
速陽極 13は反応ガス 14は電子加速シートプラズ
1 is a cylindrical plasma flow in a discharge anode 2 is a discharge cathode 3 is a (carrier) gas 4 is a discharge power supply 5 is an acceleration power supply 6 is an exhaust pump 7 is a sheet (plasma) deformation part 8 is an insulating tube 9 is a pair of (permanent) prismatic permanent Magnet 10 is (two) magnetic field coil 11 is slit (part of acceleration anode) 12 is acceleration anode 13 is reaction gas 14 is electron acceleration sheet plasma

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】直流放電プラズマ流の電子を加速し、且つ
磁石によってシート形(巾が広く厚みの薄い形)に変え
る方法
1. A method of accelerating electrons in a DC discharge plasma flow and converting them into a sheet shape (a wide width and a thin shape) by a magnet.
JP5342165A 1993-12-02 1993-12-02 Method for generating electron acceleration type sheet plasma Pending JPH07161486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5342165A JPH07161486A (en) 1993-12-02 1993-12-02 Method for generating electron acceleration type sheet plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5342165A JPH07161486A (en) 1993-12-02 1993-12-02 Method for generating electron acceleration type sheet plasma

Publications (1)

Publication Number Publication Date
JPH07161486A true JPH07161486A (en) 1995-06-23

Family

ID=18351628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5342165A Pending JPH07161486A (en) 1993-12-02 1993-12-02 Method for generating electron acceleration type sheet plasma

Country Status (1)

Country Link
JP (1) JPH07161486A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149513A1 (en) * 2007-06-07 2008-12-11 Shinmaywa Industries, Ltd. Sheet plasma film forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149513A1 (en) * 2007-06-07 2008-12-11 Shinmaywa Industries, Ltd. Sheet plasma film forming apparatus

Similar Documents

Publication Publication Date Title
US20190368030A1 (en) Apparatus for generating high-current electrical discharges
EP0428161B1 (en) Dry process system
US7811421B2 (en) High deposition rate sputtering
EP1554412B1 (en) Plasma enhanced chemical vapor deposition apparatus
US20160027608A1 (en) Closed drift magnetic field ion source apparatus containing self-cleaning anode and a process for substrate modification therewith
US20110011737A1 (en) High-power pulse magnetron sputtering apparatus and surface treatment apparatus using the same
EP0653776A1 (en) Plasma deposition systems for sputter deposition
US20070026161A1 (en) Magnetic mirror plasma source and method using same
EP2157205A1 (en) A high-power pulsed magnetron sputtering process as well as a high-power electrical energy source
US4716340A (en) Pre-ionization aided sputter gun
JPH06275545A (en) Formation of compound thin film using gas cluster ion
JPS6272121A (en) Semiconductor treating device
EP0203573A2 (en) Electron beam-excited ion beam source
JPH07161486A (en) Method for generating electron acceleration type sheet plasma
JP2849771B2 (en) Sputter type ion source
JP3685670B2 (en) DC sputtering equipment
JP3064214B2 (en) Fast atom beam source
JPH0781187B2 (en) Vacuum process equipment
JPH01302645A (en) Discharging device
JPS6350463A (en) Method and apparatus for ion plating
KR20040012264A (en) High effective magnetron sputtering apparatus
KR102617710B1 (en) Substrate treatment apparatus
JP2929151B2 (en) Plasma equipment
JPH0614478Y2 (en) Thin film forming equipment
JPH02224239A (en) Plasma etching device